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Abstract

Cyber security and resilience are major challenges in our modern economies; this is why they are
top priorities on the agenda of governments, security and defense forces, management of companies
and organizations. Hence, the need of a deep understanding of cyber risks to improve resilience. We
propose here an analysis of the database of the cyber complaints filed at the Gendarmerie Nationale.
We perform this analysis with a new algorithm developed for non-negative asymmetric heavy-tailed
data, which could become a handy tool in applied fields. This method gives a good estimation of the
full distribution including the tail. Our study confirms the finiteness of the loss expectation, necessary
condition for insurability. Finally, we draw the consequences of this model for risk management,
compare its results to other standard EVT models, and lay the ground for a classification of attacks
based on the fatness of the tail.
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1 From operational risk to cyber risk

For a very long time, IT risks were classified in operational risk. Many databases recording operational
failure events also contain cyber incidents, which have been modelled using traditional operational research
methods. Recently, as cyber failures originate more from malicious attacks and may exhibit strong systemic
effects, cyber risk has become a class of risks on its own, requiring specific approaches to study it. Besides
the usual IT literature on cyber security and defense, the scientific literature on cyber concerns mainly
two fields, Management and Operational Research (OR), for general models and study of properties, and
Actuarial Research, when suggesting pricing models for insurance. These two paths clearly appear in the
state-of-the-art review presented below.

Extreme Value Theory (EVT) methods have already proven to be quite useful for operational risks (among
recent papers, see e.g. Das, Dhara, and Natarajan (2021); Embrechts, Mizgier, and Chen (2018)) in the
industrial and financial sectors, loss severity being even larger in manufacturing than in finance. Relying
on EVT becomes even more essential when studying cyber risk because it has moved, over the years, from
a possible threat to an important emerging risk, which generally goes with a high probability of extreme
events (due to immature management). Then, it also calls for the development or improvement of dynamic
EVT approaches. This might be facilitated when using unsupervised EVT methods, where the threshold
above which observations are considered as extremes is automatically detected. It is what we propose here,
extending a recent method to skewed non-negative data, as those explored in this study. Our approach
makes the empirical estimation of the whole heavy-tailed distribution more straightforward, and of easier
use for non-specialists of EVT. It may become a handy tool in many applied research fields dealing with
heavy-tailed data, in particular operational research.

Facing an emerging risk: the compromise between cyber security and cyber resilience -
Cyber threats and crimes have increased exponentially in recent decades, due to a rapid diffusion of new
and evolving Information and Communication Technologies such as Social Media, cloud computing, big
data, Internet of Things (IoT) and smart cities (see e.g. (Pasculli, 2020)). There are innumerable exam-
ples of cyber crimes having a huge impact in terms of human and financial costs, e.g. one of the latest
attacks, attributed to ’Darkside’ (cyber crime group), causing in early May 2021 the shut down of Colonial
Pipeline network and a shortage of oil supply in the North-East Cost of USA. The frequency of cyber at-
tacks increased even more since the beginning of the Coronavirus pandemic; we have seen a simultaneous
surge in the use of Internet and in the cyber attacks targeted against individuals, hospitals, and small
businesses (see e.g. (NCSC, 2021)). Even though all actors in society are getting more and more aware of
the growing importance of cyber risk, we are still far from having reached the same level of understanding
and assessment for this specific risk, as we do for financial risk or natural disasters.

From a societal point of view, we clearly need to develop ways of becoming more resilient as we increasingly
depend on well functioning IT systems. Managing this risk does not only mean minimizing and preventing
cyber-attacks, but also, if an attack is successful, ensuring that its consequences are not too severe for
organizations or individuals, in other words, making society more resilient to them. While the term ‘cyber
security’ is as old as computers themselves, the term ‘cyber resilience’ has emerged recently and is gaining
currency. Cyber security is focused on security alone, the term security referring to defense, protection,
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precaution. But organizations need a broader strategy that includes their ability to survive an attack, to
recover with as little harm as possible, to continue to operate when experiencing a cyber attack, and finally
to insure some unavoidable risks. This is what cyber resilience refers to. As already pointed out in the
review by Aven (2016) and in Aven (2019), integrating resilience principles and methods may participate
to the development of modern risk management. The future of this resilience will be multidimensional,
combining prevention and protection measures like: users’ education, security protocols, redundancies
in IT systems, clear managerial attention for implementing an adequate strategy, insurance coverage to
ensure the survival and functioning of the system.

In order to fight against cyber-criminality in France, since the end of the 90’s, the Central Criminal Intel-
ligence Service (SCRC1) of the GN Judicial Pole (PJGN2) has developed various strategies, among which
the setting up of a Cybercrime Fighting Center named C3N 3. SCRC, which consists of the C3N and of the
Intelligence Division (DR4), aims at improving prevention and protecting individuals and companies from
cyber crimes, mainly small and medium businesses, which have less capacity to invest in cyber security5.
In 2014, the GN started collecting centrally the complaints related to cyber attacks, of individuals or
companies from rural and peri-urban areas in all metropolitan and overseas territories (it covers 95% of
the national territory and 55 % of the French population). One task of C3N is to collect data and exploit
criminal information with the DR, relying on the analysis of the thousands complaints that are received
at GN and registered by the SCRC.

From a management point of view, cyber security has to be weighed up against building resilience to
IT attack or failure. It is clear that nowadays, companies need to give access to their services through
Internet. But systems connected to Internet cannot be 100% safe. Hence, there will always be a certain
amount of system failures due to cyber-crimes. The question is where to allocate resources: to security
and/or to resilience? How much should be invested in security through fire-walls, multiple identifications,
security officers, etc., against in building resilience e.g. by prevention measures, using multiple systems
with backups, or/and by covering the remaining risk through an insurance policy whenever it concerns
material damages (or any quantifiable damage)? The answer depends on the type of risk faced by a com-
pany or organization.

This raises the question of the insurer’s point of view, who needs to go further in her understanding of
cyber risk. Moreover, the targets of cyber attacks are largely affecting intangibles such as data theft
or reputation damages, making losses difficult to quantify and predict. Due to this lack of knowledge
and their fear of a strong systemic component, insurance companies generally offer inadequate cyber risk
coverage to their customers, whether they are individuals, businesses or organizations; see (Advisen &
PartnerRe, 2018) or (Swiss Re, 2017) for discussions on these issues. The insurance market for cyber
risk is in its infancy, although it is growing at a fast pace. The total gross premium was estimated to
reach 8 billion US$ in 2020, a very small proportion of the total gross insurance premium of 4,000 billion
US$. However, it has grown threefold since 2014; see (Marsh & Microsoft, 2019). Insurance companies

1Service Central de Renseignement Criminel
2Pôle Judiciaire de la Gendarmerie Nationale
3Centre de lutte Contre les Criminalités Numériques
4Division du Renseignement
5We describe here the GN organizational structure during the period covered by our dataset. The C3N has recently

moved to the newly created COMCyberGEND (Commandement de la gendarmerie dans le cyberespace)
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do provide cyber covers but they are limited in their coverage and reimbursements. This is the major
complaint from customers as stated in (Accenture & Ponemon Institute LLC, 2019): "There is a lack of
capacity in the market and a willingness of insurance companies to take over this risk". It is probably why
management still relies much more on security spending, expected to reach 124 billion US$ compared to
insurance premiums of 8 billion US$. Until recently, there were also many "silent" covers, i.e. exposures
to loss or liability from a cyber-triggered event in other lines of business (Directors and Officers, Property
Damages, Business interruption); see (CRO Forum, 2016). However, insurances companies are rapidly
removing the silent covers from the contracts, leaving insured entities uncovered against cyber risks, if
they do not buy specific cyber policies.

From these various perspectives, it becomes clear that the analysis of cyber risk is a condition for build-
ing a resilient society against cyber crime. The first step towards modelling is to collect data reflecting
accurately this risk. Nevertheless, as it is an emerging risk, it is difficult to find relevant datasets that de-
scribe well the various types of attacks to the systems and measure their quantitative impact. While most
academic studies use available data breaches public datasets, Eling and Wirfs (2019) had the nice idea to
extract 1,579 cyber risk incidents from an operational risk database, to consider a larger range of cyber
risks. In our case, we had the opportunity to get access to a large, unique and exceptionally rich database
- the database of cyber complaints filed at the GN, covering many categories of cyber risk. Besides its
sheer size (more than 200,000 data records), this database contains not only quantitative information on
possible damages, but also qualitative one such as a text description of the complaints and additional
information on the victims and actors.

Having access to a new database, from a different source, is of much interest. Indeed, it gives the opportu-
nity to compare results obtained from various sources, to look for some dependence between data coming
from different databases, etc. Hence, we proceed to a first analysis of the GN database, to shed light on
some aspects of cyber risk, in particular, to the probability of extreme events and their frequency. For
that, we introduce an algorithm based on a stochastic hybrid model, detecting automatically the threshold
above which observations are considered as extremes, facilitating the estimation of the heaviness of the
tail distribution. This method has been tested at different stages on various types of data (in engineer-
ing, finance, insurance) and could become part of the stochastic modelling techniques used in operations
research (a software package is under construction, with two cases, one being the version developed in
this study). Our objective is to transform the cyber threats and its uncertainties into a measurable risk.
Quantitative assessment of risks is the basis to design insurance covers for hedging the worst consequences
of cyber crimes. Moreover, knowing the probability of occurrence of cyber attacks and their severity
distribution allows management to find the right balance between investing into cyber security or/and in
insurance protection. It is one of the many steps towards making society more resilient.

In Section 2, we review the state-of-the-art in cyber risk modelling and introduce the research questions we
aim at answering with this study. We discuss the main issues related to data exploration and present basic
statistics on the GN database in Section 3. In view of modelling heavy-tailed non-negative asymmetric
data, a self-calibrating algorithm based on a general parametric model and on non linear optimization
techniques is developed in Section 4. Confidence intervals for the evaluated model parameters are intro-
duced in this algorithm, revisiting the Jackknife technique because of its high execution speed. Application
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of our method to the GN cyber database follows in Section 5, turning to modelling damage severity (Sec-
tion 5.1), then to both severity and frequency of extreme damages (Section 5.2). Consequences for risk
management are discussed in Section 5.3, while investigating a possible classification of cyber attacks via
their distribution heaviness is tackled in Section 5.4. We conclude the study in Section 6, discussing man-
agement and research perspectives. In Appendix A, a series of experiments based on simulated data is
conducted to challenge and prove the benefit of our method. Appendix B completes the study comparing
the tail-threshold and the tail index estimations obtained with our algorithm and various EVT methods
included in the tea R-package.

2 State-of-the-art in cyber modelling and our research questions

State-of-the-art - Modelling of cyber risk is an important issue, as it helps understand the underlying
(dynamical) structure of this phenomenon through its realization (collected data). Moreover, it allows
generalizing beyond the data, to obtain relevant perspectives for future behaviors, in view of drawing
possible scenarios. It is also a fundamental step for convincing insurance companies to take over this risk.
As long as cyber risk is not widely understood, fears dominate the market and reluctance is the rule. The
fast pace of information technologies makes this type of risk difficult to analyze, a challenge already taken
up by researchers from different fields, as actuaries, data scientists, economists (in particular from game
theory), IT system experts, probabilists and statisticians, etc (see e.g. Dacorogna and Kratz (2022)).
Various toy/theoretical models (due to a lack of data), and models capturing some features of cyber risk
have been suggested.

The field of research in cyber risk is very active, even though still in a fledging state leaving big holes
in our understanding of it. Let us briefly review some of the directions of research. We could refer to
many papers; we do not give an exhaustive list, but examples of recent ones in which one can also find
complementary bibliographies. (Agrafiotis, Nurse, Goldsmith, Creese, & Upton, 2018) provide a taxonomy
of cyber harms and a study of their possible consequences, while (Cohen, Humphries, Veau, & Francis,
2019) suggest their own taxonomy (with a few overlaps) and definition for the ever elusive cyber risk.
Based on this and a database compiled by AON that contains 30,000 cases, they statistically describe
financial cyber losses and suggest that the risk is very similar to operational risk. Efforts in the direction
of a taxonomy can also be found in (CRO Forum, 2016) from the point of view of the insurance industry.
Unfortunately, those various taxonomies are not fully compatible. Among the researchers working on
the statistical modelling of empirical cyber risk data, the group around Eling pioneered this path (see
(Eling & Schnell, 2016)). In one of their latest publications on the subject, (Eling & Wirfs, 2019) apply
a dynamic version of the standard peak-over-threshold (POT) method in EVT designed by (Chavez-
Demoulin, Embrechts, & Hofert, 2016) for operational risks, including covariates to analyze cyber losses
compiled in an operational risk database. Contrary to (Cohen et al., 2019), they conclude that cyber risks
differ from other operational risk categories. This debate illustrates the fact that data on the subject are
sparse, which makes it difficult to come up with a consistent picture. It may differ from one dataset to
another. That is why it is important to analyse as many datasets as possible, as soon as they become
available.
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Modelling goes in various directions: (Baldwin, Gheyas, Ioannidis, Pym, & Williams, 2017) present a
simple model to look at contagion of cyber attacks, while (Böhme, Laube, & Riek, 2018) propose a
review of cyber risk analysis from various disciplines and identify ways to improve cyber risk modelling.
(Fahrenwaldt, Weber, & Weske, 2018) model, with an interacting Markov chain, the diffusion of cyber
viruses or worms in a structured data network, while (Farkas, Lopez, & Thomas, 2021) apply Generalized
Pareto regression trees to analyze cyber claims, identifying criteria for claim classification and evaluation
on the same database as in (Eling & Wirfs, 2019). (Peng, Xu, Xu, & Hu, 2018; Xu, Hua, & Xu, 2017)
argue that cyber risk should be tackled in a multivariate framework where the various risk factors are
dependent on each other via copulas, otherwise, the risk would be underestimated. Nevertheless, they
neglect the fact that treating the problem using EVT has already shown good estimation of the extreme
risks. Other ways of tackling the question of cyber risk is to look at the amount of money that should
be invested in cyber security versus buying insurance protection. It is what (Marotta, Martinelli, Nanni,
Orlando, & Yautsiukhin, 2017; Wang, 2019) explore in their papers, while (Nagurney, Daniele, & Shukla,
2017) deal with the optimal investment in cyber security under budget constraints. Using a supply
chain game theory network model, they study the vulnerability of the network to additional retailers or
budget constraints. Unfortunately, all these models are not backed by strong empirical evidences due
to the lack of data of various sources. Along the same line of research, (Paul & Zhang, 2021) propose
a two-stage stochastic programming model to help decide on the optimal resource allocation strategies
by governments and firms. They conclude that "it is beneficial to spend more on intelligence given its
increasing returns to the reduction of social costs related to cybersecurity". Intelligence means not only
detection effectiveness, as defined by the authors, but also a better understanding of the quantitative
impact of the risk, hence identifying the likely attackers’ targets. Modelling games between attackers and
providers in an interdependent cyber-physical systems (CPS) is the chosen approach by (He, Zhuang, &
Rao, 2020) to analyze the survival probability of CPS and Nash equilibrium strategies.

On the actuarial side, (Romanosky, Ablon, Kuehn, & Jones, 2019) do a qualitative analysis of cyber
insurance policies by examining those filed with state insurance US commissioners and found surprising
variations "in the sophistication (or lack thereof) of the equations and metrics used to price premiums".
This is another testimony of the lack of maturity of this market. (Carfora, Martinelli, Mercaldo, & Or-
lando, 2019) propose an actuarial approach to compute insurance premium based on the publicly available
dataset of the Privacy Rights Clearing House. (Zeller & Scherer, 2021) present a review of the actuarial lit-
erature on the topic and apply an approach based on marked point process for modelling cyber risk in view
of determining the insurance premium. They identify and propose models for key co-variables required
to model frequency and severity of cyber claims. Finally, let us refer to (Bouveret, 2018), who proposes
to use a frequency severity model for the computation of the Value-at-Risk of the cyber risk of financial
institutions. This brief review of the various ways the insurance market and the academic literature tackle
the problem, is far from being exhaustive, if ever possible. It shows, first of all, the lack of data, second the
wide spectrum of approaches, and third, conclusions that seem not always congruent. More investigation,
in particular empirical on diverse data sources, must take place to better understand this complex problem.

Our research questions - Our research program is one step in this direction and is structured around
four questions; this study answers the first two, while setting up a methodology and giving hints for further
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investigating the last two.

The first question is whether the data collected by SCRC would add some value for studying cyber risk.
Of course, the very nature of this data, quite different from the sources studied so far, partakes in the
originality of the study, as it can only help shed another light to the cyber risk landscape. It may also
reveal general characteristics of this type of risk, if they are found in other databases too. It implies, as for
any other source, checking first for reliability and relevance of the data. To do so, we explore the database
and develop on it a statistical study. We conclude that, indeed, it is a unique source of information,
confirming as well as complementing the picture given by databases studied so far. This is the object of
Section 3.

Given that systemic risk appears in the literature as a crucial feature of cyber risk, it is natural to question
its presence in our data. Hence our second query: do we observe and detect effects indicating systemic
risk? It is an important issue, of high interest to the insurance market. That is why we explore the
existence of heavy-tailed distributions for variables characterizing the cyber risk. We do it on the damages
reported in the complaints. It is intended to determine the threshold (denoted here, ‘tail-threshold’),
above which observations are considered as extremes. Standard graphical methods of EVT could be used,
but they are not always very robust. Here, we adapt to asymmetric non-negative heavy-tailed data, a
model introduced in Debbabi et al.(see (Debbabi & Kratz, 2014), (Debbabi, Kratz, & Mboup, 2017)) and
developed the associated iterative algorithm, which identifies automatically the tail-threshold, is flexible
and of easy use, whatever the size of the dataset. This unsupervised method gives the advantage of fitting
the whole empirical distribution, whatever its heterogeneity, with a specific treatment for the tail where
observations are scarce. The presence of very heavy tails is clearly assessed for the amounts at stakes in
the complaints. However, a high probability of extreme event would not be enough to qualify the risk as
systemic but it constitutes one piece of the puzzle.

Our focus on extremes is additionally motivated by the building of cyber resilience. We believe that cyber
security may tackle the main attacks which probabilities fall in the main body of the distribution, while
the tail distribution may concern the attacks they cannot handle or detect. Extreme attacks will be best
fought through cyber resilience in two ways: on the operational side, increasing the redundancy of the
system, on the other side, protecting the finance of the company through good insurance covers. In order
for insurance to propose a good coverage to firms, the underwriters will perform a due diligence on their
management of cyber security. It is in the dialogue between insurance underwriters and risk managers that
the company will be able to identify on the operational side, where resilience through redundancies of the
IT system should be put in place in order to save on the insurance premiums. At the management level,
this tradeoff between investments into securities and insurance covers has to be found. A good modelling
of this risk will definitely help find the optimal tradeoff as well as determine the fair insurance premium.
Moreover, by having a good model for the tail of the distribution, it becomes possible to estimate the
capital needed for covering this risk, which is another piece of the puzzle to estimate the cost of bearing
this risk.

The third question concerns the classification of cyber attacks. Our goal is to build an alternative classifi-
cation of the complaints based on statistical regularities, in order to reduce the number of classes, whether
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it is those proposed by the ministry of justice, or those by the SCRC. It is too early to call an answer
to this question, but hints about a varying tail index gives some hopes in this direction (see the last
paragraph in Subsection 5.4). Here again, we can improve cyber resilience by early detection and better
characterization of the type of cyber attacks. Then, the security forces can focus their investigations and
fight more efficiently the cyber attackers.

Finally, another aim we target is the dynamic modelling of this risk in a multivariate setting, since the
size and content of the GN database offer the possibility of such investigation. Our algorithm should
facilitate the processing of the extremes in this extended context. A standard argument in the literature
is that cyber risk is characterized by its fast-changing environment. It is another study in itself, for
which extra cleansing and treatment of the database are needed, in particular through the complaints
description. As we manually double-checked the data on extremes, we concentrate, in this paper, on their
time evolution, taking into account the frequency of the cyber attacks with extreme damages. This is
tackled in Subsection 5.2. It appears that the frequency of large damages in complaints does not vary
significantly with time, at least on the observed period. Nevertheless, once we will have access again to
the database, with an increasing amount of cyber attacks during the covid19 pandemics, we will proceed
a second time to the same frequency study to check the current result.

3 Data Exploration

A scientific approach to study any phenomenon must rely on data, on one hand to inspire the modelling,
on the other hand, to check the correctness of the model. We want to understand how our data have been
generated. This may look trivial, but is, in fact, very important, as it is the foundation of the study. For
cyber risk, this is much more difficult as the risk is changing rapidly and the amount of representative
data is scarce. Here, we have a unique opportunity to study data widely collected, and over few years,
covering most of the French territories. A first phase of data cleansing is needed. In our case, the amount
of data is too high to manually check its reliability. An automatic text recognition algorithm has been
developed by C3N to ensure the congruence of the various fields. However, improvements need to be made
to this fledgeling procedure. Therefore, we decided to also check manually the data presenting the largest
damages, as we are particularly interested in their modelling.

Note that the data presented here, have also been briefly described in a book chapter (see (Dacorogna
& Kratz, 2020)) to illustrate the scientific approach when working on data. Nevertheless, since the aim
here is quite different, we choose to come back on the descriptive statistics of the dataset under study and
extend it, so that the paper is self-contained and more comprehensive. Moreover, we have in the meantime
double-checked the information given in the dataset and performed more detailed descriptive statistics for
reaching a broader understanding, before going deeper in the analysis and modelling.

At the GN, we were explained the process of entering the data in the system. In every GN office in France,
the officer (not a specialist in cyber security) receiving the complaint is in charge of writing a short report
and filling the various fields of the database. From a geographical point of view, the data collection is
spread over the entire country. However, the big cities (e.g. Paris, Lyon, Marseille) are not covered in this
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database as they are under the responsibility of the Police Nationale. The industry, however, is usually
located in the peri-urban area surrounding big cities. Nevertheless, given that cyberspace and geographical
space are more or less independent, most of cyber crimes appear to be distributed demographically rather
than geographically (except maybe in the case of those of ’proximity’ such as cyber-harassment). This
seems to postulate that the GN and the police, having more or less half of the population living in their
area of competence, have to both know about cyber criminality in comparable proportions. The officer’s
first concern is to help the people who are filing complaints and try to find the culprit, rather than filling
in a database. This may explain the existence of many errors due, either to wrong transcriptions, or typing
errors. For this reason, we decided to review manually the extreme amounts. We compared, one by one
in the database, the written description of the complaint to the other data fields (list given below) to
assess consistency. We looked at 1,100 items containing the largest amounts in the declared ’dammages’
field. They represent the 98.2% quantile of the studied sample. We detected various problems in the
dataset. Among them, the most frequent (90% of the few errors found on these extremes) was a mistake
in reporting the cents amount, where the dot marking the cents was missing (e.g. instead of 500.00 e a
much larger amount of 50,000 was reported). In the rest of the section, we present results based on both
filtering procedure, the automatic one developed by C3N and our own manual work.

3.1 The SCRC database

The SCRC database starts from 2014, but is more reliable since July 2015. Thus, we consider in this
paper the period from 07-2015 to 04-2019, which includes 208,037 data.

The data to which we have access at SCRC, correspond to structured data and are presented under the
JavaScript Object Notation (JSON) format. Each complaint has been first registered at SCRC according
to 3 main fields: the cyber crime description, its victim, and its author. Then, it has been filtered and
exported into a database presenting the following fields:

1- report_date: Reporting date of the cyber crime complaint

2- damages: Amount of the damage in Euro (e )

3- victims.dob: Date of birth of the victim

4- victims.sex: Gender of the victim

5- category: Category of the crime (SCRC classification)

6- natinf: Nature/type of crime (Ministry of Justice classification)

Note that the field ’category’ corresponds to the classification of cyber crimes by SCRC into 10 groups
subdivided into 52 subgroups (also subdivided into subsubgroups), while the field ’natinf’, also referring
to the type of crime (and represented by a code; see Groupe de travail interministériel sur la lutte contre
la cybercriminalité (2020)), is defined by the ‘pôle d’évaluation des politiques pénales de la direction des
affaires criminelles et des grâces du Ministère de la Justice’6 and includes 475 classes. In Table 1, we
present the composition of the cyber crimes sample communicated by SCRC. About 70% of the complaints
do not mention any declared amount, or suggest a null amount. This class includes physical (e.g. child
pornography) or moral (e.g. hate crimes, cyber-harassment) harm. The other 30% complaints correspond

6cf. http://www.justice.gouv.fr/include_htm/pub/rap_cybercriminalite_annexes.pdf
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to material damage recorded by the GN units on the declarations of victims of property crimes. We
introduce there a new class defined with a threshold of 500 e , corresponding to the amount above which
the judicial system authorizes generally for prosecution.

Table 1: Breakdown of the 208’037 data in terms of the damages amount.

Amount x (e ) Sample Size n Percentage
(w.r.t. the total size)

Not Declared (ND) or x = 0 147,052 70.69%
0 < x < 500 29,074 13.97%
x ≥ 500 31,911 15.34%

It should be noted that besides the description of the cyber attack, no variable has yet been introduced
in the GN database to discriminate between individuals and companies. We looked at it manually for the
extreme damages above 40,000 e , but, of course, it needs to be done automatically for every complaint;
adding a dedicated field in the data entry form has been recommended to the GN.

. Gender of the victims of cyber crimes - Looking at the type of population reporting to GN
for a cyber attack (Table 2), we observe that 11.65% do not contain a mention of gender (ND for "not
defined"), leaving 183,801 data points instead of 208,037. The gender is not a discriminating parameter
when considering the number of complaints, as can be seen in Table 2. Nevertheless, we could investigate
if the type of complaints differs by gender. It will be considered in a further study.

Table 2: Gender classification of the sample with non-negative amounts.

Gender Data number Percentage

F 91,599 44.03%
M 92,202 44.32%
ND 24,236 11.65%

The gender proportion is slightly obscured by the fact that it is not possible to distinguish between private
complaints (made by individuals for attacks on their private systems) and complaints originating from
companies. The gender portion would be better defined if this distinction could be made. Nevertheless, it
could be retrieved, most of the time, through the complaint description. Given the large amount of data,
automatic text recognition is being developed to find out this (and other) information. Individuals and
companies need to register their complaints at the National Police/Gendarmerie if they want to be covered
by their insurance. We suspect that the majority of complaints comes from individuals. Nevertheless, we
could check manually for the extreme observations the two following properties: (i) Statistically, the
amounts would be roughly the same for individuals and companies; (ii) the vast majority of complaints
originates from individuals even for the very large amounts.

. Age of the victims of cyber crimes - Let us turn to the age of the victims. We obtain the following
box-plot given in Figure 1. We observe that the median remains more or less constant with time, with
a value around 42.5 years, which is also close to the average age (43.4 years) of the sample, and to the
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 Figure 1: Box Plot of the ages of the victims (y-axis) for every
month of the period (x-axis) from July 2015 to April 2019.

median age of the French population (around 40.5). The interquartile interval remains also more or less
stable (interquartile interval [29.6; 54.4] years, on average). The lower and upper limits of this interval
indicate a slight negative asymmetry.
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Figure 2: Comparison of the age of the victims to the ages pyramid of the French population for the years 2016, 2017,
and 2018. The x-axis represents the age and the y-axis the percentage of victims w.r.t. the French population. Here,
the label "Total" means the comparison with the sum of males and females.

We study the distribution of the age of the victims for the three calendar years 2016, 2017, and 2018 (for
which we have complete data that have been verified by SCRC), and compare it with the age pyramid of
the French population, taking also the gender into account. For both years, the registered victims the most
represented concern two classes, independently of the gender: young people around 20 years old and adults
around 45 years old. The same criticism about the non-discrimination between individual complaints and
company complaints could be made here as for the gender analysis. We are mixing the two sorts of origin.
It is a limitation due to the fact that we do not have currently access to this information. Nevertheless,
the small positive amounts are completely dominated by individual complaints and constitute the vast
majority of the data. The proportion is accentuated to more than 95% when considering the data with no
declared amount (representing more than 70% of the full dataset), which we also used in this age/gender
analysis. This explains why we can afford comparison with the French population.

As illustrated in Figure 2, the proportion of cyber crimes victims is, besides a small minimum around 30
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years, of the same order between 20 and 45 years for both genders, then falls down rapidly below and
above those ages. The proportion in Figure 2 is related to the pyramid of age as given by Institut National
de la Statistique et des Etudes Economiques (2018). Note that the value 100 on the x-axis collects all
ages from 100 years old on. We looked at the cases where the ages of the victims were equal or above 100
years old. Those are generally cases of identity theft where the grand-child, or a relative, accesses bank
accounts using the login and password of the owner. There is no case of ransomware or direct involvement
of the elderly. We observe in Figure 2 that, in 2017, 0.10% (0.06% in 2016, and 0.09%) to 0.14% (0.11%
in 2016, and 0.13% in 2018)% of the French population aged from 20 to 60 years old have filed complaints
as victims of cyber crimes. This represents already a large number of victims w.r.t. the 66,883,761 French
inhabitants7 (66,774,482 in 2016), given the fact that GN covers only 55% of this population. All the more
that it needs to be multiplied by a factor, according to the iceberg effect, estimated with various methods
as roughly 250 on cyber complaints related to ransomwares in Drégoir (2017), using the GN database,
but also external data (Google trends for the locky virus, which is of ransomware type)8. Indeed, in
cybercrime, a pronounced iceberg effect exists due to the absence of a complaint or, in the most serious
cases, to the very absence of detection of the problem by the victims. Consequently, for security forces,
the filing of complaints is only the visible part of a criminal phenomenon and does not grant access to the
ground truth. To better understand the meaning of those percentages, one might compare them to the
percentage of the (French) population victim of other types of attacks (non cyber ones).

. Cyber crimes by type - Now we turn to the type of cyber crimes and provide in Table 3 the first 10
classes of the full sample of size 208’037, by decreasing order of class size. From the description registered
at GN, it is not so easy to distinguish to which type a cyber crime belongs to, therefore how to classify
it within a GN category and a Natinf one, especially given the large amount of those categories. We
already know that, for insurance purpose, the granularity must be much coarser: One future goal is to
find a scientific way to regroup GN categories. One approach could be through the heaviness of the tail
distribution, as discussed further when modelling the damages severity. When looking at the sample for

Table 3: Damages classified by type: the 10 classes the most represented among the full sample,
identified by natinf code. It represents 78.1% of the full sample of size 208,037.

Class Natinf code Type Complaints Number Percentage

1 7,875 Fraud 123,536 59.38%
2 28,139 Identity theft 9,697 4.66%
3 58 Breach of trust 7,256 3.49%
4 372 Defamation 4,888 2.35%
5 1,619 Violation to SADPa 4,495 2.16%
6 7,203 Blackmail 3,295 1.58%
7 7,151 Theft 2,891 1.39%
8 10,765 Invasion of privacy 2,399 1.15%
9 7,173 Threat to individuals 2,088 1.00%
10 376 Public abuse 1,997 1.00%

aSADP: System of Automated Data Processing (STAD in French)

7https://www.insee.fr/en/statistiques/2382601?sommaire=2382613
8For the study of general delinquency reportability rates, even if not so explicit for cyber aspects,

see also https://www.interieur.gouv.fr/Interstats/L-enquete-Cadre-de-vie-et-securite-CVS/Rapport-d-enquete
-Cadre-de-vie-et-securite-2019
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which dammage amounts above 500 e are provided, we obtain the following classification in Table 4. Note
that the classes common to Tables 3 & 4 are indicated in bold.

We observe that ’Fraud’ is the most represented types of damages in both tables, with a proportion above
87% of the 31,911 considered data in Table 4, and above 59% (for the 208,037) in Table 3. This first
(by size) class is far from the second class (Identity theft in Table 3 and Breach of Trust in Table 4,
respectively) which size is less than 5%. Note the second gap in the size between ’Breach of trust’ and
the other classes for damages above 500 e , going from 4.7% to less than 1%, whereas the percentage is
regularly decreasing in Table 3.

Table 4: Damages above 500 e classified by type: the 10 classes the most represented among the
31,911 data identified by natinf code. It represents 96.6% of the sample of size 31,911.

Class Natinf code Type Complaints Number Percentage

1 7,875 Fraud 27,914 87.5%
2 58 Breach of trust 1,497 4.7%
3 7,151 Theft 257 0.8%
4 28,139 Identity theft 234 0.7%
5 26012 Fraud per legal entity 214 0.7%
6 1,619 Violation to SADP 181 0.6%
7 94 Harmful substances in educat. instit. 153 0.5%
8 7,203 Blackmail 152 0.5%
9 560 Use of falsified or forged cheque 134 0.4%
10 7,881 Violation to SADP at the prejudice 94 0.3%

of a vulnerable person

3.2 Frequency

Let us proceed to the inter-temporal analysis. Before doing it, we recall that the time stamp in our
database is the reporting date, not the date of occurrence of the attack. This fact can of course bias the
analysis. We are able to detect trends in the occurrences but not outbursts or seasonality of attacks. In
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Figure 3: Monthly frequency of the N complaints. The x-axis represents the 46
successive months over the entire period. The left y-axis gives the monthly frequency
of complaints, while the right one gives the normalized number of complaints per
month w.r.t. the monthly average on the full sample.
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Figure 3, we present the variations of the monthly frequency of complaints on the sample from July 2015
to April 2019; see the blue (dark) curve. The mean of this quantity is slightly increasing over time, from
slightly above 4,000 (4,194.5) for the two first years, to around 5,000 (5,032.8) for the last period; see
the (green) horizontal lines in Figure 3. The orange (light) curve represents the variation of the monthly
number of complaints against the average over the full sample. In the same figure, the values of the right
vertical axis are normalized and defined as:

mi −MT

MT

with MT =
1

KT

KT∑
j=1

mj , i = 1, · · · ,KT , (1)

where KT = 46 is the total number of months in the sample, and mi is the monthly frequency for the i-th
month with i ∈ [ 1,KT ] .

We see that the two curves (orange-light and blue-dark) are quite similar, as expected from the way they
are computed. However, the scale displayed on the right is different and varies from negative (-0.45) to
positive (0.35) values. It helps distinguish between two periods: The first 2015-2016 is negative and the
second 2017 to 2018 is positive. Moreover, for the year 2017, a positive trend is clearly observable.

In Figure 4, we draw the evolution from 2016 to 2019 of the annual moving average of the monthly
frequency of the n complaints, choosing a monthly rolling window. It means that for each month from
June 2016 (as the yearly averaging starts in July 2015) to April 2019, we use the data of the past year
until the considered month, to compute the average of the complaints number.

Using the same notations as in Equation (1), we compute the annual moving average during the whole

period of KT = 46 months, as MT,i =
1

kT

i+kT−1∑
j=i

mj , ∀ 1 ≤ i ≤ KT − kT + 1, with kT = 12 months and

MT,1 corresponding to the average on the month of June 2016.
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Figure 4: Annual moving average of the monthly frequency of com-
plaints. The y-axis presents the average number of complaints, while
the x-axis presents the dates of the moving average.

We observe a strong increase of the number of complaints from the year 2017, going from 3500 to 5500
complaints, with a positive (linear) trend. In 2018, there is a slight decrease until the level 4700, then it
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seems to go up again in 2019. Those observations confirm those made on Figure 3.

3.3 Severity

In this section, we proceed to the statistical study of the data for which damages amounts are given as
positive, i.e. which correspond to material damage recorded by the GN on the declarations of victims
of property crimes. In Table 5, we present the main descriptive statistics on this sample (of size 60,985;
see Table 1), namely: mean, median, standard deviation, dispersion index (DI) (i.e. ratio between the
standard deviation and the mean: DI = σ/µ), skewness and kurtosis (all quantities being, of course,
empirical). Note that those results are to be taken with caution, as the database for small or ND amounts
still needs a lot of care and corrections. Once the corrections done, a specific study for the data with
fields ND and x = 0 (and, eventually, 0 < x < 500) will be the object of another investigation. We
pay a particular attention to the 31,911 amounts above 500 e (x ≥ 500) for two reasons: The first is
that 500 e corresponds to the amount above which prosecution can be open, the second is pragmatic, the
database for small or ND amounts still needing some care, as already explained. We also give the main
descriptive statistics for the two samples of positive amounts and of amounts above 500 e .

Table 5: Descriptive statistics for positive damages amounts.

Max Mean Median Standard deviation DI Skewness Kurtosis

amounts >0 8,069,984 3,476.67 522.21 44,879.06 12.91 124.50 19,931.67
(sample size: 60,985)

amounts ≥ 500 e 8,069,984 6,460.11 1,500.00 61,891.58 9.58 90.58 10,512.55
(sample size: 31,911)

Besides the mean and median, which, of course, have different values between the two samples, the other
descriptive statistics share the same characteristics. We observe a strong skewness, whatever the sample
considered, indicated by a very high value, but also by a strong difference between mean and median. For
each sample, the variance exhibits a very high empirical value, pointing out that it can be interpreted as
infinity. This is corroborated by the high values of DI and kurtosis. If the existence of the 2nd moment
is questioned, a fortiori that of the higher moments, hence the very large value of the kurtosis. It already
suggests the existence of heavy tails for the damages severity.

To conclude this section, we present the distribution of the positive amounts ≥ 500e for each month of
the entire period, providing a box-plot for each month; see Figure 5.

We observe that the median is more or less constant for each month (with an average value of 1,493.6e ),
as well as the interquartile interval [Q1, Q3], where Q1, Q3 denote the 1st and 3rd quartile, respectively
(on average, Q1 is 840.1e and Q3, 3,198.4e ). The position of the limits Q1 − 1.5 × (Q3 − Q1) (4,378e )
and Q3 + 1.5× (Q3−Q1) (-2,697e ; not visible here as we consider values larger than 500e ), respectively,
indicate an important negative dissymetry. The mass of values beyond Q3 + 1.5× (Q3−Q1) confirms the
observation of a heavy tail distribution for this variable.
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 Figure 5: Box Plot of the monthly amounts x ≥ 500 of the damages from July 2015
to April 2019. The x-axis corresponds to the 46 months. The y-axis is a logarithmic
scale so that all values, extreme or not, can be seen on the plot.

This temporal analysis validates the choice of a static approach chosen for our modelling, developed below.

4 Probabilistic modelling of heavy-tailed data

As observed in the previous section, we are clearly confronted to heavy-tailed and asymmetric (due to the
strong skewness) data. This characteristic is common to many fields (for instance on health data), among
which OR where heavy-tailed data are often to be taken care of (see e.g. Das et al. (2021)).

The presence of extreme risks induces specific risk management procedures and need for capital. Thus,
it is essential to be able to quantify accurately the probability of extremes occurence for designing the
appropriate hedging strategy.

In this context, building on the main ideas underlying the method developed in Debbabi et al. (2017), we
adapt its general hybrid model and draw a new algorithm allowing for a relevant fit of any heavy-tailed
asymmetric non-negative data, thanks to the automatic detection of the tail-threshold. This new version
completes the overall method, providing now 2 versions of the algorithm, one for symmetric data, the
other here for asymmetric ones.

4.1 Dealing with heavy-tailed data thanks to EVT

In view of developing our model, we briefly recall some results from univariate EVT, namely the main
asymptotic theorems for extremes, as well as the founding ideas of the approach developed in Debbabi
and Kratz (2014); Debbabi et al. (2017). This will be useful when considering the extreme loss severity
associated with the registered complaints in Section 5. See also (Dacorogna & Kratz, 2020) and Kratz
(2019) for a recent overview of some standard (supervised) and new (unsupervised) methods in univariate
EVT9. For more details, we refer the reader to standard books on the EVT literature, e.g. Leadbetter,
Lindgren, and Rootzén (2011)(1st ed. 1983), Resnick (2008) (1st ed. 1987), Embrechts, Klüppelberg, and
Mikosch (2011) (1st ed. 1997), Reiss and Thomas (2007) (1st ed. 1997), Beirlant, Goegebeur, Segers, and
Teugels (2004), de Haan and Ferreira (2006), Resnick (2007).

9Note that the wording used to describe well-known EVT notions in these references and in this paragraph (or, even, in
any EVT (text)book), may be similar.
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While the (Generalized) Central Limit theorem provides a limiting distribution for the distribution bulk,
thus describing the mean behavior of the phenomenon studied through an observed (iid) sample from this
(unknown) distribution, the Extreme Value theorems consider the extreme behavior of such phenomenon.
There are two EVT pillar theorems, one (named the three-types theorem, unified into a single three-
parameter family) proving that the renormalized maximum of a sample is asymptotically distributed as a
Generalized Extreme Value (GEV) distribution, defined by

Gµ,β,ξ (x) = exp

[
−
(

1 + ξ
x− µ
β

)−1/ξ]
, for x such that 1 + ξ

x− µ
β

> 0 , (2)

with location parameter µ, scale parameter β, and tail index ξ, this latter parameter being our focus in
EVT, as it determines the nature of the tail distribution.

Extracting more information in the tail of the distribution for a better estimation of ξ, we turn to thresholds
methods and the second EVT pillar theorem, the Pickands-Balkema-de Haan theorem, which proves that,
for a sufficiently high threshold u, a very good approximation to the excess distribution function (i.e. the
distribution of the exceedances above u) is the Generalized Pareto distribution (GPD) Gξ,β(u) defined by

Gξ,β(u)(y) =

 1−
(

1 + ξ y
β(u)

)−1/ξ
if ξ 6= 0

1− exp
(
− y
β(u)

)
if ξ = 0

(3)

where y ≥ 0 if ξ ≥ 0, and 0 ≤ y ≤ −β(u)

ξ
if ξ < 0.

The distribution tail can be of three types, according to the sign of ξ, with a heavy (or fat) tail if ξ > 0

(Fréchet domain of attraction), a light tail if ξ = 0 (Gumbel domain of attraction), and a finite upper
endpoint if ξ < 0 (Weibull domain of attraction).

The main problem when applying the Pickands-Balkema-de Haan theorem, comes back to the identification
of the threshold above which observations are considered as extremes, so that they can be fitted with a
GPD. Various methods have been developed for this purpose and for estimating the tail index, among
which supervised methods (as the standard ones of the EVT literature) and unsupervised ones (see e.g.
references in Debbabi et al. (2017) and Tencaliec, Favre, Naveau, Prieur, and Nicolet (2020)).

A final reminder, useful for our analysis, concerns the relation between the value of the tail index and
the existence of moments of the GEV and GPD distributions. The kth moment exits if ξ < 1/k or,
equivalently, the so-called shape parameter α = 1/ξ satisfies α > k. It means that the smaller the shape
parameter (or, equivalently, the larger the tail index), the heavier is the tail. For instance, if 1 < α ≤ 2,
the second moment of the distribution does not exist (i.e. infinite variance) but the first moment (the
expectation) is finite. In insurance companies, the severity of risk is often classified according to the range
of the shape parameter α. For instance, pandemics and natural catastrophes like windstorms or floods
have 1.2 < α < 2, while earthquakes have fatter tails with 0.9 < α ≤ 1.1 (if α ≤ 1, the reinsurer will only
give limited covers in order to force the loss distribution to have a finite expectation, hence an α back
above 1); financial risks exhibit 2 < α ≤ 4. This is why, in the following, we may privilege discussing the
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range of α rather than that of ξ.

4.2 Towards an unsupervised modelling method

Let us describe succintely the main idea of the unsupervised method by Debbabi et al. (see Debbabi and
Kratz (2014), Debbabi et al. (2017), and, for an overview, Kratz (2019), Dacorogna and Kratz (2020)). It
has been developed for fitting multi-component data that exhibit heavy tails, determining in an automatic
way the threshold u2 above which the GPD fits the tail distribution, as well as the tail index ξ. Note
that to be able to determine ’automatically’ the threshold u2, we need all the information contained in
the data, contrarily to standard EVT approaches, where only the information contained in the tail of
the distribution is used, explaining in this latter case why defining u2 is less straightforward. Using all
information also means providing a model for the whole data at once, which may be seen as an advantage.
Unlike existing statistical methods for density parameters estimation such as maximum (log) likelihood or
moments ones, to name a few, this iterative algorithm is built on the solving of a set of non-linear least
squares problems by the Levenberg-Marquardt (L-M) technique (Levenberg, 1944; Marquardt, 1963),
which combines Gauss–Newton and gradient descent methods to reach the desired minimum.

Our method has been developed in successive stages since 2014, testing it in terms of goodness-of-fit
on simulated data, but also in many applications that help improve it and extend it as done here on
cyber data, to better catch the data complexity. It is based on an algorithm calibrating on data a
general hybrid model composed of two main components, built on asymptotic theorems, splitting mean
and extreme behaviors to use for each behavior a general limiting parametric distribution. One of the
key ideas to improve an earlier version of the method has been to introduce a bridge between the two
main components, chosen as an exponential distribution, to have a continuous hybrid distribution and to
allow for a better determination of the extreme behavior (described by a GPD). Indeed, we could always
try to link directly the main and extreme distributions (without a bridge), but then, the GPD might
have to go towards intermediate behavior (intermediate order statistics) rather than describing the largest
order statistics. With the bridge’s introduction, we do not face this issue, providing at the same time
(thanks to the algorithm) a way to determine automatically the threshold above which the observations
are considered as extremes and are fitted with a GPD (via the Pickands-Balkema-de Haan theorem). This
general model can then be calibrated on any type of heavy-tailed non-negative data (rather than finding
a specific model).

The algorithmic method comes into two versions, depending on the nature of the data: symmetric versus
asymmetric (skewed). While the first version has been built for symmetric data, approximating the mean
behavior with a Gaussian distribution (using the CLT) (see Debbabi et al. (2017)), the second version
is developed here for asymmetric non-negative data replacing the Gaussian behavior with a lognormal
one, as it is well known that the CLT suffers of a slow speed of convergence for skewed data, as could
be experimented on the cyber dataset of the GN; see Figure 6. We observe on the blue curve (G-E-GPD
model) of this figure that the slow convergence has a negative impact on the whole fit.
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4.3 An algorithm for asymmetric data

If the main idea of the approach still holds when changing the Gaussian component into a lognormal one,
we need of course to define the new model and relations between parameters, and adapt the self-calibrating
algorithm accordingly.

The model we consider here, denoted by LN-E-GPD (Lognormal-Exponential-Generalized Pareto Distri-
bution), is characterized by its probability density function (pdf) h expressed as:

h(x;θ) = γ1 f(x;µ, σ)1(x≤u1) + γ2 e(x;λ)1(u1≤x≤u2) + γ3 g(x− u2; ξ, β)1(x≥u2), (4)

where f(·;µ, σ) denotes the lognormal (LN) pdf with mean µ ∈ R and standard deviation σ > 0, defined

for all x > 0 by f(x;µ, σ) =
1

xσ
√

2π
e−

(log x−µ)2

2σ2 , e: the exponential pdf with intensity λ (defined on R+

by e(x;λ) = λ exp−λx), g: the pdf of the GPD defined in (3) with tail index ξ > 0 (heavy-tail condition)
and scale parameter β > 0, while γi, i ∈ {1, 2, 3}, are the non-negative weights (for h to be a pdf) with
γ1 + γ2 + γ3 ≥ 1, and u1 and u2 are the two junction points between the components, with u1 ≤ u2.

Let us define the relations between the parameters of the model, using the heavy-tailed framework and
the C1 assumption on the pdf that imposes smooth transitions from one component to another. For
heavy-tailed data, we have ξ > 0 and the asymptotic (for high threshold) relation β = ξ u2, which
we are going to use in the algorithm. The C1 assumption is translated by γ1 f(u1;µ, σ) = γ2 e(u1;λ),
γ2 e(u2;λ) = γ3 g(0; ξ, β), and similar equalities when considering the derivative of f, e and g, respectively.
Therefore, after some computation, we obtain: β = ξ u2; λ = 1+ξ

β ; γ2 =
[
ξ e−λu2 +

(
1 + λ

F (u1;µ, σ)

f(u1;µ, σ)

)
e−λu1

]−1
;

λσ2u1 − log u1 = σ2 − µ; γ1 = γ2
e(u1;λ)
f(u1;µ,σ)

; γ3 = β γ2 e(u2;λ).
(5)

Those relations help reduce the size of the vector of parameters to be estimated from 10 to 4, namely[
µ, σ, u2, ξ]. Then, we run the iterative algorithm for the LN-E-GPD model to estimate those 4 parameters
(the other 6 being deduced via (5)).

The model parameters are estimated via an iterative algorithm adapted from that developed for the G-E-
GPD model, described in details in Debbabi et al. and which convergence has been studied analytically
and numerically. We recall here the main principle (see the pseudo-code in Kratz (2019), Section 2.4.1):
We initialize the parameters of the distribution body and the threshold u2 to estimate in a first iteration
the tail index ξ. Then, we fix the latter with this first value and estimate the other parameters. This back-
and-forth process (between body and tail) is iterated by minimizing together, with the L-M technique,
two distances between empirical and model distributions, one for the whole distribution and the other for
the tail, until convergence.

If the main principle holds for the new model, it is also worth noticing that a critical point, which highlights
the difference between modeling the bulk data by a Gaussian or a lognormal distribution, lies on the choice
of initial parameters conducting the algorithm to convergence. Indeed, we recall that for G-E-GPD, the
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Gaussian mean corresponds to the distribution mode, which gives a nice strategy to initialize the Gaussian
parameters. Unfortunately, it is no longer the case for the lognormal distribution for which we have tested
several techniques to obtain initialization that holds up.

Moreover, this algorithm provides an additional flexibility compared to a two components model: If
an observed phenomenon under study would be well explained by two components only, then the two
thresholds u1 (junction point between the body and the exponential bridge) and u2 (junction point between
the exponential bridge and the GPD) will collapse into one during the calibration. This has been shown for
the G-E-GPD model in Debbabi et al. (2017)), providing the earlier G-GPD model introduced in Debbabi
and Kratz (2014). Here, we also show the same property for the LN-E-GPD model, conducting a series
of experiments based on Monte Carlo simulations (see Appendix A), leading to a LN-GPD model (with
non uniform weights for each component), which is a generalized version of the Cszeledin distribution
(a LN-Pareto distribution with specific weights) introduced in Knecht and Knüttel (2003) and used in
the cyber case by Eling and Wirfs (2019). It demonstrates the outperformance of the three components
model10.

Hence, the two components model should not be a purposedly chosen one, but come as a specific subcase of
a general model that has been calibrated, moreover in an automatic way, without resorting to either costly
computational techniques or via standard EVT techniques, recognized as oversensitive to the threshold
above which observations are considered as extremes. This points out the outperformance of our model,
which lies in its generality, simplicity, and self-calibrating property.

4.4 Assessing the parameters estimation via a re-sampling technique

Another important input in the extension of this method is the construction of confidence intervals for
the estimated parameters via a re-sampling technique, as well as the introduction of a better visualizing
tool for the tail fit (see Section 5.1 and the right plot of Figure 6) (those elements have been introduced
in the software package under construction)

To provide confidence intervals for the estimation of the model parameters, we revisit the Jackknife method
(see Künsch (1989)) that measures the variability of the estimation across sub-samples. This is one of the
earliest re-sampling techniques, which is more suited for a large number of observations than the standard
bootstrap (which we also ran to check that we would obtain the same results; it was the case, but it took
a few days of computation to obtain the results, confirming the advantage of the Jackknife use in this
context). Our main focus is on the tail of the distribution since it is more difficult to estimate than the
features in the body such as mean and variance. Thus, we consider the three parameters of the GPD
component, namely the tail index ξ, the scale parameter β and the exceedance threshold u2. To define a
numerical confidence range, we build randomly m = 10 subsamples and run on each one the algorithm for
calibrating the hybrid model. Each subsample is constructed in the following way: we omit some randomly
selected data points that amount to 10% of the original dataset of size n = 60985, making sure that each
of those selected observations is omitted only once, while used in the 9 other computations (note that it

10Note that this general method and its two algorithmic versions will be part of a statistical software package. Meantime,
the R code is available upon request.
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means that each selected observation in the whole sample will be removed in 1 of the 10 subsamples).
The estimation results obtained with the Jackknife method are based on the average of the 10 estimates
obtained for each subsample. Taking the example of the tail index, its estimator (through this method)

denoted by ξ̄J is defined by ξ̄J =
1

m

m∑
i=1

ξ̂Ji , where ξ̂Ji is the estimator of ξ obtained on the i-th subsample

and m is the number of subsamples (here, m = 10). Similarly, we can compute the standard deviation
of these estimated (via the Jackknife method) parameters (see Yang and Robinson (1986)) to obtain an
estimation of the standard deviation of the estimator over the whole sample of size n. Taking back the
example of the parameter ξ, the estimated standard deviation of the estimator ξ̂ (over the whole sample),
is defined by

σ̂(ξ̂) =

√√√√(1− 1/m)
m∑
i=1

(ξ̂Ji − ξ̄J)2. (6)

As σ̂(ξ̂)/σ(ξ̂) → 1, we define the 95% variability aJ95% = Φ−1(0.975) σ̂(ξ̂) (assuming asymptotic normality)
and the confidence range displayed in Table 8 is expressed as

ξ̂ − aJ95% ≤ ξ ≤ ξ̂ + aJ95%. (7)

A similar procedure can be applied for all parameters.

This last step completes the algorithm that provides parameters calibrated on a general model with their
CI, in a fast and reliable way.

5 Application to Cyber Data

We start, in Section 5.1, considering the data field ‘damages’, which provides the severity of the cyber
attack. This focus on the financial consequences of cyber attacks, i.e. the amounts, and not on causes of
the attacks, is due to three reasons: First, the financial risk must be well understood for providing good
insurance covers. Second, as the amounts have stable statistical properties over time (see Figure 5) a static
univariate distribution will give a good picture of the severity variable. Third, the amounts constitute a
large enough set of observations so that the extremes can be well modelled. For this latter reason, we mix
as well all types of cyber attacks, and not only a specific one. The investigation of the causes will be the
object of future studies.

Recall also that we were able to double check manually the information given on the ’amounts’ variable
in the GN database for the tail (for the amounts above 40,000e , corresponding to the quantile of order
98.2%). This is why our study concerns the modelling of the extreme amounts, including the frequency of
the occurence of extreme damages (above a high threshold); see Section 5.2. We will investigate further
the multivariate modelling, once the information given on all variables will have been carefully checked.

Once having a calibrated model for the damages, we can then use it for risk management purposes, as for
instance evaluating how much capital is required to cover cyber risk. An illustration is given in Section 5.3.

22



We are also interested in the tail modelling of the various types of attacks listed in the GN database. The
idea is to check if the tail index could be used as a discriminating criterion between various forms of cyber
complaints. A first exploratory attempt is developed in Section 5.4, considering the three most frequent
types. The first class is preponderant compared to the other two. Nevertheless, the robustness of the
parameters estimation we observed with our method makes it possible to apply the model for those latter
classes of small size (but still of larger size than of most samples considered so far in the cyber literature).

5.1 Application to the damage severity

Based on the empirical results obtained for the damage severity in Table 5 with characteristics specific
to heavy-tailed phenomena, we naturally look for a model able to capture such a feature and consider
our flexible hybrid model, defined in (4) and (5), which we calibrate on the positive damages using the
iterative algorithm discussed in Section 4.

The obtained estimates are given in Table 6, where we observe that the LN-E-GPD model reduces into
two components, as the 2 thresholds on either side of the exponential bridge collapse to u1 = u2. It is
interesting as this 2 components model has already been suggested for cyber data (see e.g. Zeller and
Scherer (2021)). The threshold u2, automatically evaluated via the hybrid model, corresponds to a quantile
of order 96.6%. The GPD fitted above u2 exhibits a shape parameter α = 1/ξ = 1.23, indicating a heavy
tail with a finite first moment but no finite variance.

Table 6: Evaluated parameters of the hybrid LN-E-GPD model for positive damages.
Model µ σ γ1 u1 λ γ2 ξ u2 β γ3

LN-E-GPD 6.27 1.54 99.4% 9,999.34 0.0002 17.5% 0.81 9,999.34 8,087.11 3.4%
q(96.6%)

Fitting the LN-E-GPD model on the damage severity data, we obtain the following output of the algorithm,
given in Figure 6 and Table 7. We also exhibit the fit of the G-E-GPD model, replacing the Lognormal
component with a Gaussian (G) one, to illustrate its inadequacy to account for the asymmetry of the data
due to the slow convergence of the CLT. It impacts, as expected, the whole fit, including the tail one, as
can be observed, even if this impact is mitigated by the bridge component.

In Figure 6, we provide two types of graphs, one (left) giving the empirical cdf and the two fitted distri-
butions (with a logarithmic scale on the x-axis), the other (right) displaying the corresponding survival
distributions (1− F ) on a double logarithmic scale (i.e. for the x- and y-axis).
The interest of taking a double logarithmic scale is that, for such a representation, a GPD becomes a
linear decreasing function, which slope is the negative value of the shape parameter, i.e. −α. Indeed,

considering the survival GPD for x (≥ u2), namely 1−Gξ,β(x) =
(

1 + ξ
β x
)−1/ξ

, and taking its logarithm
gives

log (1−G(x; ξ, β)) = −1

ξ
log

(
1 +

ξ

β
x

)
∼

x large enough
−1

ξ
log

(
ξ

β

)
− 1

ξ
log x =: y(log(x)).
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Figure 6: Cdf (left plot, with a log scale for the x-axis) and survival cdf (right plot, with a log scale for both the x
and y axes) of the positive damages. The empirical cdf is represented in black, the LN-E-GPD in light (red) and the
G-E-GPD in dark (blue). The dashed vertical lines (with the same color code) correspond to the thresholds between the
components of the hybrid model considered, while the continuous vertical (green) line points out the 500e-threshold.

The function y(·) is then a linear function in log x, with slope −1/ξ = −α and intercept −1
ξ log

(
ξ
β

)
. This

facilitates the comparison between empirical and fitted tail distributions, as the mismatch will appear
clearly. It is an interesting alternative representation to QQ-plots.

Looking at Figure 6, we observe that the LN-EXP-GPD model fits better the empirical data than the
G-EXP-GPD, as expected. This is confirmed by the errors reported in Table 7, where the total error
of the latter is almost twice as big as the LN-EXP-GPD for both root mean square errors (RMSE) and
mean absolute errors (MAE) (1.51% versus 0.80% for the RMSE, and 1.33% versus 0.66% for the MAE).
Focusing on the distribution tail, the right plot of Figure 6 clearly depicts a better fit for the LN model

Table 7: Measuring the goodness of fit for the 2 considered hybrid models on the
positive damages. The total and tail errors are computed using respectively the root
mean squared error (RMSE) and the mean absolute error (MAE).

Model Total error in % Tail error in % BIC criterion
RMSE MAE RMSE MAE

LN-E-GPD 0.80 0.66 0.94 0.79 -255,927

G-E-GPD 1.51 1.33 1.60 1.56 -222,225

than for the Gaussian model. We see that the Gaussian model overestimates the heaviness of the tail, while
the LN model fits well the linear representation of the empirical tail (lower right part). The superiority
of the LN hybrid model over the Gaussian one, is also confirmed by the Bayesian Information Criterion
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(BIC) which is 15% lower for the first model than for the second one. The shape parameter of the tail
distribution (1/ξ), estimated as 1.24, indicates a rather heavy tail, as already commented. We observe in

Table 8: Variability of the GPD parameters estimation using the Jackknife method.

α β u2

Estimation 1.236 8,087 9,999
95% Confidence Range (CR) [1.213 ; 1.260] [7,929 ; 8,245] [9,980 ; 10,018]

Table 8 that the results of the fit are robust towards the samples. The choice of u2 is very stable (0.2%
variation), while the scale index β is in range of ±2% and the shape parameter α in range ±1.8%.

Further, to stress the stability of the result and to be closer to a realistic frame (given that positive values
below 20e do not really make sense, given the context), we also ran the iterative algorithm to fit the
LN-E-GPD model on a second sample obtained when removing the 583 damages below 20e (from the
sample of size 60,985). Note that those removed data correspond, most probably, to data badly reported
in the database due to a wrongly placed decimal point. Once corrected, they would be above 20 (implying
that the second sample cannot be considered as a censored sample). Given the method, such a sample
should not change the tail of the damages distribution. Indeed, we found an estimate of 1.26 for the shape
parameter (compared with 1.24 when considering the positive damages), hence well within the uncertainty
range.

For comparing the evaluation of the tail heaviness, we also introduce the classical Hill estimator (see Hill
(1975)) for the tail index ξ, defined as

ξ̂ = Hk,n =
1

k

k−1∑
i=0

log

(
Xn−i,n
Xn−k,n

)
(8)

where Xn,n = max
1≤i≤n

Xi ≥ Xn−1,n ≥ · · · ≥ Xn−k+1,n ≥ Xn−k,n are the largest order statistics of the heavy-

tailed observations (here, the damage severity) (X1, · · · , Xn), with k such that Xn−k,n = u2. The main
problem faced when using this type of tail index estimators, is to evaluate u2, i.e. to select the number k of
largest order statistics; here we use the threshold u2 determined automatically by our algorithm, instead of
going through the standard EVT graphical (supervised) methods. The Hill estimator is weakly consistent
for heavy-tailed data and satisfies, under some second order property,

√
k (Hk,n − ξ)

d−→
n→∞

N
(
0, ξ2

)
, from

which we build an asymptotic confidence interval (CI) for ξ̂ = Hk,n.

Considering u2 as the 96.6% quantile (see Table 6), we obtain as Hill estimate: Ĥk,n = 0.962 with 95%
asymptotic confidence interval [0.55; 1.37]. Note that the estimate obtained via the algorithmic method
(0.81) lies within this confidence interval.

5.2 A Poisson-GPD model for the Severity and Frequency of Extreme Damages

In the previous subsection, we focused on the modelling of the damage severity, with a particular interest
for the extreme damages. Now, we are looking for fully modelling those extremes, taking into account not
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only their magnitude but also their frequency. To do so, if the extreme observations constitute a stationary
time series, we can introduce a Poisson-GPD model combining a one-dimensional Poisson process with
parameter λ(> 0) for modelling the frequency at which exceedances over the threshold u occur, with a
GPD for representing their magnitude (see Smith (2003) for details). The distribution of this model is
expressed as:

Hu(x; ξ, β, λ) := exp

{
−λ
(

1 + ξ
x− u
β

)−1/ξ
+

}
, x > u. (9)

If there is some non-stationarity in the data, as, for instance, a change over time in the frequency of
exceedances, or an increase of the severity of damages due to inflation, then time variability should be
introduced in the scale parameter of the GPD, say β(t), and in the Poisson intensity parameter, say λ(t).

Turning to our dataset, let us look at the frequency of extremes exceeding the threshold u2 evaluated in
the previous subsection (see Table 6). We consider the frequency with various time horizons from 1 to
4 months. Whatever the chosen horizon, we do not observe any clear trend, as illustrated in Figure 7
for quaterly frequency. In this figure, we present the quarterly frequency (left plot) and the quarterly
percentage (right plot) of exceedances. The percentage allows to differentiate trend in the frequency of
damages from trend in the exceedances. On the plots, there is no obvious trend in both cases (frequency
and percentage).
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Figure 7: Quarterly frequency of damages (left y-axis) with magnitude larger than u2 and the corresponding
quarterly percentage of extreme damages (right y-axis). The x-axis presents the various quarters.

To assess such statement, we perform stationary tests on R, namely the Augmented Dickey-Fuller and the
Phillips-Perron unit root tests, for the time series of exceedances and of exceedances monthly frequency,
respectively. For the exceedances time series, both tests strongly reject their null hypothesis, from which
we conclude to the stationarity. For the frequency time series, although we considered a monthly frequency
to have more observations than for the quaterly one, the number of observations is still small (46) to obtain
a statistically significant and conclusive result. We display the obtained results in Table 9.

Therefore, due to this stationarity, we consider the Poisson-GPD model with distribution (9) and calibrate
it on the exceedances above the threshold u2. As time unit for the Poisson model, given that our dataset
covers 45 months (ignoring the last month of our datset, namely April 2019, to keep full quarters), we
choose the quarterly frequency of exceedances (above u2) because it is the minimum interval size giving
enough values. In the considered sample, there are 2,994 exceedance observations. Then, we estimate
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Table 9: Results of various stationarity tests on the exceedances dataset.

Stationarity Test Test Value Lag p-value Interpretation

For Exceedances (2,994 observations)
Augmented Dickey-Fuller -10.42 14 < 0.01 non-stationarity strongly rejected
Phillips-Perron -1,290.2 9 < 0.01 non-stationarity strongly rejected

For Monthly Exceedances Frequency (46 observations)
Augmented Dickey-Fuller -2.58 3 0.34 non-stationarity not rejected
Phillips-Perron -22.52 3 0.02 non-stationarity rejected

the 4 parameters of the model on those observations, using the maximum likelihood method (run in
R). The estimates are presented in Table 10; we observe that the estimate of the exceedance rate λ is
relatively close to the average quarterly frequency, namely 2,994/15=199.6 exceedances per quarter (45
months corresponding to 15 quarters), which lies in the 95% confidence interval of λ. We also notice
that the estimate of the tail index ξ is higher than the one (0.81) computed in the previous section (see
Table 6) and that the latter lies outside of the Jackknife confidence range. Let us plot in Figure 8, using
a double log-scale, the survival GPD of the Poisson-GPD model with parameters estimated via the ML
method (given in Table 10) (dark/blue line), and, for comparison, the survival GPD of the LN-E-GPD
model calibrated via our algorithm (light/red dashed line), as well as the one calibrated when using the
Hill estimate for the tail index (light/yellow dotted line). We clearly observe that the LN-E-GPD model
calibrated with our algorithm provides, among the three models, the best overall fit for the tail of the
distribution, while in the two other cases, the fit is better at the start of the tail, but then overestimates
the fatness of the tail. Our method is especially designed to emphasize the tail observations, while the
MLE method has to compromise between λ for the Poisson and the GPD parameters, putting the same
weights to all the points. This is another, a posteriori, justification of the use of the algorithmic method.
Nevertheless, the Poisson-GPD model is giving a more complete view on the extremes. Now, if we use as
Poisson-GPD parameters, on one hand the GPD parameters evaluated by the algorithmic method, on the
other hand the Poisson intensity parameter λ estimated by the empirical average quarterly frequency, the
likelihood would decrease by only 0.1% of the maximum likelihood computed on the initial Poisson-GPD
model, which is already very close.

Table 10: Estimation of the parameters of the Poisson-GPD model for the N = 2, 994 exceedances above
the threshold u2 = 9, 999.34. The confidence range (CR) for ξ and β is obtained via the Jackknife method.

Parameter Exceedance rate Scale parameter Tail index
λ β ξ

ML estimates 187.07 8,087.63 0.983
CR 95% [171.84 ; 227.36] [8,087.53 ; 8,087.73] [0.930 ; 1.036]

Hill estimate 0.962
CI 95% [0.55;1.37]
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Figure 8: Survival GPD for the extreme damages with parameters estimated from different meth-
ods: MLE for the Poisson-GPD model (dark/blue line), algorithmic method for the LN-E-GPD model
(light/red dashed line), Hill estimator for the tail index in the LN-E-GPD model (light/yellow dotted
line). In black, the empirical survival cdf. Double log scale representation.

5.3 Some consequences for risk management

Recall our main focus on the tail of the distribution, as we want to characterize the cyber risk by how big
is the probability of occurrence of extremes. This information is particularily relevant for (re)insurance, to
know how much capital is required to cover such risk. This is assessed with risk measures. Using regulatory
ones and our model, we evaluate the standalone capital (i.e. without considering diversification benefits of
the company risk portfolio), then compare our results to those obtained by standard EVT methods such
as Hill. This is detailed in Section 5.3.

The role of risk models in risk management practices is to help quantify both the liabilities of a (re)insurance
company through the mathematical expectation (important for the computation of the risk premium), and
the capital through risk measures. Our model takes into account both concerns, as it is built to provide
a good modelling for both the bulk and the tail of the distribution. We estimated the mean and third
quartile with our calibrated model; it reproduces well the empirical values, with an error of 0.2% for the
mean and 0.4% for the third quartile. Moreover the knowledge of the tail also helps better understand
descriptive features of the underlying distribution of the data. On a finite sample, any statistical quantity
that we estimate is finite; it does not mean that theoretical moments, including expectation, exist. So,
the first message we have drawn is that, most probably, the expectation of cyber risk exists since α is
significantly larger than 1, as observed in Table 8 (see Section 4.1 for the relation between moments and tail
fatness). Recall that the finiteness of the expectation is a necessary condition for the risk to be insurable.
Hence cyber risk, as explored in this database, satisfies this condition.

Now, let us study the capital requirement for the insurance solvency and the risk capital required from
banks. We do it using the two regulatory risk measures, value-at-risk (VaR) and expected shorfall (ES),
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and compute VaR(99.5%), according to Solvency II, and ES(97.5%), for Basel 4. Since we do not know the
company portfolio, we evaluate the capital standalone (for cyber risk), which already gives an indication
about the statistical nature of the considered risk.

Recall the advantage of using a model (rather than empirical values): We can compute probabilities beyond
the data present in the database. It allows also to estimate risk measures (e.g. ES) in a sharper way via
an analytical formula.

The risk measures being evaluated from the tail distribution, we consider the GPD estimated with our
approach (hybrid model calibrated via our algorithm), and the 12 EVT-methods based on the Hill estimator
for the tail index, proposed in the tea R-package that also contains the references to the methods we quote.
We refer to Table 15 of the Appendix, where results obtained via these methods for the tail-threshold u2
and the inverse of the tail index α = 1/ξ are reported, then commented.

Recall (see e.g. Mc Neil, Frey, and Embrechts (2016)) that for G ∼ GPD(ξ, σ(u2)) (where 0 < ξ < 1), we
have, for p ≥ G(u2), with β ∼ ξ u2 for high threshold u2 (so that p→ 1),

V aR(p) = u2 −
β

ξ

[
1−

(
1− p

1−G(u2)

)−ξ]
∼
p→1

u2

(
1− p

1−G(u2)

)−ξ
(10)

and
ES(p) =

V aR(p)

1− ξ
+
β − ξ u2

1− ξ
∼
p→1

V aR(p)

1− ξ
. (11)

We use those relations to estimate VaR and ES from the calibrated GPD (with each method), replacing
the parameters by their estimates and G(u2) by Gn(u2) = 1−Nu2/n where Gn denotes the empirical cdf
of G, with n the sample size and Nu2 the number of observations above u2. We denote those estimates by
V̂ aR(p) and ÊS(p), respectively.

To estimate ES(p) directy from the data (without using the calibrated GPD), we proceed as in Kratz,
Lok, and McNeil (2018) (in the context of backtesting ES), simply averaging k quantiles from V aR(p):

ẼSn,k(p) :=
1

k

k∑
i=1

V aR(pi), with pj = p+
j − 1

k
(1− p), j = 1, . . . , k, k ∈ N. (12)

In our case, we take a large k as we are interested in the strong precision of the numerical estimate and
chose k = 20, 000.

Considering our algorithmic approach, we evaluate V aR(99.5%), ES(p) with p = 97.5% and 99.77%,
respectively, using (11) for VaR, and two possible estimates for ES, namely (11) and (12) (averaging the
VaR’s estimates from (10)). The latter is chosen to avoid resorting a second time to the asymptotic
relation in (11) between ES and VaR. We compare those estimates with the empirical values obtained
directly from the data (using (12) for ES with empirical quantiles).

Then we select, on one hand, the two EVT methods (among the 12 of the tea R-package) that look the most
stable accross samples with a threshold u2 that remains below q(99.90) (see Table 15 of the Appendix),
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namely the Reiss & Thomas (2007) approach that is very stable and the Hall (1990) one, on the other
hand, two other (less stable) EVT methods exhibiting a threshold u2 the closest to ours, namely AMSE,
performed on our whole dataset (of size n = 60, 985), and Danielsson et al. (2001), performed on the 5,026
largest observations of the dataset (only case for this method where u2 is below q(97.5) and high enough
(we cannot apply the Pickands-Balkema-de Haan theorem for a threshold close to the 3rd quartile).

The selection of the Reiss & Thomas (2007) and Hall (1990) methods avoids making any arbitrary choice
because of their stability. Nevertheless, the problem is that generally their threshold u2 (corresponding
to q(99.6%) and q(99.77%), respectively) is larger than ours and than VaR(99.5%), meaning that com-
parisons of the regulatory quantities of interest obtained with the various methods become less direct.
So, we will also compute ES(99.77%) to make the comparison straightforward. The two additional EVT
methods, AMSE and Danielsson et al. (2001), provide the thresholds u2 = q(97.47%) and u2 = q(97.4%),
respectively, which are closer to our threshold and allow for comparison between the various evaluations
of V aR(99.5%), ES(97.5%), and, of course, also ES(99.77%). In addition, we added a specific case of the
Hall method, where the threshold u2 drops from about 160,000 to 80,000, such that we can compute all
quantities of interest.

When evaluating the risk measures with the respective parameters estimates, we express them as a factor
of the empirical mean, to ease the comparison with other risks. Then, we compute the relative variation
∆ between the empirical quantity (obtained directly on the data) and the quantity evaluated via the
estimated GPD (with the different approaches, respectively). We report the results of this analysis in
Table 11.

Table 11: Estimates of V aR(99.5%) (via (10)) and ES(p) (via (11) and (12), respectively) for p = 97.5% and 99.77%,
expressed as a multiplying factor of the mean (which value is 3476 e ) for various models. Comparison with the empirical
values Ṽ aR(99.5%) and ẼS(p) by computing the relative variation ∆ in %.

V̂ aR ∆ p = 97.5% ∆ (in %) p = 99.77% ∆ (in %)
(99.5%) (in %) ÊS(p) ẼS(p) ÊS(p) ẼS(p)

Empirical Ṽ aR= 25 23 114
Our model (α = 1.24) 13 -46.5 19 17 -17.1 -28.2 132 104 15.9 -8.7
AMSE (α = 1.17) 24 -3.7 43 33 85.1 43.6 331 227 190.6 99.1
Danielsson-al.(01) (α = 1.15) 24 -2.9 47 35 101.7 49.6 373 242 227.1 112.1
Hall (1990)(u2=q(99.45%);α=1.37) 25 -2 28 26 21.4 14.4 159 142 39.9 24.5
Hall (1990) (α = 1.61) − − − − − 119 114 4.2 -0.3
Reiss &Thomas(07) (α = 1.47) − − − − − 130 121 14.2 5.9

The results presented in this table, illustrate the difficulty in modelling our data due to its high noise
content. This is well illustrated in the survival plot in Figure 6. Moreover, an important difficulty with
the extremes reported in our database is the strong biais towards round numbers in the filed complaints.
This is particularly sensitive in extremes as we might have an accumulation of large values on one round
number and then one complaint with precise number introducing artificial discontinuities.

Models will result from a compromise between various properties of the data (very extremes, moderately
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extremes, ...). For instance, it seems that our model reflects well the tail of the distribution whatever the
chosen zone but not pointwise (via VaR).

Concerning the VaR(99.5%), we observe that our method provides a bad estimation, while the two other
EVT methods (AMSE and Danielsson et al.) and the specific case for Hall’s method give an accurate
estimation (slight underestimation). The other two stable methods do not allow for the computation of
the VaR at this threshold.

However, taking only one point (as we do here for the 99.5% quantile) does not reflect the tail of the
distribution in a proper way. To understand further the phenomenon, we computed several quantiles and
could see how it fluctuates a lot around the empirical value, with good (for instance, for VaR(90%) with
an empirical value of 4,300 e and 4,155 estimated with our model; relative error of -3.4%) and bad (under
and over) estimations (as in this example of 99.5%). This becomes more obvious when examining the
right plot in Figure 6 where we see that the empirical values are underestimated for low quantiles and
become well fitted with quantiles above 99.9% (1e − 03 on the graph). This is why we turn to ES that
gives a much better picture of the tail, as well recognized nowadays. It has already been a long debate
in regulation; Basel 4 moved for market risk from VaR to ES. This might be even more needed for cyber
risk, as we can experiment here.

Evaluating ES in the two described ways, we observe that our tail modelling reflects better the data,
whatever p, while the AMSE and Danielsson et al. methods provide a gross over-evaluation and different
results according to the way ES is estimated. For p = 99.77%, we can evaluate ES with the methods
by Hall and Reiss & Thomas, with which we obtain also good results, especially for the Hall estimate.
This very good fit by Hall’s method might be explained by the fact that the level 99.77% is that of his
estimated threshold. For this latter method, when considering the specific case where u2 = q(99.45%),
while the quantile at u2 is perfectly distributed, ES at 97.5% gives similar results as with our method, but
looses accuracy when p increases.

Finally, looking at the two ways ES is estimated based on the GPD model, we observe, as often in practice
(see e.g. the discussion about it in Mc Neil et al. (2016)), that the numerical estimation based on averaging
quantiles provides generally a smaller ∆ (taking into account the signs) than when using the asymptotic
relation in (11) between VaR and ES.

Clearly more research will be needed to produce credible values for the solvency risk measures like VaR,
while the ES is better estimated as it concerns values beyond 97.5% and the tail in this case is better
captured by our model. We also see that the factors for the empirical risk measures are quite high (25
times the mean for the VaR(99.5%) and 61 times the mean for the ES(97.5%)), which is a sign that we are
confronted here with very volatile risks; even the EVT models are not able to catch this for the VaR. In
natural catastrophes like windstorms or flood, the factor for VaR(99.5%) are usually around 20 times the
mean. For earthquakes, values around 30 times the mean are found. Therefore, when underwriting cyber
risks, approaches implemented for natural catastrophes could be borrowed, as, for instance, developing IT
systems to control the accumulation of exposures and set limits to them. This will help diversifying the
risks, which is key to successfully underwrite extreme risks.
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This is also why we want to refine our understanding of cyber risk by differentiating it by type of attack,
as presented in the next subsection.

5.4 Comparing the types of cyber attacks via their tail index

To conclude this section on modelling, we apply our method on three samples, the full sample, the sample
related to the fraud only (but representing 87.3% of the data) and the breach of trust one (representing
only 4.9% of the data). The idea here is to look at the possibility of finding significant differences in the
statistics of the various types of attack. This is made possible as the Jackknife results show a relative
robustness of the parameters estimation resulting from the application of the algorithmic method. Our
assumption is that the tail index could be a discriminant between various forms of cyber complaints. Given
the little number of qualified damages, this can only be a first attempt to see if this assumption can gain
ground in our data. We provide, in Table 12, only the tail index and associated shape parameter (i.e. the
inverse of the tail index), as well as the threshold u2 above which the extremes are modelled with a GPD.

Table 12: Estimation of the tail index ξ and shape parameter 1/ξ, as well as of the tail-threshold (also
expressed as a quantile) above which the GPD is fitted. Three samples are considered, the full one on
the period July 2015-April 2019, a second one restricted to fraud-related damages (87.3% of the full
sample), and the last one restricted to breach-of-trust-related damages (4.9% of the full sample). The
confidence ranges are computed using the Jackknife method.

LN-E-GPD Full sample Fraud sample Breach of Trust sample

Number of observations 60,985 53,260 3,004
Tail index 0.8088 0.8114 0.852
Shape parameter 1.24 1.23 1.17
with 95% confidence range [1.21 ; 1.26] [1.21 ; 1.26] [1.09 ; 1.27]

Threshold (quantile) 9,999 (96.6%) 8,999 (96.3%) 14,999 (97.3%)
95% confidence range [9,980 ; 10,018] [8,826 ; 9,172] [13,481 ; 16,517]

The results are in line with our expectations. Fraud, representing 87.3% of the data, gives a shape
parameter close to the full sample one. The interesting result is for breach of trust, where the shape
parameter is about 6% smaller than for the full sample. The Jackknife confidence ranges are in line with
the fact that the numerical stability depends heavily on the number of observations. The confidence range
is much wider for "breach of trust" than for "fraud", but still with a reasonable range. Nevertheless, the
narrow confidence range for "fraud" points out to a useful discriminating method whenever the sample
sizes are comparable: in such a case, if there is enough difference between tail indices, the algorithm will
detect it.

Given the small size of the data sample, it is not possible here to come up with a definitive conclusion,
but it suggests a possible way for exploring further with more data (e.g. when we will have access to
the complaints registered since April 2019) and a better characterization of the type of complaints in the
database.

Finally, the shape parameters confirm the common intuition that cyber risk is susceptible to systemic
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risk; indeed, the type of tails we observe here are extremely heavy. The shape parameters are close to
those from earthquake or floods risk in insurance; both risks are characterized by the wide spread of the
damages.

6 Management and research perspectives

We first want to emphasize the importance of understanding the data and making sure they are repre-
sentative of the phenomenon under study. We spent a fair amount of time with our colleagues of SCRC
to understand but also review manually the cleansing of their database (done automatically at C3N). We
did it in general, through a preliminary statistical exploration of the database, and specifically, complaint
by complaint, for the 1,100 largest declared damages. It gives us confidence that we are having here a
very important source of information for studying cyber crimes and cyber risk in general, all the more
since it is a large database, including various types of variables. Cyber attacks are a massive phenomenon,
especially when considering the iceberg effect. They reach every place in the country given the delocalised
nature of Internet.

Second, we observe that the GN dataset, quite different from those studied so far in the literature, shows
similar perspectives in terms of very heavy-tailed distributions. Indeed, the results we obtain for the tail of
the damage severity distribution confirm the presence of extremes, which is, quoting Tang, Tang, and Yang
(2019), a signature of common shocks or systemic risk. Systemic risk originates from the combination of
the existence of extremes, the interconnection between the various systems, and the weight of this set of
systems in the general economy. Undoubtedly, these three properties are characteristic of cyber risk, as
already discussed at the beginning of the paper.

To reveal the presence of extremes, we adapted a recent algorithm for fitting heavy-tailed distribution to
the case of positive asymmetric data. This tool is very important as it allows for an automatic fit of both
the main and extreme behaviors of the empirical distribution. By EVT, we know that the extreme behavior
follows a GPD. So, we compared our results with those obtained with other standard EVT methods and
the shape parameter is of the same range across methods. Here, we introduce an additional way to judge
the quality of the estimated model, by computing the standalone capital requirements with standard risk
measures. We observe that our model evaluates well ES(97.5%), with the closest value to the empirical
estimate among tested methods.

We would like to point out the benefit of using this algorithm, not only for the study we carried out, but
also for our next investigation on this dataset, when considering a multivariate setting and a dynamic view.
Indeed, this method detects by itself the threshold above which observations are considered as extremes
without resorting to heavy computations; this solves a practical issue encountered with standard methods
of EVT that require separate treatment for the tail, or with other dynamic EVT methods resorting to an
arbitrary high threshold. It should then lighten the procedure when introducing covariates and make it
more accurate. The OR field, where probability of extremes matters, would benefit from a method that
integrates seamlessly the presence of extremes to the modelling of the whole distribution, as proposed in
this study, as well as a straightforward way to assess its confidence range through the Jackknife method.
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Moreover, to take into account not only the magnitude of the largest damages but also their frequency, we
introduced a Poisson-GPD model. We studied the frequency of the extremes to see how it would evolve
with time. Contrary to what is often assumed for cyber risk in general, for the extremes, we did not find
a strong dynamic component. Namely, on the given period of observed data, it does not seem that, from
a statistical point of view, the nature of the risk is changing. Nevertheless, this will be investigated again
when having access to data recorded on a longer time period. We will use the same approach as described
in Section 5.2, introducing time variability in the parameters of the Poisson-GPD model, if needed.

Those statistical results, obtained for material damages, represent a solid basis for helping build resilience.
They will now be interpreted by criminal intelligence analysts (from the Intelligence Division of the GN)
in order to establish hypotheses in terms of explanation and anticipation by the SCRC. On the insurance
side, the results obtained on the tail of the distribution confirm that cyber risk as a whole is insurable,
and help evaluate how costly it can be to cover such risk. The existence of an expectation for the loss is
crucial to compute the insurance technical premium, as it is its main component. Its second component
is the risk-loading, which is related to the capital allocated to the risk. Once the probability distribution
of the risk is known, the capital can be estimated in relation to the risk measure used for computing
the solvency capital requirements. That is why, it is crucial for the insurability of a risk to have a good
knowledge of its entire probability distribution, which is provided by our model. The heaviness of the
(right) tail of the distribution of the damages has been estimated with a shape parameter of 1.24 ± 0.025.
As this parameter has a value significantly larger than 1, it indicates a finite expectation, which is a
necessary (but not sufficient) condition for insurability of cyber risk. Nevertheless, the shape parameter
with a value below 2 (i.e. infinite variance), classifies cyber as a very high risk, in the same range as
natural catastrophes. But there are important differences between the two risks: the main characteristic
of cyber risk is that cyber attacks are performed directly by humans, contrary to natural catastrophes.
Also, the geographical location is crucial for the latter, while of much less importance for cyber attacks.
For cyber risk, the self-hygiene of the IT system plays the most important role in terms of vulnerability.
Other factors that should be studied for making the system more resilient are attackers’ motivations, the
possible targets in the system (databases, reputation, financials), and the security protocols of users.

Finally, this study, performed on a novel and exhaustive database, establishes and measures the potential
high intensity of cyber risk, a crucial information for the various actors involved in helping society to be
more resilient, including the GN itself, insurance companies, strategic management, and policy makers. It
also opens various interesting avenues of investigation. One of them is the automatic classification of the
types of cyber crimes, according to their tail index, as started to be tackled in this paper. Comparison
with existing classifications, such as those of the GN or the Ministry of Justice, will be made and discussed
with SCRC and other experts. Given the rich, multi-fields GN database, we will also turn our attention
to the modelling of cyber in a multivariate context, as already mentionned. It is an ongoing work. A
further step will be to adapt our models and methods to fully account for systemic risk, building from
studies on this topic developed in the aftermaths of the 2008/2009 financial crisis. Collaboration with
experts of various disciplines will remain essential, taking into account the multiple factors playing a role,
for interpreting the results of the suggested models, and for developing adequate resilience management
strategies. Indeed, cyber security and resilience are major challenges in our modern economies, and are top
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priorities on the agenda of governments, security forces, and management of companies and organizations.
Therefore all those efforts are necessary steps for building an agreement on how to assess and manage this
risk both quantitatively and qualitatively.
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A With or without an exponential bridge? A simulation study showing
its benefits

In order to test the relevance of introducing an exponential bridge in the hybrid model, we conduct a
series of experiments based on simulated data. Indeed, it is an essential step to challenge the algorithm
to find the true model that has been used for generating the data. Once conclusive, we can turn with
confidence to applications on real data. The experiments consist in using two self-calibrating algorithms
with and without an exponential bridge, to fit two datasets produced with the two models LN-E-GPD and
LN-GPD, respectively. We test if the algorithms find out the proper generating models. In particular, are
the algorithms able to give a reasonable estimate of the tail fatness?

In this simulation study, we consider heavy-tailed data coming from a two and three components distri-
bution, namely a LN-GPD and LN-E-GPD, respectively. Then, we fit each of the two generated datasets
using the two algorithms based on a LN-GPD and LN-E-GPD model, respectively. To generate the data,
we perform 100 Monte Carlo (MC) simulations considering various sample sizes, from 1,000 to 50,000
realizations (i.e. for each sample size, we change 100 times the seed of the random generator). We
choose different sets of parameters to explore a wide spectrum. For the GPD component (with tail index
0 < ξ < 1, as we assumed heavy-tailed data with finite mean), we additionally consider two cases depend-
ing if we have a very heavy-tailed distribution (no variance), choosing ξ = 0.8 (similar to our cyber data
results), or a moderate heavy one when ξ = 1/3 (meaning a finite variance). In total, we proceed to 40
experiments, as we consider 2 models, 2 tail indices, 5 samples, and 2 self-calibrating algorithms.

While the LN-E-GPD model is explicited in (4) and (5), the LN-GPD one is defined by its pdf h̃ given as
follows:

h̃(x; θ̃) = γ̃1 f(x;µ, σ)1(x≤u) + γ̃2 g(x− u; ξ, β)1(x≥u), (13)

where, under the C1 assumption, the parameters satisfy ξ =
1

α
=

σ2

log(u)− µ
; γ̃1 =

1

βf(u;µ, σ) + F (u;µ, σ)
;

β = ξ u; γ̃2 = 1− γ̂1F (u;µ, σ).

(14)

Notice that (13) corresponds to a particular case of (4) without exponential bridge, i.e u1 = u2. In (13) the
unique junction point is called u, θ̃ = [µ, σ, u], and γ̃1 and γ̃2 denote the non-uniform weights associated
to lognormal distribution and the GPD, respectively.

Let us mention that the LN-GPD model (13) corresponds to a generalized version of the Czeledin distri-
bution (see Knecht and Knüttel (2003)) that connects an unweighted lognormal (γ̃1 = 1) to a weighted
Pareto distribution (γ̃2 = 1 − F (u;µ, σ)) . The LN-GPD gives clearly more flexibility with non-uniform
weights.

In Table 13, we display the parameters used to generate the various samples. Recall that the number of
parameters are reduced (4 for the LN-E-GPD and 3 for the LN-GPD, instead of 10 and 7 respectively)
by imposing continuity conditions at the junction points (leading to (5) and (14)). Here we choose
independently the tail indices ξ for the two targeted cases, and consider various values of µ and σ with
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different tail-thresholds, exploring then different settings.

Table 13: Parameters used to generate the data coming from the two hybrid models,
respectively. The chosen thresholds are given as real numbers, with the corresponding
quantiles in parenthesis. In the case of two components, we display the threshold u
in the column of u2 where the extremes start.

Model µ σ u1 u2 ξ

LN-E-GPD 1 2 4 (80%) 14.59 (98.28%) 1/3
0 5 2 (85.91%) 4.38 (94.37%) 0.8

LN-GPD 2 0.5 – 15.65 (91.89%) 1/3
0 1 – 3.5 (86.49%) 0.8

Turning to the fit of both models on the generated datasets, we use our algorithmic approach to estimate
the parameters of the LN-E-GPD and LN-GPD models, respectively. As already mentioned, we have
adapted the unsupervised iterative algorithm introduced in (Debbabi et al., 2017). Besides the model
and relations between parameters, another difference between modelling the bulk data by a Gaussian
or a lognormal distribution, lies on the choice of initial parameters conducting the algorithm to the
convergence. Indeed, we recall that for G-E-GPD, the Gaussian mean corresponds to the distribution
mode, which gives a nice strategy to initialize the Gaussian parameters. Unfortunately, it is no longer
the case for the lognormal distribution for which we tested several techniques to obtain initialization that
holds up. This is of particular importance when fitting 100 times different datasets.

An advantage of MC techniques is to minimize the numerical noise and concentrates on the model perfor-
mance. This is why we performed MC simulations (100 here) to provide the mean result for each estimate,
and its standard deviation (that measures as well the numerical variation), which is a distinct notion from
the confidence intervals (computed in our case with the Jackknife method). To assess the performance of
our algorithm, we compute the relative error between the mean MC estimate of the considered parameter
and its theoretical value used to generate the data. We repeat this evaluation varying the sample size to
study the speed of convergence of the algorithm in terms of the number of realizations, focusing on the
tail index estimation.

In Table 14, we display the MC fitting results over 100 simulations with a sample size of N = 10, 000 for
all the parameters, together with their relative error evaluated as explained above. In the first half of this
table corresponding to the fit using the 3 components algorithm, there is no relative error above 5%. For
the tail indices, the error varies between 0.86% to 3.8%, which is very reasonable in terms of performance.
We notice that the error made on the tail index estimation slightly increases with the tail index. For the
data generated with the two components distribution (LN-GPD), the three components algorithm is able
to detect the absence of an exponential bridge, by setting u1 = u2, demonstrating here the flexibility of
the three components algorithm. Turning to the threshold estimates, they are quite accurate with errors
ranging from −0.99% to 4.53%, hence well within the 5% error range that we consider to judge about
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Table 14: Results for the Monte Carlo simulations. In the case of two components, only the junction point u2
(where the extremes start) is displayed (since in this case, u = u1 = u2). ND means Not Defined as the theoretical
value is 0; in such a case, we look at the absolute error. Bold font indicates (relative) errors larger than 5%.

Fitting Algorithm Generating Data µ σ u1 u2 ξ

Three components LN-E-GPD 1/3 1.01 2.00 3.96 (75.67%) 15.01 (98.04%) 0.336
Relative Error 1.48% 0.18% -1.12% 2.86% 0.86%
LN-GPD 1/3 1.99 0.49 15.22 (90.59%) 15.49 (91.09%) 0.337
Relative Error -0.05% -0.29% – -0.99 % 1.17%
LN-E-GPD 0.8 0.04 5.01 1.94 (85.01%) 4.21 (93.37%) 0.825
Relative Error ND 0.22% -3.07% -3.93% 3.08%
LN-GPD 0.8 0.01 1.00 3.66 (86.75%) 3.66 (86.75%) 0.782
Relative Error ND 0.48% – 4.53% -1.99%

Two components LN-E-GPD 1/3 0.19 1.38 – 105 (99.99%) 0.437
Relative Error -80.96% -31.03% – 625% 31.06%
LN-GPD 1/3 1.99 0.49 – 15.39 (91.01%) 0.337
Relative Error -0.07% -0.39% – -1.65% 1.41%
LN-E-GPD 0.8 -2.72 3.11 – 1860 (99.99%) 1.01
Relative Error ND -37.61% – 42,391% 26.29%
LN-GPD 0.8 -0.005 1.01 – 3.55 (86.09%) 0.799
Relative Error ND 0.54% – 1.52% 0.12%

the performance of the algorithm. The LN parameters (µ, σ) are sharply evalauted, with errors between
−.29% to 1.48%. Overall, the three components algorithm performs well.

Now let us analyse the second case where the fitting algorithm has only two components. We clearly notice
that the algorithm is not able to estimate properly the tail index of models containing an exponential
bridge, with errors over 26.29% and 31.06%, pushing the threshold of the extremes to 99.99% quantile.
The parameters of the lognormal distribution are also badly estimated (with errors ranging from −31.03%

to −80.96%. However, this fitting algorithm reproduces well the results for data generated by a two
components model. The estimation accuracy is similar to that achieved with the three components model.
The exponential bridge is thus a useful artifact to obtain a flexible self-calibrating method for various sorts
of data, here for asymmetric non-negative ones (while for symmetric ones in (Debbabi et al., 2017)).

This MC simulation study confirms the relevance of this algorithmic approach based on a general hybrid
model which main and extreme behaviors are linked with an exponential bridge. It completes the overall
method with a second algorithm for treating asymmetric non-negative heavy-tailed data.

An additional by-product of this MC simulation study is the exploration of the influence of sample sizes
on the stability and quality of the tail index estimation. In Figure 14, we present mean and standard
deviation of the tail index estimate, obtained with the three components algorithm, for various sample
sizes, N = 1000; 5000; 10 000; 20 000 and 50 000, and for each of the two tail indices. The data is generated
from the LN-E-GPD model with the parameters of Table 13, with ξ = 1/3 and ξ = 0.8. Note that the
latter case and the fitting algorithm have been chosen to be in a similar situation as that encountered in
our application on cyber data (the fit of our algorithm on 60,985 observations led to a tail index estimate
ξ̂ = 0.81). We observe that, as expected, the convergence is better for small tail index. This is a well known
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Figure 9: We plot the relative error of the shape index α = 1/ξ as a function of the number
of observations (sample size) used for the fit. The data is generated from the LN-E-GPD model
with the parameters of Table 13, with ξ = 1/3 (α = 3; dark green dots) in the left plot and
ξ = 0.8 (or α = 1.25; red dots) in the right plot.

feature when using MC simulations for heavy-tailed data (see e.g. Dacorogna, Debbabi, and Kratz (2018)).
The numerical noise generally decreases when the sample size increases. A good convergence is reached
with 50,000 observations for ξ = 1/3, while the tail estimation remains within 5% of the theoretical value,
whatever the sample size and for both tail indices. We also see that a sample size of 1000 observations
gives the worst result for both indices.

B Estimation of the tail index: Comparison with EVT methods

Many methods exist to evaluate the tail-threshold and the tail index (or, equivalently, its inverse), as
well as software packages (e.g. on R or Python). To complete our study, we provide results obtained
for the estimation of those two parameters, using the various methods included in the tea R-package (see
https://rdocumentation.org/packages/tea/versions/1.1 for details and the paper references therein
on the considered method), and compare them with those obtained via our algorithm. To judge the

41

https://rdocumentation.org/packages/tea/versions/1.1


robustess of the estimations, we order our sample and build subsamples keeping the m largest observations
(of our sample), varying m. Results are given in Table 15. Confidence intervals are displayed in the plots
for a given subsample and all methods; see Figure 10.

In Table 15, columns correspond to subsamples ordered by increasing size. For each method (row), three
quantities are displayed: the tail-threshod value (in e ), its associated quantile order in the full sample
(of size n = 60, 985) for which the number of extreme observations can be deduced, and the inverse of the
tail index α(= 1/ξ). The last row shows the results for the entire dataset including zeroes. ’NaN’ answers
correspond either to the crash of the program or when stopping it after more than 5 days of run. This
type of non-answer occurs for large sample sizes. For instance, the R-code for the Danielsson et al. (2001)
method ran for 12 hours to give a result for the sample of size 50’039, while, for the sample of size 208,037,
we did not obtain yet the result after 6 days of run, so we stopped it. We did not face such an issue for the
Danielsson et al. (2016) method. Nevertheless, for very large sample sizes, some of the methods (mainly
the non stable ones) needed a few hours to provide the results.

All those methods have been successful in providing a good modelling of tail distributions in various
contexts; that is why they have been included in the tea R-package. Nevertheless results provided in
Table 15 are the testimony of the general challenge of modelling extremes, in particular on our large
dataset. We observe that, whatever the method, the α-parameter is mostly above 1 and below 1.5,
confirming the finite mean and infinite variance. We can disregard the cases where α < 1, (ξ > 1) as the
tail-threshold (between V aR(68.9%) and V aR(89.1%)) may be considered as too low for EVT methods.
We also have to be careful not taking into account results obtained with too high thresholds for which
estimation will be done on very few extreme values (for instance, for the rather stable eye-balling technique,
the tail-threshold q(99.99%) corresponds only to 7 extreme observations!). We observed only once α = 2

(in Hall-Welsch (1985) for the first subsample), which must be discarded as the tail-threshold is such that
only the maximum is taken as extreme observation. Some methods (among the less stable ones across
samples) are subject to numerical noise and do not give the same results at each run (although close).

The Guillou and Hall (2001) and Reiss and Thomas (2007) methods are quite robust, given a constant
value of u2 and α, whatever the sample size. We selected the latter one in our comparison study given its
reasonable number of extreme observations (263, compared with 27 for Guillou and Hall). The approach
by Drees and Kaufmann (1998) is also stable for small sample sizes, as well as for Hall (1990) where the
variability is small. For the other methods, we observe much more variability.
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There are some methods that cannot handle a big number of data like Dress and Kaufmann or Danielsson
et al. (2001) where the execution time becomes prohibitive. In general, when using the full dataset of
208,037, half of the methods do not give results. It is probably related to the problem we also encountered,
which is the presence of zeroes that might not be real zeroes but simply missing amounts. It is the reason
why we restricted our reference sample to the non-zeros values (60,935).
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Figure 10: On the y-axis the shape parameter α is displayed, while on the x-axis the various methods are put in the
same order as in the table (from 1 for AMSE to 12 for Reiss & Thomas, and 0 for our model). The right plot is the
same with a zoom on the y-axis to better visualize the confidence bands w.r.t. our LN-E-GPD model (dotted line).

In Figure 10, we show the results of the subsample with 557 observations as we have there results for all
the methods. For each point, we also draw the asymptotic confidence band of the Hill estimator (see its
properties recalled in Section 4.4). As expected, the methods providing results on high quantiles (Drees
& Kaufmann (1998), Eye-balling Technique, Guillou & Hall (2001), Danielsson et al. (2016)) present
the widest confidence intervals. The values are consistently higher than ours (except for the eye-balling
technique but with a wide confidence range), but fluctuate around 1.4. In 7 cases out of 12, the confidence
ranges include our result.
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