
HAL Id: hal-02463159
https://essec.hal.science/hal-02463159v2

Preprint submitted on 30 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Exact Method for Assortment Optimization under
the Nested Logit Model

Laurent Alfandari, Alborz Hassanzadeh, Ivana Ljubić

To cite this version:
Laurent Alfandari, Alborz Hassanzadeh, Ivana Ljubić. An Exact Method for Assortment Optimization
under the Nested Logit Model. 2021. �hal-02463159v2�

https://essec.hal.science/hal-02463159v2
https://hal.archives-ouvertes.fr

An Exact Method for Assortment Optimization under
the Nested Logit Model

Laurent Alfandari
Alborz Hassanzadeh
Ivana Ljubic

ESSEC RESEARCH CENTER

WORKING PAPER 2001

An Exact Method for Assortment Optimization under
the Nested Logit Model

Laurent Alfandari

ESSEC Business School of Paris, Cergy-Pontoise, France, alfandari@essec.edu

Alborz Hassanzadeh

ESSEC Business School of Paris, Cergy-Pontoise, France, al.zadeh@essec.edu

Ivana Ljubić1

ESSEC Business School of Paris, Cergy-Pontoise, France, ivana.ljubic@essec.edu

Abstract

We study the problem of finding an optimal assortment of products maximizing the expected
revenue, in which customer preferences are modeled using a Nested Logit choice model. This
problem is known to be polynomially solvable in a specific case and NP-hard otherwise,
with only approximation algorithms existing in the literature. We provide an exact general
method that embeds a tailored Branch-and-Bound algorithm into a fractional programming
framework. Contrary to the existing literature, in which assumptions are imposed on either
the structure of nests or the combination and characteristics of products, no assumptions on
the input data are imposed. Although our approach is not polynomial in the input size, it can
solve the most general problem setting for large-size instances. We show that the fractional
programming scheme’s parameterized subproblem, a highly non-linear binary optimization
problem, is decomposable by nests, which is the primary advantage of the approach. To
solve the subproblem for each nest, we propose a two-stage approach. In the first stage, we
fix a large set of variables based on the single-nest subproblem’s newly-derived structural
properties. This can significantly reduce the problem size. In the second stage, we design a
tailored Branch-and-Bound algorithm with problem-specific upper bounds. Numerical results
show that the approach is able to solve assortment instances with five nests and with up to
5,000 products per nest. The most challenging instances for our approach are those with a
mix of nests’ dissimilarity parameters, where some of them are smaller than one and others
are greater than one.
Keywords: combinatorial optimization, revenue management, assortment optimization,
fractional programming, nested logit.

1Corresponding author

1. Introduction

Assortment optimization is the problem of choosing a portfolio of products in a competitive
environment to offer to customers to maximize expected revenue. This class of problems
has important applications in retail, online advertising, or revenue management, see, e.g.
[3, 19, 17]. The research of Talluri and Van Ryzin [31] was the first of its kind to demonstrate
the importance of incorporating the choice behavior of customers when deciding which
products to offer in an assortment. Their work contributes to the growing literature on
discrete choice models. Such models have long been used to describe and understand how
customers choose a product from an offered set of products that vary in different attributes
such as price and quality. A popular way to model customer choices is to follow the principle
of utility maximization. Based on this concept, a customer attributes a random utility to each
product and selects the product with the largest utility. The Multinomial logit (MNL) model
([23, 26]) is one of the most popular choice models based on the utility maximization theory.
The MNL choice model is based on the Independence of Irrelevant Alternatives property,
which states that when individuals face two alternatives, the odds of choosing one over the
other is not affected by the introduction of a third alternative. This property has often been
contested, which motivated the creation of the general nested attraction model of which
Williams [35] first introduced the well-known Nested Logit (NL), model.

In the NL model, customers first select a nest and then choose a product within that nest
(each product appears in exactly one nest). Since the multinomial logit model suffers from
the independence of irrelevant alternatives property, the nested logit model was developed
to capture the degree of dissimilarity of products within a nest. This model has various
applications. For example, consider a tourist who is using online search engines to book a
hotel room. In this case, the nests are the available hotels to choose from, and a product is a
room within each hotel. Naturally, the customer first selects a hotel and then selects a room
from that hotel according to her preferences over the available options. For empirical work in
this area, see, e.g., [20, 32, 33, 34, 36].

1.1. Problem definition
We first provide a formal definition of the Assortment Optimization Problem under the Nested-
Logit choice model (AOPNL). Let M = {1, . . . ,m} be the set of all nests, and N = {1, . . . , n}
the index set of all products in a nest and in every nest, up to |N | products can be offered.
We assume that each product can appear in exactly one nest. We call Ci the collection of all
feasible assortments for nest i ∈M , and an assortment in nest i is denoted by Si ∈ Ci. We
also denote by rik > 0 the revenue obtained by selling one unit of product k ∈ Si offered in
nest i. Finally, customers’ preference for product k in nest i is vik > 0.

Assuming a customer chooses nest i and assortment Si ∈ Ci is offered for nest i, based on
MNL choice probabilities, the probability for that customer to choose product k is:

Pik(Si) =

vik

vi0 +∑
j∈Si vij

k ∈ Si

0 k /∈ Si
i ∈M,k ∈ N, (1)

2

where vi0 > 0 is the attractiveness of leaving nest i without any purchase. Furthermore, the
probability that a particular nest i is chosen given that assortment (S1, . . . , Sm) ∈ C1× . . .×Cm
is offered is:

Qi(S1, . . . , Sm) = (vi0 +∑
k∈Si vik)γi

V0 +∑
l∈M(vl0 +∑

k∈Sl vlk)γl
i ∈M,

where V0 > 0 is the attractiveness of the option of leaving the system without picking any
nest (in the first stage), and γi > 0 is the dissimilarity parameter of nest i. The dissimilarity
parameter of a nest characterizes the degree of dissimilarity between the products within that
nest. It can also be interpreted as the influence of a nest over others [11, 15]. If assortment
Si is offered in nest i and if this nest is selected, the expected revenue is:

Ri(Si) =
∑
k∈Si

rikPik(Si),

where Ri(∅) = 0. Therefore, if we offer assortment (S1, . . . , Sm) where Si ∈ Ci, for i ∈M , the
expected revenue we obtain over all nests is:

Π(S1, . . . , Sm) =
∑
i∈M

Qi(S1, . . . , Sm)
∑
k∈Si

rikPik(Si).

Finally, the assortment optimization problem where customer choice follows a nested logit
model is to find an assortment so that the expected revenue is maximized, i.e., we have:

Z = max
(S1,...,Sm)
Si∈Ci,i∈M

Π(S1, . . . , Sm). (2)

Davis et al. [9] proved that unless γi 6 1 and vi0 = 0 for all i ∈M , problem (2) is NP-hard.
In this article, we provide a fast non-trivial exact solution framework for solving the AOPNL
in a general setting, even when γi > 1 or vi0 > 0, for some i ∈M .

1.2. Motivation and main contribution
The literature of assortment optimization under the nested logit model is quite rich concerning
analytical properties of the problem under various assumptions. For example, one primary
assumption is that the dissimilarity parameter of all nests is less than or equal to one (which
means that all products within the same nest compete against each other). This assumption
might be easily violated since some products might act synergistically. This situation has
been thoroughly explained in the research of Davis et al. [9] and Segev [29]. These are, to
our knowledge, the only papers that study scenarios in which dissimilarity parameters can be
higher than one, and for that, the authors proposed approximation algorithms that provide
assortments with a worst-case performance guarantee (see Section 1.3 for further details).

This paper provides an exact method based on fractional-programming to generate optimal
assortments under the nested logit model. Our algorithm is not polynomial in the input size
but is it sufficiently fast to solve to optimality problems with up to 5,000 products and 5
nests. Contrary to the existing literature, our method can be used to solve a wide range of

3

problem variants as it imposes no assumption on the input data. The key point of the method
is that the parameterized subproblem at each iteration of the main fractional programming
algorithm, which is a highly non-linear binary optimization problem, can be decomposed by
nests. This enables us to solve a collection of subproblems that are relatively easier to handle.
We prove in Section 3.1 that the subproblem is still NP-hard; however, it can be tackled with
an efficient, tailored branch-and-bound algorithm.

Each subproblem for each nest is solved in two phases. First, a pre-processing enables to
reduce the size of the subproblem by identifying revenue thresholds beyond which products
are guaranteed to be offered or not. Then a Branch-and-Bound (B&B) algorithm solves
the reduced problem, using both pre-processing and tailored upper bounds at each node.
The pre-processing enables a large set of variables to be predetermined at each iteration via
structural properties of the single-nest subproblem’s newly-driven objective function. To the
best of our knowledge, this research is the first to provide a generic non-trivial exact method
for the assortment optimization problem under the nested logit model with proven optimality
and practical efficiency (by non-trivial, we mean not based on a full enumeration of candidate
assortments), which is flexible enough to adapt to any mix of dissimilarity parameters and
any mix of utilities of no-purchase options. Moreover, our method is effective for instances of
realistic size involving thousands of products, for which optimal assortments can be computed
within short computing time.

The paper is organized as follows. In the remainder of this section, we provide a detailed
literature overview. The general framework of our parametric search and the decomposition
of the parameterized subproblem by nests are explained in Section 2. In Section 3, the
parameterized subproblem is analyzed with the identification of the products that are sure to
be offered or not at optimality, based on revenues, and the branch-and-bound algorithm for
solving the reduced problem is provided. Section 4 is dedicated to numerical experiments to
assess the performance of the method on many instances of various sizes, and we conclude
our research in Section 5.

1.3. Related literature
The incorporation of choice models in assortment optimization problems (AOP) has attracted
much attention in the recent decade. One of the most popular discrete choice models is the
multinomial logit model. Since Talluri and Van Ryzin [31] demonstrated that under the
multinomial logit model, offering revenue-ordered assortments maximizes the expected revenue,
many researchers studied this class of problem under various settings. For example, Flores et
al. [14] demonstrated that offering revenue-ordered assortments provides the optimal solution
if the consumers’ choice model follows a sequential multinomial logit, which is a generalized
version of the classic MNL. In the context of robust optimization, Rusmevichientong and
Topaloglu [28] demonstrated that even if the utilities of products are unknown yet belong to
either a polyhedron or a rectangular uncertainty set, the cost of robustness is small, and the
revenue-ordered assortments still provide maximum expected revenue.

The multinomial logit model was developed based on two main assumptions; 1) customers
follow the utility maximization principle, and 2) the utilities of products are independent of
each other. In real-world conditions, however, the second assumption might be violated. To

4

remedy this potential shortcoming of MNL, researchers developed other utility-maximizing
models such as the Nested Logit model by Williams [35]. Detailed justifications of this model
are available in [2, 6, 25]. We focus our literature review on the research that primarily
uses variants of the nested logit model to incorporate the customer choice behavior in the
assortment optimization problem. The available literature is rich and shows how active this
area of research is.

Focusing on a popular form of this nested-logit model with only two levels – that is simply
referred to as nested logit (NL) in the literature of AOP – and dealing with revenue max-
imization instead of pricing, Li and Rusmevichientong [21] developed a greedy algorithm
to solve the AOP in polynomial time when the nest dissimilarity parameter is less than
or equal to one for all nests and customers have a no-purchase option. In another class of
AOP under the nested logit model, Gallego and Topaloglu [15] showed that if one imposes
capacity and cardinality constraints on each nest separately, it is possible to get an optimal
assortment by reducing the AOP to a knapsack problem. When having nest-specific space or
capacity constraints, however, they show how to come up with a combination of products as
a candidate assortment for each nest to have a worst-case approximation guarantee of 2.

When capacity constraints are not defined on each nest separately but over all nests, Feldman
and Topaloglu [13] show that if each product consumes one unit of capacity, the problem
can be solved to optimality using an algorithm that sequentially solves a linear and dynamic
program. This approach will not return an optimal solution if we have a general capacity
constraint across all nests, and for that case, they propose an algorithm that outputs a
4-approximate solution. In a different context, Davis et al. [10] studied a pricing problem
where customer choices follow a nested logit model, and there is a relationship between product
quality and price, which they call quality consistency constraint. For this problem, they
developed a polynomial-time algorithm with proven optimality. In all the above articles where
the focus is on the assortment planning problem under a nested logit model, the dissimilarity
parameter is considered to be less than or equal to one.

Focusing only on a nest-specific capacity constraint, Désir et al. [11] developed a fully
polynomial-time algorithm to provide an approximation scheme for the assortment optimiza-
tion problem under various choice models, including nested logit. Segev [29] developed an
approximation scheme for the capacitated AOP under the nested logit model in its most
general form. The author proved that the approximation runs in a fully polynomial time,
and for any ε > 0, the obtained solution can be approximated within a factor of 1− ε of the
optimal solution. Mai and Lodi [24] provided a general heuristic approach that can handle
various AOPs under MNL, MMNL, and NL. They developed an iterative approach based on
approximating the non-linear objective function by a linear one, combined with a greedy local
search, that manages to find very good solutions for constrained problems.

In their thorough research, Davis et al. [9] studied the same version of the AOP with the
nested logit model, which is the focus of our manuscript. They divide their work based on
whether nest dissimilarity parameters are below one or not and whether the no-purchase
option exists for each nest or not. They proved that if in all nests, products compete with each
other, and if there is no option of leaving the nest without a purchase, the optimal assortment
has sorted-by-revenue products for each nest. They prove that if the dissimilarity parameter

5

is less than 1 for all nests and customers can leave the nest without purchasing anything,
their heuristic has a worst-case performance guarantee of 2 and if the dissimilarity parameter
is free and customers cannot leave the nest without a purchase, offering sorted-by-revenue
assortments in each nest we can get a worst-case performance guarantee of max{ρ, 2κ}. Here
κ bounds the ratio between the largest and the smallest preference parameters in a nest, i.e.,
κ = maxi∈M{maxk∈N vik

mink∈N vik
}, and ρ = maxi∈M{maxk∈N rik

mink∈N rik
}. Finally, for the most general case with

free dissimilarity parameters and customers having the no-purchase option, the approach of
Davis et al. [9] provides a performance guarantee of 2κ. They also give a pseudo-polynomial-
time algorithm and an approximation algorithm with a performance guarantee of δ2γmax+1 for
any given δ > 1. If δ is close to one, the performance of the obtained assortment is better, but
with a higher computational time. Regarding the complexity of the problem, the authors also
show that if customers have the no-purchase option or some nest dissimilarity parameters are
greater than one, the AOPNL is NP-hard. This complexity motivated our research.

A generic nested logit model with more than two levels is studied in the research of Li et
al. [22], for a pricing optimization problem. More recently, Chen and Jiang [7] incorporated
product pricing in the context of assortment optimization also under the d-level nested logit
model. They studied cardinality and capacity constraints and provided an ε−approximate
solution that can be found in fully polynomial-time under capacity constraint. They also
developed an algorithm for the case of cardinality and nest-specific constraints that can obtain
the optimal solution in strongly polynomial time.

While the above articles consider static settings when demand parameters are known a
priori, Chen et al. [8] studied a dynamic assortment planning problem in which customer
choice behavior follows a nested logit model and the decision-maker learns the demand as
the assortment changes dynamically. As is common in the literature of dynamic assortment
planning, the authors focused on a regret minimization problem and proposed efficient policies.

In Table 1, we classify the literature on the AOP under the nested logit model based on the
value of the dissimilarity parameter of each nest and whether the proposed method provides
an optimal solution or an approximation.

Table 1: An overview of research on assortment planning under nested logit

γ ∈ [0, 1] γ free

Solution Unrestricted Cardinality cons. Capacity cons. Unrestricted

Exact [9, 21] [13, 15] our paper

Approx. [11, 13, 15, 29] [9]

2. Fractional programming approach

Recall from the previous section, the assortment optimization problem when customers’ choice
model follows a nested logit can be written as:

6

Z = max
(S1,...,Sm)
Si∈Ci,i∈M

Π(S1, . . . , Sm) where

Π(S1, . . . , Sm) =
∑
i∈M

Qi(S1, . . . , Sm)
n∑
k=1

Pik(Si)rik

=
∑
i∈M

(vi0 + ∑
k∈Si

vik)γi

V0 + ∑
l∈M

(vl0 + ∑
k∈Sl

vlk)γl
×

∑
k∈Si

rikvik

vi0 + ∑
k∈Si

vik

=

∑
i∈M

(vi0 + ∑
k∈Si

vik)γi−1 ∑
k∈Si

rikvik

V0 + ∑
i∈M

(vi0 + ∑
k∈Si

vik)γi
. (3)

2.1. Problem reformulation
Let xSi be a binary variable which is set to one if and only if we offer assortment Si ∈ Ci. Then
AOPNL can be rewritten as the following non-linear binary program with an exponential
number of binary variables:

max

∑
i∈M

∑
Si∈Ci

(
(vi0+

∑
k∈Si

vik)γi−1
∑
k∈Si

rikvik

)
xSi

V0+
∑
i∈M

∑
Si∈Ci

(
(vi0+

∑
k∈Si

vik)γi

)
xSi

= N(x)
D(x) (4)

s.t: ∑
Si∈Ci

xSi = 1 i ∈M

xSi ∈ {0, 1}, Si ∈ Ci, i ∈M.

Observe that if Si ∈ Ci, for all i ∈ M are explicitly generated, then the expressions before
variables xSi in the nominator N(x) and denominator D(x) of (4) are constant coefficients, and
so the problem boils down to a binary fractional program in variables xSi . Integer fractional
programming is a powerful modeling tool which has been successfully applied to a wide
range of applications including landscape ecology and forest fragmentation [4], biodiversity
conservation [5], inventory routing [1], portfolio optimization and wind-farm optmization [30],
or network optimization [18].

Following Dinkelbach [12], Megiddo [27] proposed a method to solve fractional programs
with 0-1 variables x ∈ X, where X is a set of linear constraints. The idea is to iteratively
solve a so-called parameterized problem Fpar(λ) = N(x)− λD(x) until N(x)− λD(x) = 0 (in
practice, |N(x)− λD(x)| 6 ε where ε is a very small positive real number). The final value of
λ that sets N(x)− λD(x) to be zero is the optimal ratio (λ∗), and the vector of variables x∗
corresponding to λ∗ is the vector optimizing the ratio, i.e.,

max
x∈X

{
N(x)
D(x)

}
= N(x∗)
D(x∗) = λ∗.

7

For the AOPNL, the corresponding iterative parameterized problem Fpar(λ) is:

Fpar(λ) = max
(S1,...,Sm)
Si∈Ci,i∈M

∑
i∈M

(vi0 +
∑
k∈Si

vik)γi−1 ∑
k∈Si

rikvik

− λ
V0 +

∑
i∈M

(vi0 +
∑
k∈Si

vik)γi
 (5)

The following theorem follows from the findings in Megiddo [27].

Theorem 1. Let Z∗ be the optimal value of problem (3). If one can find a λ∗ for which
Fpar(λ∗) = 0, then the collection of assortments (S1(λ∗), ..., Sm(λ∗)) defined as the solution of
problem (5) solved with λ = λ∗, is the optimal solution to problem (4) (equivalent to problem
(3)) and Z∗ = λ∗.

We now show that the above parameterized problem is decomposable by nest.

2.2. Decomposability of the parameterized subproblem

Proposition 1. The parameterized problem (5) is separable by nest and can be written as:

Fpar(λ) = −λV0 + ∑
i∈M

max
{

(vi0 + ∑
k∈N

vikxik)γi−1(∑
k∈N

vik(rik − λ)xik − λvi0)
}

(6)

s.t: xik ∈ {0, 1}, k ∈ N, i ∈M.

where xik = 1 if and only if product k ∈ N is offered in nest i ∈M .

Proof. Since in problem (5) we have simple assignment constraints of choosing one assortment
per nest, we observe that the objective of the parameterized program can be rewritten as:

−λV0 +
∑
i∈M

max
Si∈Ci

(vi0 +
∑
k∈Si

vik)γi−1

∑
k∈Si

vik(rik − λ)− λvi0

 .
Hence, the program is decomposable by nest, and the maximization subproblem for nest i is
given as:

max
Si∈Ci

(vi0 +
∑
k∈Si

vik)γi−1

∑
k∈Si

vik(rik − λ)− λvi0

 . (7)

We can see the above problem as a binary non-linear program with decision variables xik
indicating whether product k ∈ N is offered in nest i ∈M , and so the whole problem can be
reformulated like in (6).

This result enables us to speed up the resolution of the subproblem by separately solving a
smaller problem for each nest i ∈M . To find the optimal value of λ, we use the framework
proposed by Megiddo [27] that is illustrated in Algorithm 1. The algorithm is a dichotomic

8

search on λ and it is based on the ability to solve the parametric problem in an exact way. It
is also based on the fact that function Fpar(λ) in (6) is piece-wise linear in λ. We refer the
reader to [12, 27] for further details on the algorithm and its proven convergence to optimality.

2.3. Algorithmic details
To initialize our parametric search, we first need to determine a lower bound λl and an upper
bound λu for λ∗. The value of λl corresponds to a primal bound of the AOPNL that can be
obtained by applying a heuristic approach. We choose to set the initial value of λl by running
the heuristic proposed by [9] in which λl corresponds to the maximum expected revenue
obtained by offering sorted-by-revenue assortments, which is known to be the optimal value
of the following linear program (see [9]):

λl = min λ (8)
s.t: V0λ >

∑
i∈M

yi (9)

yi > V (Nik)γi(R(Nik)− λ), i ∈M,k ∈ N. (10)

where Nik = {1, . . . , k}, for k ∈ N , is the subset of k highest-revenue products for nest i ∈M
(sorted-by-revenue assortments), V (Nik) = vi0 + ∑

k∈Nik
vik and R(Nik) = ∑

k∈Nik rikvik/V (Nik).

To determine an initial upper bound λu on λ, observe that in the expression of Π(S1, . . . , Sm)
at the second line of (3), probabilities Qi and Pik sum over at most one (less than one if
V0 and vi0 are positive). Therefore, the expected revenue (Z) is bounded above by a linear
combination of revenues rik with weights summing over one, which is at most the highest
revenue. Therefore, we set

λu = max{rik : k ∈ N, i ∈M}.

We notice that in the work of Davis et al. [9], the authors propose a much tighter upper
bound for the AOPNL, which is based on solving a continuous relaxation of the problem
reformulation. The latter boils down to a convex semi-infinite program which is solved
using a cutting plane approach, based on outer approximation. Calculation of this bound
is computationally too expensive, which is why we stick to a simple bound that can be
precomputed in the initialization phase.

Moreover, in the following proposition, we provide an additional stopping criterion that speeds
up the dichotomic search (see, e.g., [18]).

Proposition 2. At any iteration of the dichotomic search, let Sl(λl) and Su(λu) be the
optimal assortments found for Fpar(λl) and Fpar(λu), respectively. If Sl(λl) = Su(λu), then
S∗ = Sl(λl) = Su(λu) is the optimal assortment for the original problem.

We prove this proposition in Appendix A.1. In the pretests, the above criterion was shown
to be an effective measure to reduce the processing time of the developed parametric search.
We summarize the steps of the developed parametric search in Algorithm 1. We start by

9

initializing the values for λu and λl as described above. The function “Solve Fpar(λ)”, called
in Step 8 returns the optimal assortment S∗ over all subproblems with respect to parametric
objective function value given in (5), and the optimal solution value F ∗. Upon calling this
function, |M | subproblems are solved independently, according to Proposition 1. As we
prove in Proposition 3, the single-nest subproblem is NP-hard. For that reason, we provide
a detailed analysis of the subproblem in Section 3 and develop an exact branch-and-bound
method to solve it. If the time limit is reached, our framework returns the best incumbent
solution Sbest as well as a final upper bound λu, which can be used to measure the quality of
Sbest. Our empirical results (see Section 4.2) indicate that, the final upper bound λu exhibits
very small gaps with respect to the best-found solution (for those instances for which the
optimal solution could not be found).

Algorithm 1: Parametric search for solving the AOPNL
Data: Instance of the AOPNL problem, time limit TL
Result: Optimal or best found (if TL is reached) solution Sbest. The upper bound λu.

1 Initialize (λl, λu);
2 Sl ← Optimal assortment from solving (8)–(10);
3 Su ← ∅;
4 Sbest = Sl;
5 F ∗ = inf;
6 while |F ∗| > 0 and Sl 6= Su and TL is not reached do
7 λ← (λl + λu)/2;
8 (F ∗, S∗)← Solve Fpar(λ);
9 if Π(S∗) > Π(Sbest) then

10 Sbest ← S∗;

11 if Fpar(λ) < 0 then
12 λu ← λ, Su ← S∗;
13 else
14 λl ← λ, Sl ← S∗;

15 return (Sbest, λu);

3. Subproblem analysis and the branch-and-bound

In the previous sections, we showed how implementing a fractional programming framework
enables us to deal with one nest at a time. In other words, instead of considering the original
assortment optimization problem (3) with all nests, we can focus on providing the optimal
assortment for each nest with a different objective function that is derived from the parametric
function (6). We dedicate this section to study and analyze the properties of the resulting
subproblem. We observe that removing the constant term λV0 from formulation (6) does not
change the optimal solution, and throughout this section, we drop index i and refer to the
following problem as the subproblem of the parametric search algorithm, that we denote by
(NLAPP) for the Nested-Logit Assortment Parameterized Problem:

(NLAPP) max
x∈{0,1}|N|

(v0 +
∑
k∈N

vkxk)γ−1(
∑
k∈N

vk(rk − λ)xk − λv0)
 . (11)

where xk is a binary decision variable on whether to offer product k in the given nest or not.
We first show NP-hardness of that problem, then we describe the revenue thresholds for fixing
variables and the branch-and-bound algorithm.

10

3.1. Subproblem complexity
In this subsection, we prove that the subproblem is NP-hard by reduction from the Subset-Sum
problem.

Proposition 3. The subproblem (NLAPP) is NP-hard for any γ > 1.

Proof. We reduce the Subset-Sum decision problem, to our nested-logit parameterized sub-
problem (NLAPP) with arbitrary values of γ > 1 and λ ≥ 1. The Subset-sum problem
(SSP) which is a known NP-complete problem (see [16], Chapter 3) is described as follows.
Given n integer numbers a1, . . . , an and an integer number B <

∑n
k=1 ak, is there a subset

S ⊂ {1, . . . , n} such that ∑k∈S ak = B?

We reduce a general instance of (SSP) to a specific (NLAPP) as follows. Set v0 at some
arbitrary value less than B. Set N = {1, . . . , n, n+1}, vk = ak and rk = λ−1 for k = 1, . . . , n.
Moreover, we set:

vn+1 = B − v0, and

rn+1 = λ+
B
(
γ+1
γ−1

)
+ λv0

vn+1
.

Define constant

C1 = vn+1(rn+1 − λ)− λv0.

After substituting vn+1 and rn+1 by their expression above in C1, we obtain

C1 = B

(
γ + 1
γ − 1

)
.

Based on Proposition 7, we know that product n+1 is guaranteed to be offered in any optimal
assortment since rn+1 > λ and from the formulation above, C1 > 0. Therefore, x∗n+1 = 1, and
after denoting V1 = v0 + vn+1 = B, the subproblem reduces to the following problem (Q):

(Q) max
x∈{0,1}n

f(x) =
(
V1 +

n∑
k=1

vkxk

)γ−1

×
(
C1 +

n∑
k=1

vk(rk − λ)xk
)
. (12)

We show that we can find a solution of (Q) with value at least (2B)γ
γ−1 if and only if the answer

to the subset-sum decision problem is yes, i.e., there exists a subset S ⊂ {1, . . . , n} such that∑
k∈S ak = B. Observe that with the above setting, our (NLAPP) instance can be rewritten

as:

max
x∈{0,1}n

f(x) =
(
V1 +

n∑
k=1

akxk

)γ−1

×
(
C1 −

n∑
k=1

akxk

)

= (V1 + g(x))γ−1 × (C1 − g(x)) with g(x) =
n∑
k=1

akxk.

11

Now define function h(X) = (V1 +X)γ−1 × (C1 −X) over [0, C1], such that h(g(x)) = f(x).
Observe that without loss of generality we can focus on the interval [0, C1], since for X > C1
we have h(X) < 0. Function h is differentiable and we have

h′(X) = (C1 −X)(γ − 1)(V1 +X)γ−2 − (V1 +X)γ−1

= (V1 +X)γ−1
(

(C1 −X)(γ − 1)
V1 +X

− 1
)

= 0 if and only if X = C1
γ − 1
γ
− V1

γ
= B.

Since h′(X) ≥ 0 if and only if X ≤ B, function h is increasing then decreasing over [0, C1]
(observe h(C1) = 0) and reaches it maximum for X = B, with

h(B) = (2B)γ−1 ×
(
B

(
γ + 1
γ − 1

)
−B

)
= 2γ−1Bγ

(
2

γ − 1

)
= (2B)γ
γ − 1 > 0;

We conclude that x ∈ {0, 1}n reaches value (2B)γ
γ−1 for the objective function of (Q) if and only

if g(x) = ∑n
k=1 akxk = B which is a solution for the Subset-Sum decision problem. Since

the latter is NP-complete and the reduction described above is a polynomial reduction, this
completes the NP-completeness proof for the decision version of (NLAPP).

We now describe the Branch-and-Bound (B&B) algorithm. We classify our analysis based
on the value of the dissimilarity parameter of a nest and consequently, the properties of the
subproblem for a nest i change according to the value of γi.

3.2. A tailored Branch-and-Bound algorithm
We develop a tailored B&B algorithm to determine the optimal assortment for each nest. We
have a set of variables that have been fixed to 1 throughout the B&B tree until node t. We
denote this set by Kt−1

1 . We also have a set of variables that have been fixed to 0. We use
Kt−1

0 to denote this set. Finally, we have a set of undecided variables denoted by K̄t−1. We
define

Ct−1
1 =

∑
j∈Kt−1

1

vj(rj − λ)− λv0,

as the sum of the weighted revenue of products offered thus far in a particular nest. We also
define

V t−1
1 =

∑
j∈Kt−1

1

vj + v0,

as the sum of preferences for the respective products. Using these notations, at each node t
in the B&B tree, the objective function to be maximized is:

12

max
x∈{0,1}|K̄t−1|

f t(x) =
V t−1

1 +
∑

k∈K̄t−1

vkxk

γ−1

×

Ct−1
1 +

∑
k∈K̄t−1

vk(rk − λ)xk

 . (13)

We naturally branch on binary variable xk ∈ K̄t−1 fixing xk = 1 and xk = 0 in the two child
nodes of a node t of the tree. In the branching ordering, we choose to branch on a variable
with highest revenue, as fixing such variables to one has a strong potential impact on the
value of objective function. We enumerate the branching tree in a depth-first-search fashion,
following branches that fix variables to one. The main issue is how to estimate an upper
bound on the objective value of a node, say t, that is both i) tight enough to enable efficient
pruning, and ii) tractable enough to be quickly computed, despite the non-linearity of the
objective. Observe that the structure of the subproblem varies with the value of the nest
dissimilarity parameter γ, considering two cases: γ 6 1 and γ > 1.

It turns out that the subproblem has interesting characteristics that allow to perform a
preprocessing procedure and eliminate some of the variables without branching, which in
turn speeds up the computation time. We update sets K̄t−1, Kt−1

0 and Kt−1
1 and constants

Ct−1
1 and V t−1

1 by removing or adding variables that were fixed either by branching or the
preprocessing. In the next sections, we provide detailed descriptions of this preprocessing
procedure and upper bound calculations, for each case γ 6 1 and γ > 1.

3.3. Competitive products (γ 6 1)
We identify three possible scenarios at the root node. For each scenario, we derive some
measures to perform a preprocessing and potentially fix a relatively large number of variables
before entering the B&B tree. We first observe that if γ 6 1, we can reformulate the objective
function (11) at the root node 0 as:

max
x∈{0,1}|N|

f 0(x) =

∑
k∈N

vk(rk − λ)xk − λv0

(v0 + ∑
k∈N

vkxk)1−γ

 , (14)

and we proceed to the following proposition on preprocessing at the root node. We provide
pseudo-codes of all preprocessing procedures in Appendix B.1 through Appendix B.4.

Proposition 4. At the root node (t = 0), set H = ∑
k∈N :rk>λ vk(rk − λ) − λv0 , and let x∗

denote an optimal solution of the subproblem. We have three possible scenarios based on the
value of H:

i) if H = 0 (Case 0), the problem is solved by preprocessing without branching; defining
K0

1 = {k ∈ N : rk > λ} and K0
0 = {k ∈ N : rk < λ}, the optimal solution of the subproblem

is x∗k = 1 for k ∈ K0
1 and x∗k = 0 for k ∈ K0

0 .

ii) if H > 0 (Case 1), let K0
0 = {k ∈ N : rk < λ}, then x∗k = 0 for k ∈ K0

0 . Moreover, define
K ′ = N \K0

0 and rmax = maxj∈N{rj} and let K0
1 = {k ∈ N \K0

0 : rk > λ+ (1− γ)(rmax −
λ− (v0rmax)/(v0 +∑

j∈K′ vj))}, then x∗k = 1 for k ∈ K0
1 .

13

iii) if H < 0, (Case 2) let K0
1 = {k ∈ N : rk > λ}, then x∗k = 1 for k ∈ K0

1 . Moreover, we
define K ′ = N \ K0

1 , rmin = minj∈K′{rj}, and ∆ = C0
1 − V 0

1 (rmin − λ), then we have two
cases:

• If ∆ > 0, x∗k = 0 for k ∈ K0
0 =

{
k ∈ K ′ : rk 6 λ+ (1− γ)

(
C0

1+(rmin−λ)
∑

j∈K′ vj

V 0
1 +
∑

j∈K′ vj

)}
.

• If ∆ < 0, then x∗k = 0 for k ∈ K0
0 = {k ∈ K ′ : rk 6 λ+ (1− γ) (C0

1/V
0

1)} .

We provide the proof of the above proposition in Appendix A.2. Remark that its findings are
crucial for the preprocessing of nodes other than the root node. It is trivial that if H = 0 at
the root node, we prune the root node and the optimal assortment is found for the nest. Note
that this condition H = 0 was very rarely satisfied in the numerical experiments. Remark
that if H > 0, after performing the pre-processing of Proposition 4 we have rk > λ at any
other node of the B&B tree. On the other hand, if H < 0 we have rk < λ for the remaining
undecided variables at any node t.

These findings are the result of the structure of the tree and follow from the proof of Proposition
4 and the fact that in Case 1, where H > 0, there exists a combination of products that
realizes a positive value for the objective function (11). This means that after fixing all
the variables with rk < λ to zero at the root node, it is not beneficial to add any of these
variables to the optimal assortment of a nest at any other node since doing so would provide
an objective value that is less than the one at the root node which is in contradiction with
the maximization of the objective function. We can follow a similar logic for Case 2. We
provide the details of preprocessing for the remaining of the tree in the following proposition
(with proof in Appendix A.3).

Proposition 5. At any node t 6= 0, depending on the value of H calculated at the root node,
we can have one of the two following scenarios:

i) if H > 0 (Case 1), set rmax = maxj∈K̄t−1{rj} and define Kt
1 =

{
k ∈ K̄t−1 : rk >

λ+ (1− γ)
(
Ct−1

1 +(rmax−λ)
∑

j∈K̄t−1 vj

V t−1
1 +

∑
j∈K̄t−1 vj

)}
. Then x∗k = 1 for k ∈ Kt

1.

ii) if H < 0 (Case 2), we define rmin = minj∈K̄t−1{rj} and ∆ = Ct−1
1 − V t−1

1 (rmin − λ), then
we have two cases:

• If ∆ > 0, x∗k = 0 for k ∈ Kt
0 =

{
k ∈ K̄t−1 : rk 6 λ+ (1− γ)

(
Ct−1

1 +(rmin−λ)
∑

j∈K̄t−1 vj

V t−1
1 +

∑
j∈K̄t−1 vj

)}
.

• If ∆ < 0, then x∗k = 0 for k ∈ Kt
0 = {k ∈ K̄t−1 : rk 6 λ+ (1− γ)

(
Ct−1

1 /V t−1
1

)
}.

After fixing variables using the above revenue thresholds, we restrict the set of undecided
variables to K̄t and at each node t after preprocessing, the subproblem will reduce to:

max
x∈{0,1}|K̄t|

f t(x) =
V t

1 +
∑
k∈K̄t

vkxk

γ−1

×

Ct
1 +

∑
k∈K̄t

vk(rk − λ)xk

 . (15)

14

We now proceed to the development of an efficient upper bound for function (15) at each
node t. These bounds are tight enough to enable efficient pruning, and tractable enough to
be quickly computed despite the high non-linearity of the objective (15). For the case where
Ct

1 > 0, we derive a bound in the following proposition (proof in Appendix A.4).

Proposition 6. [Upper bound of f t(x) in (15)] If Ct
1 > 0, then

f t(x) 6 (V t
1)γ−1 Ct

1 e
z∗1 (t), (16)

where

z∗1(t) =
∑
k∈K̄

vk max

0, 2(γ − 1)
2V t

1 + ∑
k∈K̄t

vk
+ (rk − λ)

Ct
1

 .
Preliminary numerical experiments enabled to show that using this bound for pruning branches
improves the computation time of the Branch-and-Bound algorithm (by roughly 30%).

3.4. Possibly synergistic products (γ > 1)
In this section, we analyze the properties of subproblem (11) when the dissimilarity parameter
of a nest is higher than one. These properties enable again to fix variables without further
calculation. We summarize these properties in the preprocessing phase. The structure of the
B&B tree depending heavily on the characteristics of the root node, again we first introduce
the preprocessing at the root node in the following proposition (proof in Appendix A.5).

Proposition 7. Define H = ∑
k∈K:rk>λ vk(rk − λ)− λv0. Depending on the value of H, we

can have one of the following scenarios:

i) if H = 0 (Case 0), then defining K0
1 = {k ∈ N : rk > λ} and K0

0 = {k ∈ N \K0
1 : rk < λ},

we have x∗k = 1 for k ∈ K0
1 and x∗k = 0 for k ∈ K0

0 , and the subproblem is solved without
branching.

ii) if H > 0 (Case 1), we define K0
1 = {k ∈ N : rk > λ}. Then x∗k = 1 for k ∈ K0

1 . In
addition, set K0

0 = {k ∈ N \K0
1 : rk < λ− (γ − 1)(C0

1/V
0

1)}. Then x∗k = 0 for k ∈ K0
0 .

iii) if H < 0 (Case 2), define K0
0 = {k ∈ N : rk < λ}. Then x∗k = 0 for k ∈ K0

0 .

As for the remaining of the tree, we benefit from the result of the following proposition (See
Appendix A.6 for the proof).

Proposition 8. If H > 0, at any node t 6= 0, x∗k = 0 for k ∈ Kt
0, where Kt

0 = {k ∈ K̄t−1 :
rk < λ− (γ − 1)(Ct

1/V
t

1)}.

We note then the objective function after preprocessing at node t:

15

max
x∈{0,1}|K̄t|

f t(x) =
V t

1 +
∑
k∈K̄t

vkxk

γ−1

×

Ct
1 +

∑
k∈K̄t

vk(rk − λ)xk

 . (17)

We now design an upper bound for pruning nodes in the case where γ > 1 and Ct
1 > 0.

Proposition 9. [Upper bound of f t(x) in (17)] If Ct
1 > 0 then

f t(x) 6 (V t
1)γ−1 Ct

1 e
z∗2 (t),

where

z∗2(t) =
∑
k∈K̄

vk max
(

0, γ − 1
V t

1
+ rk − λ

Ct
1

)
.

See Appendix A.7 for the proof. The above upper bound can be computed in linear time
O(|K̄t|), if revenues rk are already sorted in a pre-processing phase.

4. Numerical experiments

In this section, we analyze the results of an extensive set of computational experiments
designed to evaluate the performance of our tailored branch-and-bound algorithm embedded
in the fractional programming framework (denoted by FP+BB) compared to the state-of-the-art
heuristic proposed by Davis et al. [9], denoted by Heuristic. The solution obtained by
this heuristic is the optimal solution of the Linear Program (8)-(10) with revenue-ordered
candidate assortments in the LP. All the experiments have been carried out on a virtual
machine with an Intel(R) Core i7-3770 CPU, a 3.4 GHz processor with 8GB of RAM using a
64-bit Windows operating system. The code was written and run using Julia v0.6.4.

4.1. Experimental setup
We divide our computational experiments into three main groups based on the number of
products available. For the first group, we solve instances of the AOPNL with m = 5 nests
and n = 10 products per nest. We compute the maximum expected revenue by offering
sorted-by-revenue assortments in each nest (Heuristic method of Davis et al. [9]) and using
two variants of our fractional programming approach:

• FP+BB: in which the parameterized subproblem is solved by our tailored branch-and-
bound algorithm described in Section 3, and

• FP+F.Enum: in which a full enumeration of all possible assortments is used to solve the
subproblems. Clearly, this approach was possible only very small problem instances,
which is why we restrict this experiment to n = 10.

16

In our pretests, as possible alternatives for solving the non-linear subproblems, we also tested
Couenne and Bonmin – two open source solvers for Mixed Integer Nonlinear Programming
(MINLP) problems; however, due to numerical issues and the structure of the objective
function, these solvers could not find the optimal solution for many instances, so we excluded
the use of these solvers from our experiments.

As for the second group, we solve instances with m = 5 nests and n ∈ {25, 50, 100, 250}
products per nest. In this case, we had to exclude full enumeration of all assortments for the
subproblem, which was intractable. Finally, for the last group with super large instances, we
solve instances with m = 5 and n ∈ {500, 1000, 5000}. Remark that although we have the
number n of potential products per nest, we do not impose any assumption on the equality of
the number of products finally offered per nest, in the optimal assortment.

To generate the value of preferences vik and revenues rik, we follow a similar procedure as
in Gallego and Topaloglu [15]. Recall that index i identifies a nest and index k identifies
a product. We randomly generate values Uik using a uniform distribution in the interval
[0, 1]. We then randomly generate values Xik and Yik with a uniform distribution in [50, 300]
and use these values to generate revenues and preferences as follow: rik = 10 × U2

ik ×Xik,
vik = 10 × (1 − Uik) × Yik. Using Uik, products with larger revenues are more likely to
have smaller preference weights, which means that more expensive products are usually less
attractive. However, Xik and Yik add some noise so that not always products that are more
expensive have low attractiveness. The square power in U2

ik skews the distribution of revenues
in order to have a large number of products with small revenues and a small number of
products with large revenues ([15, 13]).

To generate the value of dissimilarity parameters γi, ∀i ∈M , we use a uniform distribution in
[γL, γU] with the same intervals [0.5, 1.5], [1, 2], [1.5, 2.5] and [2, 3] as in the research of
Davis et al. [9]. We set V0 = 30 and for a thorough analysis, for each value of n, we consider
three cases where vi0 = 0,∀i ∈ M , vi0 = 30,∀i ∈ M and finally, each nest i ∈ M has either
vi0 = 0 or vi0 = 30 with equal probability 1/2.

For our FP+BB method, we record the overall number of iterations. We also set a time limit of
3,600 seconds for each instance. If FP+BB does not converge to optimality within the time
limit, we report the value of the best found assortment (Π(Sbest) from Algorithm 1). In the
latter case, we also calculate the last value of λu obtained during the parametric search, as a
valid upper bound on the expected revenue of an optimal assortment.

4.2. Computational results
We provide the results of our computational experiments in Tables 2–7. Recall that we
solve problems with a number of products ranging from n = 10 to n = 5000. We report
the results of the experiments corresponding to every value of n in a separate table. In all
tables, the first column determines the combination of parameters vi0 and γi. We also consider
various intervals for the generation of dissimilarity parameter which we show by [γL, γU]. To
better observe the impact of vi0 on the performance of FP+BB, we consider separate groups of
instances. In all tables we solve instances of the AOPNL by offering the best sorted-by-revenue
assortments in each nest by solving the linear problem expressed through formulation (8)–(10)
and using FP+BB. We report the CPU time in seconds of each method (Time) along with the

17

best expected revenue (Obj.) found by each method. For each combination of parameters
(each row), that we call ”scenario” in what follows, we solve 20 instances. For each scenario,
the average percentage of improvement in the expected revenue using FP+BB is determined as:

Impr.(%) = 1
20

2∑
p=1

0100×
(

BESTp − HEURp

HEURp

)
,

where p = 1, . . . , 20 denotes each instance of the considered scenario, HEURp is the expected
revenue obtained by offering sorted-by-revenue assortments for instance p and finally, BESTp

is the optimal expected revenue found by FP+BB (or Π(Sbest), if it reaches the time limit).
This gap can also be interpreted as the average improvement in revenue obtained by FP+BB.
We use Impr.(%) to demonstrate this value in the tables.

For the FP+BB method, we also report for each scenario: the number of instances (out of 20)
for which the optimal solution was found (# Opt); the overall number of instances (out of 20)
for which FP+BB has improved the expected revenue found by Heuristic, and the average
number of iterations of the FP+BB approach. Finally, for the FP+F.Enum. method we report
the average CPU time in seconds (Time).

In Table 2, we report the results for instances with n = 10. As these instances are small, we
are able to determine the optimal solution for the subproblem (11) and consequently, for the
original AOPNL (3), by generating all 2n possible assortments for each nest. As a result, in
Table 2, we report the CPU time of the FP+F.Enum. method used to generate all possible
assortments when solving the subproblem, instead of using the specialized branch-and-bound.

Results in this table show that our FP+BB method performs well in terms of finding the optimal
solution with a processing time almost equal to the heuristic of [9]. We can also observe
that the heuristic exhibits significant gaps with respect to the optimal solution. As expected,
regardless of the value of vi0, the overall trend is that the performance of FP+BB improves as
the values in [γL, γU] increase. We can also observe that in general and regardless of the value
of vi0, if all γi > 1, the performance of the heuristic method degrades compared to the case
where some γi 6 1 and the FP+BB provides a much higher revenue. For example, if we shift
from [γL, γU] = [0.5, 1.5] to [γL, γU] = [1, 2], using the fractional programming approach
we will get an average revenue improvement of 23% if vi0 = 0,∀i ∈M . We also expected that
using full enumeration is computationally much costlier than following our proposed B&B –
the FP+F.Enum. is an order of magnitude slower than FP+BB for the smallest instances with
n = 10, but already for n = 25 the full enumeration approach was intractable.

In Tables 3–6, we give our main results obtained by solving instances with n ∈ {25, 50, 100, 250}.
The main observation is that as long as vi0 = 0, ∀i ∈M , we are able to obtain the optimal
solution using FP+BB in less than 0.3 second and with a relatively significant improvement in
the expected revenue. Same as before, as the value of [γL, γU] increases, the expected revenue
improvement realized by using FP+BB increases and the performance of the sorted-by-revenue
assortments degrades. This is the general pattern in all the tables regardless of the value of
vi0 and the number of products. This shows the performance of our exact algorithm FP+BB

18

for solving diverse cases of the AOPNL and it can be explained by the possible synergy
between products which is also in line with the findings of Davis et al. [9]. As the value of γ
increases, the degree to which products might act as synergies increases and as a result, the
sorted-by-revenue assortment structure might not be optimal. For a detailed explanation, see
Sections 5 and 7 in the work of Davis et al. [9].

For example, if we shift the interval [γL, γU] from [1.5, 2.5] to [2, 3], based on the results in
the eighth column of Table 3, we get an average improvement in the expected revenue by
over 6% if vi0 = 0,∀i ∈ M or if vi0 > 0,∀i ∈ M . We observe a similar pattern of revenue
improvement for higher ranges of γ as shown in Tables 4–6; however, this improvement
becomes less significant as the number of products increases. Another observation is that
when vi0 > 0 even for some nests, the parametric search can sometimes reach the time limit.
However, the resulting FP+BB solution still provides a sizable improvement in the expected
revenue as seen in the fourth and eighth columns of Tables 3–6. We also see that even in the
case of having some vi0 > 0, the algorithm can solve problems in less than 4 seconds.

As can be expected, with an increase in the number of products, the time required for the
parametric search to converge to the optimal solution also increases. Such an increase is more
drastic if all or even some of the vi0 have non-zero values and if γi 6 1 for some nests. As a
result, in Table 6, we observe that unless γi > 1 or vi0 = 0, ∀i ∈ M , the search process of
FP+BB reaches the time limit; however, even in that case, using FP+BB provides an improvement
(albeit a rather modest one) in the expected revenue over the Heuristic solution. Recall that
for each scenario (combination of parameters), we solve 20 instances, and for the instances
where FP+BB does not converge to the optimal solution before the time limit is reached, we
record the valid upper bound λu. In that case, we report in Table 6 the duality gap, denoted
by Gap(%), which is calculated as:

Gap(%) = 1
|P|

∑
p∈P

100×
(
λpu − BESTp

λpu

)
,

where P ⊆ {1, . . . , 20} is the subset of instances of the scenario where FP+BB search was
stopped at the time limit, and λpu is the final upper bound on λ when the time limit is reached.

While some of the important improvements depend on the interval [γL, γU], we observe that in
general, as the number n of products per nest increases, the overall improvement achieved by
FP+BB decreases. Finally, after an extensive experimentation, we found out that if all vi0 = 0,
the processing time for reaching optimality does not significantly grow with a large increase
in the number of products. For that reason, we devised several instances with super large
sizes and report our main findings in Table 7. Although we obtain a modest improvement in
the revenue for the smallest range of γ (which is the closest scenario from the polynomial case
where the heuristic is optimal) as we can see in Table 7, even with n = 500 and n = 1,000,
FP+BB is able to find the optimal assortment in less than 2 seconds. As for instances with
n = 5,000 products, we observe that the CPU time increases before the search converges to
the best solution, however, the optimal solution is still found in around 70 seconds on average.

19

We conclude this section by summarizing the results of the numerical analysis in two plots
shown in Figures 1 and 2 for small and large instances and super large instances. In both plots,
the horizontal axis shows the interval of the dissimilarity parameter of nests. We observe
that with an increase in the value of the dissimilarity parameter, the overall improvement of
FP+BB over the value found by Heuristic consistently increases, regardless of the value of
vi0 or the number of products within each nest. Finding the optimal assortment by using
our proposed FP+BB can improve the expected revenue in average by up to 63% (obtained for
[γL, γU] = [1.5, 2.5] and vi0 = 0,∀i ∈M in Table 2) compared to offering sorted-by-revenue
assortments (Heuristic).

Table 2: Results on instances with n = 10

vi0 = 0, ∀i ∈M Heuristic FP + BB FP + F.Enum.

[γL, γU] Time Obj. Time Obj. # Opt. # Imp. Impr.(%) # Iter. Time

[0.5, 1.5] 0.30 1319.412 0.35 1455.784 20 5 17.09 4.3 0.65
[1.0, 2.0] 0.01 1499.060 0.02 2056.390 20 20 39.38 4.5 0.35
[1.5, 2.5] 0.02 1464.430 0.02 2278.883 20 20 63.66 6.9 0.53
[2.0, 3.0] 0.02 1470.562 0.02 2215.229 20 20 60.01 9.8 0.75

vi0 > 0, ∀i ∈M Heuristic FP + BB FP + F.Enum.

[γL, γU] Time Obj. Time Obj. # Opt. # Imp. Impr.(%) # Iter. Time

[0.5, 1.5] 0.01 1363.523 0.02 1420.608 20 19 4.75 10.9 0.85
[1.0, 2.0] 0.01 1372.336 0.02 1552.196 20 20 15.26 5.2 0.39
[1.5, 2.5] 0.01 1290.883 0.02 1542.003 20 20 25.08 6.7 0.50
[2.0, 3.0] 0.01 1484.537 0.02 1764.358 20 20 22.74 5.5 0.41

vi0 > 0,∀i ∈M Heuristic FP + BB FP + F.Enum.

[γL, γU] Time Obj. Time Obj. # Opt. # Imp. Impr.(%) # Iter. Time

[0.5, 1.5] 0.01 1420.262 0.02 1542.811 20 12 10.06 6.8 0.51
[1.0, 2.0] 0.01 1602.591 0.02 1891.330 20 20 24.22 4.1 0.31
[1.5, 2.5] 0.01 1406.567 0.03 1801.331 20 20 31.24 5.8 0.45
[2.0, 3.0] 0.01 1466.853 0.02 1947.478 20 20 40.16 4.9 0.38

20

Table 3: Results on instances with n = 25

vi0 = 0, ∀i ∈M Heuristic FP + BB

[γL, γU] Time Obj. Time Obj. # Opt. # Imp. Impr.(%) # Iter.

[0.5, 1.5] 0.25 2011.361 0.29 2038.585 20 3 1.30 3.9
[1.0, 2.0] 0.02 1874.942 0.02 2278.074 20 20 24.55 5.1
[1.5, 2.5] 0.02 1941.861 0.02 2432.010 20 20 27.50 5.2
[2.0, 3.0] 0.02 1881.559 0.02 2493.864 20 20 33.64 8.1

vi0 > 0, ∀i ∈M Heuristic FP + BB

[γL, γU] Time Obj. Time Obj. # Opt. # Imp. Impr.(%) # Iter.

[0.5, 1.5] 0.02 1631.454 0.05 1673.522 20 17 2.63 15.2
[1.0, 2.0] 0.02 1699.821 0.03 1810.193 20 20 8.01 6.2
[1.5, 2.5] 0.02 1743.259 0.03 1845.962 20 20 5.99 6.0
[2.0, 3.0] 0.02 1769.376 0.03 1960.964 20 20 12.03 5.4

vi0 > 0, ∀i ∈M Heuristic FP + BB

[γL, γU] Time Obj. Time Obj. # Opt. # Imp. Impr.(%) # Iter.

[0.5, 1.5] 0.02 1772.294 0.04 1814.347 20 11 3.04 14.4
[1.0, 2.0] 0.02 1820.927 0.02 1965.316 20 20 8.28 5.2
[1.5, 2.5] 0.02 1826.060 0.02 2078.122 20 20 15.27 4.9
[2.0, 3.0] 0.02 1827.334 0.02 2106.624 20 20 16.90 4.8

Table 4: Results on instances with n = 50

vi0 = 0, ∀i ∈M Heuristic FP + BB

[γL, γU] Time Obj. Time Obj. # Opt. # Imp. Impr.(%) # Iter.

[0.5, 1.5] 0.02 2102.011 0.03 2154.903 20 4 2.74 6.8
[1.0, 2.0] 0.03 2271.554 0.03 2439.062 20 20 7.90 4.2
[1.5, 2.5] 0.02 2318.757 0.02 2572.765 20 20 11.35 5.0
[2.0, 3.0] 0.02 2195.411 0.02 2579.245 20 20 18.30 6.1

vi0 > 0, ∀i ∈M Heuristic FP + BB

[γL, γU] Time Obj. Time Obj. # Opt. # Imp. Impr.(%) # Iter.

[0.5, 1.5] 0.02 1859.730 0.24 1870.572 20 15 0.56 22.6
[1.0, 2.0] 0.02 1932.296 0.04 1957.362 20 19 1.34 8.6
[1.5, 2.5] 0.02 1968.766 0.03 2014.973 20 20 2.51 6.2
[2.0, 3.0] 0.02 1945.271 0.04 2022.854 20 20 4.10 6.5

vi0 > 0, ∀i ∈M Heuristic FP + BB

[γL, γU] Time Obj. Time Obj. # Opt. # Imp. Impr.(%) # Iter.

[0.5, 1.5] 0.02 2055.472 0.26 2067.200 20 12 0.61 20.3
[1.0, 2.0] 0.02 2037.008 0.04 2137.010 20 20 5.03 7.5
[1.5, 2.5] 0.02 2113.793 0.03 2204.823 20 20 4.32 5.5
[2.0, 3.0] 0.02 2144.774 0.04 2279.204 20 20 6.80 5.7

21

Table 5: Results on instances with n = 100

vi0 = 0, ∀i ∈M Heuristic FP + BB

[γL, γU] Time Obj. Time Obj. # Opt. # Imp. Impr.(%) # Iter.

[0.5, 1.5] 0.03 2347.244 0.04 2363.281 20 9 0.72 8.0
[1.0, 2.0] 0.03 2449.480 0.04 2542.060 20 18 3.98 8.1
[1.5, 2.5] 0.03 2393.254 0.07 2623.670 20 20 9.92 5.5
[2.0, 3.0] 0.03 2459.432 0.04 2669.409 20 20 8.66 5.8

vi0 > 0, ∀i ∈M Heuristic FP + BB

[γL, γU] Time Obj. Time Obj. # Opt. # Imp. Impr.(%) # Iter.

[0.5, 1.5] 0.03 2040.691 2.40 2042.736 20 9 0.10 35.0
[1.0, 2.0] 0.03 2074.101 0.11 2087.427 20 18 0.66 11.6
[1.5, 2.5] 0.03 2095.977 0.07 2122.436 20 20 1.26 7.0
[2.0, 3.0] 0.03 2099.439 0.07 2141.169 20 20 2.09 7.0

vi0 > 0, ∀i ∈M Heuristic FP + BB

[γL, γU] Time Obj. Time Obj. # Opt. # Imp. Impr.(%) # Iter.

[0.5, 1.5] 0.03 2020.733 3.16 2026.195 20 11 0.26 25.8
[1.0, 2.0] 0.03 2084.302 0.10 2095.638 20 19 0.54 12.9
[1.5, 2.5] 0.03 2105.198 0.06 2127.319 20 20 1.05 6.8
[2.0, 3.0] 0.03 2114.391 0.08 2144.870 20 20 1.49 7.7

Table 6: Results on instances with n = 250

vi0 = 0, ∀i ∈M Heuristic FP + BB

[γL, γU] Time Obj. Time Obj. # Opt. Gap(%) # Imp. Impr.(%) # Iter.

[0.5, 1.5] 0.05 2467.701 0.22 2479.887 20 0.00 6 0.53 22.9
[1.0, 2.0] 0.05 2618.941 0.08 2656.178 20 0.00 19 1.44 7.6
[1.5, 2.5] 0.05 2629.566 0.08 2721.555 20 0.00 20 3.58 5.2
[2.0, 3.0] 0.05 2630.360 0.08 2749.843 20 0.00 20 4.60 5.5

vi0 > 0,∀i ∈M Heuristic FP + BB

[γL, γU] Time Obj. Time Obj. # Opt. Gap(%) # Imp. Impr.(%) # Iter.

[0.5, 1.5] 0.06 2203.200 1855.32 2203.200 11 7.72 5 0.00 22.9
[1.0, 2.0] 0.05 2240.957 0.60 2246.826 20 0.00 17 0.27 14.8
[1.5, 2.5] 0.05 2251.769 0.31 2268.824 20 0.00 20 0.76 8.4
[2.0, 3.0] 0.05 2301.263 0.34 2315.573 20 0.00 20 0.62 7.1

vi0 > 0, ∀i ∈M Heuristic FP + BB

[γL, γU] Time Obj. Time Obj. # Opt. Gap(%) # Imp. Impr.(%) # Iter.

[0.5, 1.5] 0.06 2245.679 1463.56 2245.960 13 2.58 5 0.01 23.1
[1.0, 2.0] 0.06 2254.461 0.58 2262.545 20 0.00 16 0.35 15.0
[1.5, 2.5] 0.05 2359.736 0.83 2385.752 20 0.00 20 1.13 6.7
[2.0, 3.0] 0.05 2360.125 0.75 2403.292 20 0.00 20 1.86 6.2

22

Figure 1: Expected revenues found by optimal (or best found) assortments (FP+BB) versus Heuristic, for a
set of small and large instances (n ∈ {25, 50, 100, 250})

Figure 2: Expected revenues found by optimal assortments (FP+BB) versus Heuristic, for a set of super large
instances (n ∈ {500, 1000, 5000})

23

Table 7: Results on super large instances with vi0 = 0,∀i ∈M

n = 500 Heuristic FP + BB

[γL, γU] Time Obj. Time Obj. # Opt. # Imp. Impr.(%) # Iter.

[0.5, 1.5] 0.10 2578.208 0.49 2579.121 20 5 0.03 26.3
[1.0, 2.0] 0.11 2697.146 0.22 2719.671 20 20 0.84 9.2
[1.5, 2.5] 0.10 2749.865 0.18 2786.700 20 19 1.36 6.3
[2.0, 3.0] 0.11 2759.730 0.16 2832.230 20 20 2.67 5.2

n = 1,000 Heuristic FP + BB

[γL, γU] Time Obj. Time Obj. # Opt. # Imp. Impr.(%) # Iter.

[0.5, 1.5] 0.21 2661.075 1.49 2661.075 20 2 0.00 35.0
[1.0, 2.0] 0.21 2745.328 1.07 2747.184 20 10 0.07 28.2
[1.5, 2.5] 0.22 2804.493 0.81 2818.214 20 17 0.49 13.7
[2.0, 3.0] 0.22 2799.017 0.35 2853.180 20 20 1.96 5.6

n = 5,000 Heuristic FP + BB

[γL, γU] Time Obj. Time Obj. # Opt. # Imp. Impr.(%) # Iter.

[0.5, 1.5] 2.14 2767.521 14.17 2767.523 20 7 0.00 36.7
[1.0, 2.0] 2.12 2843.984 70.97 2844.074 20 9 0.00 30.6
[1.5, 2.5] 2.04 2882.258 10.53 2885.153 20 15 0.10 15.5
[2.0, 3.0] 1.98 2902.711 14.23 2906.345 20 20 0.13 10.2

5. Conclusion

In this paper, we studied the assortment problem when customer choice behavior is modeled
using a nested logit model. We proposed an exact method combining fractional programming
and a tailored branch-and bound algorithm for the non-linear parametrized subproblem
associated with each nest, which we proved to be NP-hard by a non-trivial reduction from
the Subset-Sum problem. Our method enables to find an optimal assortment regardless
of the value of the dissimilarity parameter or the attractiveness of the no-purchase option
within a nest, i.e. any mix of the values of these parameters can be handled by the algorithm.
Computational results reveal that finding the optimal assortment can have a significant impact
on the expected revenue compared to the benchmark heuristic in the literature (Davis et
al. [9]), which is based on sorted-by-revenue assortments (this heuristic being optimal in
one particular case). The highest revenue improvement (63% on average) of the optimal
assortment vs the heuristic solution was obtained for problems with 10 products per nest
and dissimilarity parameters between 1.5 and 2.5. As the number of products increases, the
improvement made was modest though (at most 3% for our large instances). However, for
some instances without the no-purchase option, our exact method could solve to optimality
problems with up to 5,000 products in less than one minute and half, and was generally fast
for all scenarios tested. Our method also enables to assess the empirical performance of the
sorted-by-revenue heuristic which can be a good compromise for a huge number of products
and dissimilarity parameters higher than but close to one.
An exciting direction for future research could be to modify our method to solve problems
with capacity or cardinality constraints. An AOPNL with both capacity and cardinality
constraint for each particular nest in which all dissimilarity parameters are at most one has
been studied in the research of Gallego and Topaloglu [15] and Désir et al. [11]. Developing
an efficient exact method for a more general case in which some dissimilarity parameters are
higher than one remains open.

24

References

[1] C. Archetti, G. Desaulniers, and M. G. Speranza. Minimizing the logistic ratio in the
inventory routing problem. EURO Journal on Transportation and Logistics, 6(4):289–306,
2017.

[2] M. E. Ben-Akiva and S. R. Lerman. Discrete choice analysis: theory and application to
travel demand, volume 9. MIT press, 1985.

[3] D. Bertsimas and P. Vayanos. Data-driven learning in dynamic pricing using adaptive
optimization. Preprint, 2015.

[4] A. Billionnet. Optimal selection of forest patches using integer and fractional programming.
Operational Research An International Journal, 10:1–26, 2010.

[5] A. Billionnet. Mathematical optimization ideas for biodiversity conservation. European
Journal of Operational Research, 231(3):514 –534, 2013.

[6] A. Börsch-Supan. On the compatibility of nested logit models with utility maximization.
Journal of Econometrics, 43(3):373–388, 1990.

[7] R. Chen and H. Jiang. Capacitated assortment and price optimization under the multilevel
nested logit model. Operations Research Letters, 47(1):30–35, 2019.

[8] X. Chen, Y. Wang, and Y. Zhou. Dynamic assortment selection under the nested logit
models. arXiv preprint arXiv:1806.10410, 2018.

[9] J. M. Davis, G. Gallego, and H. Topaloglu. Assortment optimization under variants of
the nested logit model. Operations Research, 62(2):250–273, 2014.

[10] J. M. Davis, H. Topaloglu, and D. P. Williamson. Pricing problems under the nested
logit model with a quality consistency constraint. INFORMS Journal on Computing, 29
(1):54–76, 2016.

[11] A. Désir, V. Goyal, and J. Zhang. Near-optimal algorithms for capacity constrained
assortment optimization. Submitted to Operations Research, Available at SSRN 2543309,
2014.

[12] W. Dinkelbach. On nonlinear fractional programming. Management science, 13(7):
492–498, 1967.

[13] J. B. Feldman and H. Topaloglu. Capacity constraints across nests in assortment
optimization under the nested logit model. Operations Research, 63(4):812–822, 2015.

[14] A. Flores, G. Berbeglia, and P. Van Hentenryck. Assortment optimization under the
sequential multinomial logit model. European Journal of Operational Research, 273(3):
1052–1064, 2019.

[15] G. Gallego and H. Topaloglu. Constrained assortment optimization for the nested logit
model. Management Science, 60(10):2583–2601, 2014.

25

[16] M. R. Garey and D. S. Johnson. Computers and intractability, volume 174. freeman San
Francisco, 1979.

[17] V. Goyal, R. Levi, and D. Segev. Near-optimal algorithms for the assortment planning
problem under dynamic substitution and stochastic demand. Operations Research, 64(1):
219–235, 2016.

[18] G. W. Klau, I. Ljubić, P. Mutzel, U. Pferschy, and R. Weiskircher. The fractional
prize-collecting Steiner tree problem on trees. In G. D. Battista and U. Zwick, editors,
Algorithms - ESA 2003, 11th Annual European Symposium, Budapest, Hungary, Septem-
ber 16-19, 2003, Proceedings, volume 2832 of Lecture Notes in Computer Science, pages
691–702. Springer, 2003.

[19] A. G. Kök, M. L. Fisher, and R. Vaidyanathan. Assortment planning: Review of literature
and industry practice. In Retail supply chain management, pages 99–153. Springer, 2008.

[20] B. Lee. Calling patterns and usage of residential toll service under self selecting tariffs.
Journal of Regulatory economics, 16(1):45–82, 1999.

[21] G. Li and P. Rusmevichientong. A greedy algorithm for the two-level nested logit model.
Operations Research Letters, 42(5):319–324, 2014.

[22] G. Li, P. Rusmevichientong, and H. Topaloglu. The d-level nested logit model: Assortment
and price optimization problems. Operations Research, 63(2):325–342, 2015.

[23] R. D. Luce. Individual choice behavior: A theoretical analysis. Wiley, Republicated by
Dover Publications, 2012, 1959.

[24] T. Mai and A. Lodi. An algorithm for assortment optimization under parametric discrete
choice models. Available at SSRN 3370776, 2019.

[25] D. McFadden. Econometric models for probabilistic choice among products. Journal of
Business, pages S13–S29, 1980.

[26] D. McFadden et al. Conditional logit analysis of qualitative choice behavior. Frontiers
in Econometrics, ed. by P. Zarembka, New York: Academic Press, pages 105–142, 1973.

[27] N. Megiddo. Combinatorial optimization with rational objective functions. In Proceedings
of the tenth annual ACM symposium on Theory of computing, pages 1–12. ACM, 1978.

[28] P. Rusmevichientong and H. Topaloglu. Robust assortment optimization in revenue
management under the multinomial logit choice model. Operations Research, 60(4):
865–882, 2012.

[29] D. Segev. Approximation schemes for capacity-constrained assortment optimization
under the nested logit model. Available at SSRN 3553264, 2020.

[30] S. Sethuraman and S. Butenko. The maximum ratio clique problem. Computational
Management Science, 12:197–218, 2015.

26

[31] K. Talluri and G. Van Ryzin. Revenue management under a general discrete choice
model of consumer behavior. Management Science, 50(1):15–33, 2004.

[32] P. Tiwari and H. Hasegawa. Demand for housing in Tokyo: A discrete choice analysis.
Regional Studies, 38(1):27–42, 2004.

[33] K. E. Train, D. L. McFadden, and M. Ben-Akiva. The demand for local telephone service:
A fully discrete model of residential calling patterns and service choices. The RAND
Journal of Economics, pages 109–123, 1987.

[34] K. E. Train, M. Ben-Akiva, and T. Atherton. Consumption patterns and self-selecting
tariffs. The Review of Economics and Statistics, pages 62–73, 1989.

[35] H. C. Williams. On the formation of travel demand models and economic evaluation
measures of user benefit. Environment and planning A, 9(3):285–344, 1977.

[36] J. Yates and D. F. Mackay. Discrete choice modelling of urban housing markets: A
critical review and an application. Urban studies, 43(3):559–581, 2006.

Appendix A. Proof of Lemmas and Propositions

Appendix A.1. Proof of Proposition 2.
Since the parameterized problem has a piece-wise linear structure, each piece of line corre-
sponding to an i has a unique slope. On the other hand, all assortments corresponding to
that piece of line are equal. As a result, if Sl(λl) = Su(λu), it means that both Sl(λl) and
Su(λu) belong to the same piece of line and since Fpar(λl) > 0 and Fpar(λu) < 0, therefore,
Sl(λl) = Su(λu), then S∗ = Sl(λl) = Su(λu). �

Appendix A.2. Proof of Proposition 4.
i) if H = 0, it means that by adding all the products whose revenue is greater than or equal
to λ, the second part on the right-hand-side of the objective function (11) will be zero and
therefore, the value of the function (11) will be zero. This means that the lower bound is zero
and removing any of these products will result in a negative value of the objective function
therefore xk = 1 for k ∈ K0

1 where K0
1 = {k ∈ K : rk > λ}. On the other hand, since the lower

bound is zero, adding a product with rk < λ will turn the second part of the right-hand-side
of the objective function (11) negative, which in turn results in a negative value. Therefore,
x∗k = 0 for k ∈ K0

0 = {k ∈ K \K0
1 : rk < λ}.

ii) if H > 0, then there exists a subset of products with rk > λ that if offered in the assortment
of nest i, so the value of the objective function (14) will be positive. As a result, offering any
product from K0

0 = {k ∈ K : rk < λ} will reduce the numerator of the formulation (14) and
at the same time increase the value of its denominator which in turn decreases the value of the
fraction. Therefore, x∗k = 0 for k ∈ K0

0 . Now that we are left with only products with revenue
rk > λ, we define K ′ = N \K0

0 , rmax = maxj∈N{rj} and calculate the partial derivative of
function (11). We have:

27

∂f 0(x)
∂xk

= (γ − 1)
v0 +

∑
j∈K′

vjxj

γ−2

vk

∑
j∈K′

vj(rj − λ)xj − λv0

+
v0 +

∑
j∈K′

vjxj

γ−1

vk(rk − λ)

= vk

v0 +
∑
j∈K′

vjxj

γ−1
(γ − 1)

∑
j∈K′

vj(rj − λ)xj − λv0

v0 + ∑
j∈K′

vjxj
+ (rk − λ)

= vk

v0 +
∑
j∈K′

vjxj

γ−1(γ − 1)

∑
j∈K′

vj(rj − λ)xj − λv0 + v0(rmax − λ)− v0(rmax − λ)

v0 + ∑
j∈K′

vjxj

+(rk − λ)

> vk

v0 +
∑
j∈K′

vjxj

γ−1(γ − 1)
(rmax − λ) ∑

j∈K′
vjxj + v0(rmax − λ)− λv0 − v0(rmax − λ)

v0 + ∑
j∈K′

vjxj

+(rk − λ)

since γ − 1 < 0

= vk

v0 +
∑
j∈K′

vjxj

γ−1
(γ − 1)

(rmax − λ)− v0rmax
v0 + ∑

j∈K′
vjxj

+ (rk − λ)

> vk

v0 +
∑
j∈K′

vjxj

γ−1
(γ − 1)

(rmax − λ)− v0rmax
v0 + ∑

j∈K′
vj

+ (rk − λ)

since rmax − λ > 0

> 0 if rk > λ+ (1− γ)

rmax − λ− v0rmax
v0 + ∑

j∈K′
vj

The function is increasing in xk for k ∈ K0
1 = {k ∈ N \K0

0 : rk > λ + (1 − γ)(rmax − λ −
(v0rmax)/(v0 +∑

j∈K′ vj))}, then for these products k we have x∗k = 1.

iii) if H < 0, in this case, there exists no positive value for the objective function. In other
words, for any vector x, f 0(x) < 0. In this case, since the value of the fraction on the
right-hand-side of (14) is always negative, adding products with rk > λ will always make the
numerator less negative and at the same time, increases the value of the denominator which in
turn results in an overall less negative value of the objective function (14). Therefore, define
K0

1 = {k ∈ N : rk > λ} then x∗k = 1,∀k ∈ K0
1 .

Defining C0
1 = ∑

k∈K0
1
vk(rk − λ)− λv0, V 0

1 = ∑
k∈K0

1
vk + v0 and K ′ = N \K0

1 , we can update
the objective function (11) with the remaining of the variables as:

28

max
x∈{0,1}|K′|

f 0(x) =
V 0

1 +
∑
k∈K′

vkxk

γ−1

×

C0
1 +

∑
k∈K′

vk(rk − λ)xk

We define rmin = minj∈K′{rj} and ∆ = C0

1 − V 0
1 (rmin − λ), calculating the partial derivative

of the function above with respect of variable xk, we have:

∂f 0(x)
∂xk

= (γ − 1)
V 0

1 +
∑
j∈K′

vjxj

γ−2

vk

C0
1 +

∑
j∈K′

vj(rj − λ)xj

+
V 0

1 +
∑
j∈K′

vjxj

γ−1

vk(rk − λ)

= vk

V 0
1 +

∑
j∈K′

vjxj

γ−1
(γ − 1)

C0
1 + ∑

j∈K′
vj(rj − λ)xj

V 0
1 + ∑

j∈K′
vjxj

+ (rk − λ)

6 vk

V 0
1 +

∑
j∈K′

vjxj

γ−1
(γ − 1)

C0
1 + (rmin − λ) ∑

j∈K′
vjxj

V 0
1 + ∑

j∈K′
vjxj

+ (rk − λ)

= vk

V 0
1 +

∑
j∈K′

vjxj

γ−1(γ − 1)
(rmin − λ) ∑

j∈K′
vjxj + V 0

1 (rmin − λ) + C0
1 − V 0

1 (rmin − λ)

V 0
1 + ∑

j∈K′
vjxj

+ (rk − λ)

= vk

V 0
1 +

∑
j∈K′

vjxj

γ−1
(γ − 1)

(rmin − λ) + C0
1 − V 0

1 (rmin − λ)
V 0

1 + ∑
j∈K′

vjxj

+ (rk − λ)

 (?)

We now have two cases. If ∆ > 0, we can transform the expression denoted by (?) as:

6 vk

V 0
1 +

∑
j∈K′

vjxj

γ−1
(γ − 1)

(rmin − λ) + C0
1 − V 0

1 (rmin − λ)
V 0

1 + ∑
j∈K′

vj

+ (rk − λ)

since γ − 1 < 0

6 0 if rk 6 λ+ (1− γ)

C
0
1 + (rmin − λ) ∑

j∈K′
vj

V 0
1 + ∑

j∈K′
vj

On the other hand, if ∆ < 0, we transform (?) as follows:

29

6 vk

V 0
1 +

∑
j∈K′

vjxj

γ−1 (
(γ − 1)

(
(rmin − λ) + C0

1 − V 0
1 (rmin − λ)
V 0

1

)
+ (rk − λ)

)
since γ − 1 < 0

6 0 if rk 6 λ+ (1− γ)
(
C0

1
V 0

1

)

Therefore, if ∆ > 0, x∗k = 0 for k ∈ K0
0 = {k ∈ K ′ : rk 6 λ + (1− γ)

(
C0

1+(rmin−λ)
∑

j∈K′ vj

V 0
1 +
∑

j∈K′ vj

)
,

and if ∆ < 0, then x∗k = 0 for k ∈ K0
0 = {k ∈ K ′ : rk 6 λ+ (1− γ) (C0

1/V
0

1). �

Appendix A.3. Proof of Proposition 5.
i) We set rmax = maxj∈K̄t−1{rj}. Calculating the partial derivative of the function (13), we
have:

30

∂f t(x)
∂xk

= (γ − 1)
V t−1

1 +
∑

j∈K̄t−1

vjxj

γ−2

vk

Ct−1
1 +

∑
j∈K̄t−1

vj(rj − λ)xj

+
V t−1

1 +
∑

j∈K̄t−1

vjxj

γ−1

vk(rk − λ)

= vk

V t−1
1 +

∑
j∈K̄t−1

vjxj

γ−1
(γ − 1)

Ct−1
1 + ∑

j∈K̄t−1
vj(rj − λ)xj

V t−1
1 + ∑

j∈K̄t−1
vjxj

+ (rk − λ)

= vk

V t−1
1 +

∑
j∈K̄t−1

vjxj

γ−1(γ − 1)
(Ct−1

1 + ∑
j∈K̄t−1

vj(rj − λ)xj + V t−1
1 (rmax − λ)

V t−1
1 + ∑

j∈K̄t−1
vjxj

− V t−1
1 (rmax − λ)

V t−1
1 + ∑

j∈K̄t−1
vjxj

)
+ (rk − λ)

= vk

V t−1
1 +

∑
j∈K̄t−1

vjxj

γ−1(γ − 1)
(Ct−1

1 + (rmax − λ) ∑
j∈K̄t−1

vjxj + V t−1
1 (rmax − λ)

V t−1
1 + ∑

j∈K̄t−1
vjxj

− V t−1
1 (rmax − λ)

V t−1
1 + ∑

j∈K̄t−1
vjxj

)
+ (rk − λ)

= vk

V t−1
1 +

∑
j∈K̄t−1

vjxj

γ−1
(γ − 1)

(rmax − λ) + Ct−1
1 − V t−1

1 (rmax − λ)
V t−1

1 + ∑
j∈K̄t−1

vjxj

+ (rk − λ)

> vk

V t−1
1 +

∑
j∈K̄t−1

vjxj

γ−1
(γ − 1)

(rmax − λ) + Ct−1
1 − V t−1

1 (rmax − λ)
V t−1

1 + ∑
j∈K̄t−1

vj

+ (rk − λ)

> 0 if rk > λ+ (1− γ)(
Ct−1

1 + (rmax − λ) ∑
j∈K̄t−1

vj

V t−1
1 + ∑

j∈K̄t−1
vj

)

Therefore, for k ∈ Kt
1 = {k ∈ K̄t−1 : rk > λ+ (1− γ)(C

t−1
1 +(rmax−λ)

∑
j∈K̄t−1 vj

V t−1
1 +

∑
j∈K̄t−1 vj

), x∗k = 1.

ii) The proof of this section is similar to that section iii in the proof of Proposition 4. �

Appendix A.4. Proof of Proposition 6.
In this case, we can rewrite the objective function (15) as:

31

f t(x) = (V t
1)γ−1Ct

1

1 +

∑
k∈K̄t

vkxk

V t
1

γ−1

×

1 +

∑
k∈K̄t

vk(rk − λ)xk

Ct
1

= (V t
1)γ−1Ct

1 exp

ln

1 +

∑
k∈K̄t

vkxk

V t
1

(γ−1)

×

1 +

∑
k∈K̄t

vk(rk − λ)xk

Ct
1

= (V t
1)γ−1Ct

1 exp

(γ − 1) ln

1 +

∑
k∈K̄t

vkxk

V t
1

+ ln

1 +

∑
k∈K̄t

vk(rk − λ)xk

Ct
1

6 (V t
1)γ−1Ct

1 exp

(γ − 1)
2 ∑
k∈K̄t

vkxk

2V t
1 + ∑

k∈K̄t

vkxk
+

∑
k∈K̄t

vk(rk − λ)xk

Ct
1

since 2τ

2 + τ
6 ln(1 + τ), ln(1 + τ) 6 τ for τ > 0, rk > λ,∀k ∈ K̄t and γ − 1 < 0

6 (V t
1)γ−1Ct

1 exp

(γ − 1)
2 ∑
k∈K̄t

vkxk

2V t
1 + ∑

k∈K̄t

vk
+

∑
k∈K̄t

vk(rk − λ)xk

Ct
1

 since
∑
k∈K̄t

vkxk 6
∑
k∈K̄t

vk

= (V t
1)γ−1Ct

1 exp

∑
k∈K̄t

vk

 2(γ − 1)
2V t

1 + ∑
k∈K̄t

vk
+ (rk − λ)

Ct
1

xk

We note the coefficients inside the above exponential function as

wtk = vk

 2(γ − 1)
2V t

1 + ∑
k∈K̄t

vk
+ (rk − λ)

Ct
1

Therefore, we get an upper bound on (15) by solving

max
x∈{0,1}|K̄t|

∑
k∈K̄t

wtkxk (A.1)

Problem (A.1) is easily solved by offering all products with wtk > 0. Therefore, the solution of
problem (A.1) is:

z∗1(t) =
∑
k∈K̄t

max(0, wtk)

We finally obtain the upper bound on ft(x):

ft(x) 6 (V t
1)γ−1 Ct

1 e
z∗1 (t)

�

32

Appendix A.5. Proof of Proposition 7.
i) the proof of this part is similar to that of Proposition 4.

ii) The first part holds because for any S where k 6∈ S, the objective of S ∪ {k} is larger
than that of S if rk − λ > 0. We can then include in the assortment all variables k such that
rk > λ. We also calculate V t

1 = ∑
k∈Kt

1
vk + v0 and Ct

1 = ∑
k∈Kt

1
vk(rk − λ)− λv0 and define

K ′ = N \K0
1 . The subproblem then can be expressed as:

max
x∈{0,1}|K′|

f 0(x) =
V 0

1 +
∑
k∈K′

vkxk

γ−1

×

C0
1 +

∑
k∈K′

vk(rk − λ)xk

 (A.2)

We compute the partial derivative of f in above function with respect to variable xk:

∂f 0(x)
∂xk

= (γ − 1)
V 0

1 +
∑
j∈K′

vjxj

γ−2

vk

C0
1 +

∑
j∈K′

vj(rj − λ)xj

+
V 0

1 +
∑
j∈K′

vjxj

γ−1

vk(rk − λ)

= vk

V 0
1 +

∑
j∈K′

vjxj

γ−1
(γ − 1)

C0
1 + ∑

j∈K′
vj(rj − λ)xj

V 0
1 + ∑

j∈K′
vjxj

+ (rk − λ)

6 vk

V 0
1 +

∑
j∈K′

vjxj

γ−1 (
(γ − 1)C

0
1

V 0
1

+ (rk − λ)
)

as
∑
j∈K′

vj(rj − λ) < 0

= vk

V 0
1 +

∑
j∈K′

vjxj

γ−1 (
(γ − 1)(C0

1/V
0

1) + (rk − λ)
)

6 0 if rk 6 λ− (γ − 1)(C0
1/V

0
1)

Therefore, if we define K0
0 = {k ∈ N \K0

1 : rk < λ− (γ− 1)(C0
1/V

0
1)}, then x∗k = 0 for k ∈ K0

0 .

iii) if H < 0, similar to the case when γ 6 1, there exists no positive value for the objective
function. Therefore, since the value of the objective function 11 is always negative, adding
products with rk < λ will always result in a lower value. �

Appendix A.6. Proof of Proposition 8.
The proof of this proposition if similar to that of Proposition 7. �

Appendix A.7. Proof of Proposition 9.
We start reformulating f t(x) as in the third equality of the proof of Proposition 6:

33

f t(x) = (V t
1)γ−1Ct

1 exp

(γ − 1) ln

1 +

∑
k∈K̄t

vkxk

V t
1

+ ln

1 +

∑
k∈K̄t

vk(rk − λ)xk

Ct
1

6 (V t
1)γ−1Ct

1 exp

(γ − 1)

∑
k∈K̄t

vkxk

V t
1

+

∑
k∈K̄t

vk(rk − λ)xk

Ct
1

as ln(1 + τ) 6 τ and rk 6 λ for k ∈ K̄

= (V t
1)γ−1Ct

1 exp
∑
k∈K̄t

vk

(
γ − 1
V t

1
+ rk − λ

Ct
1

)
xk

Let us note the coefficients inside the above exponential function as

wtk = vk

(
γ − 1
V t

1
+ rk − λ

Ct
1

)

At the root node (t = 0) and for k ∈ K̄, rk > λ− (γ − 1)(Ct
1/V

t
1), then all coefficients w0

k are
non-negative. However, at an arbitrary B&B node t, some k with rk − λ < 0 might have been
added in V t

1 in the previous child nodes. Hence, coefficients wtk can be positive or negative.
Then the solution to

max
x∈{0,1}|K̄t|

∑
k∈K̄t

wtkxk

can be obtained by having
z∗2(t) =

∑
k∈K̄t

max(0, wtk)

Finally, we obtain the upper bound on ft(x):

ft(x) 6 (V t
1)γ−1 Ct

1 e
z∗2 (t)

�

Appendix B. Pseudo-code of the preprocessing algorithms

We summarize the findings of this section in Algorithms (2) – (5).

34

Appendix B.1.
Algorithm 2: Preprocessing for t = 0 when γ 6 1

1 N ← set of all products ;
2 H ←

∑
k∈N :rk>λ

vk(rk − λ)− λv0 ;
3 if H = 0 then // Case 0
4 K0

1 = {k ∈ N : rk > λ} ;
5 Fix x∗k = 1 for k ∈ K0

1 ;
6 K0

0 = {k ∈ N \K0
1 : rk < λ} ;

7 Fix x∗k = 0 for k ∈ K0
0 ;

8 Exit (subproblem is solved) ;
9 else if H > 0 then// Case 1

10 K0
0 = {k ∈ N : rk < λ} ;

11 x∗k = 0 for k ∈ K0
0 ;

12 rmax = maxj∈N{rj} ;
13 K ′ = N \K0

0 ;
14 K0

1 = {k ∈ K ′ : rk > λ+ (1− γ)(rmax − λ− (v0rmax)/(v0 +
∑
j∈K′ vj))} ;

15 x∗k = 1,∀k ∈ K0
1 ;

16 Continue with upper bound (V t1)γ−1Ct1e
z∗1 (t) ;

17 else if H < 0 then // Case 2
18 K0

1 = {k ∈ N : rk > λ} ;
19 x∗k = 1,∀k ∈ K0

1 ;
20 C0

1 =
∑
k∈K0

1
vk(rk − λ)− λv0 ;

21 V 0
1 = v0 +

∑
k∈K0

1
vk ;

22 K ′ = N \K0
1 ;

23 rmin = minj∈K′{rj} ;
24 ∆ = C0

1 − V 0
1 (rmin − λ) ;

25 if ∆ > 0 then
26 K0

0 = {k ∈ K ′ : rk 6 λ+ (1− γ)((C0
1 + (rmin − λ)

∑
j∈K′ vj)/(V 0

1 +
∑
j∈K′ vj))} ;

27 else if ∆ < 0 then
28 K0

0 = {k ∈ K ′ : rk 6 λ+ (1− γ)(C0
1/V

0
1)} ;

29 x∗k = 0 for k ∈ K0
0 ;

30 Continue with branching ;

35

Appendix B.2.
Algorithm 3: Preprocessing for node t 6= 0 when γ 6 1

1 K̄t−1 ← set of undecided variables until node t ;
2 Kt−1

1 ← set of variables fixed to 1 until node t ;
3 if H > 0 then // Case 1
4 rmax = maxj∈K̄t−1{rj} ;
5 Kt

1 = {k ∈ K̄t−1 : rk > λ+ (1− γ)((Ct−1
1 + (rmax − λ)

∑
j∈K̄t−1 vj)(V t−1

1 +
∑
j∈K̄t−1 vj)) ;

6 x∗k = 1,∀k ∈ Kt
1;

7 Continue with upper bound (V t1)γ−1Ct1e
z∗1 (t) ;

8 else if H < 0 then // Case 2
9 Ct−1

1 =
∑
k∈Kt−1

1
vk(rk − λ)− λv0 ;

10 V t−1
1 = v0 +

∑
k∈Kt−1

1
vk ;

11 rmin = minj∈K̄t−1{rj} ;
12 ∆ = Ct−1

1 − V t−1
1 (rmin − λ) ;

13 if ∆ > 0 then
14 Kt

0 = {k ∈ K̄t−1 : rk 6 λ+ (1− γ)((Ct−1
1 + (rmin − λ)

∑
j∈K̄t−1 vj)/(V t−1

1 +
∑
j∈K̄t−1 vj))} ;

15 else if ∆ < 0 then
16 Kt

0 = {k ∈ K̄t−1 : rk 6 λ+ (1− γ)(Ct−1
1 /V t−1

1)} ;
17 x∗k = 0 for k ∈ Kt

0 ;
18 Continue with branching ;

Appendix B.3.
Algorithm 4: Preprocessing for t = 0 when γ > 1

1 N ← set of all products ;
2 H ←

∑
k∈K:rk>λ

vk(rk − λ)− λv0 ;
3 if H = 0 then // Case 0
4 K0

1 = {k ∈ N : rk > λ} ;
5 x∗k = 1,∀k ∈ K0

1 ;
6 K0

0 = {k ∈ N \K0
1 : rk < λ} ;

7 x∗k = 0,∀k ∈ K0
0 ;

8 Exit (subproblem is solved) ;
9 else if H > 0 then// Case 1

10 K0
1 = {k ∈ N : rk > λ} ;

11 x∗k = 1,∀k ∈ K0
1 ;

12 C0
1 =

∑
k∈K0

1
vk(rk − λ)− λv0 ;

13 V 0
1 = v0 +

∑
k∈K0

1
vk ;

14 K0
0 = {k ∈ N \K0

1 : rk < λ− (γ − 1)(C0
1/V

0
1)} ;

15 x∗k = 0,∀k ∈ K0
0 ;

16 Continue with upper bound (V t1)γ−1Ct1e
z∗2 (t) ;

17 else if H < 0 then // Case 2
18 K0

0 = {k ∈ N : rk < λ} ;
19 x∗k = 0,∀k ∈ K0

0 ;
20 Continue with branching ;

36

Appendix B.4.
Algorithm 5: Preprocessing for t 6= 0 when γ > 1

1 K̄t−1 ← set of undecided variables until node t ;
2 Kt

1 ← set of variables fixed to 1 until node t ;
3 Ct1 ←

∑
k∈Kt

1
vk(rk − λ)− λv0 ;

4 V t1 ← v0 +
∑
k∈Kt

1
vk ;

5 if H > 0 then
6 Kt

0 = {k ∈ K̄t−1 : rk < λ− (γ − 1)(Ct1/V t1)} ;
7 x∗k = 0,∀k ∈ Kt

0;
8 Continue with upper bound (V t1)γ−1Ct1e

z∗2 (t) ;

37

C ON T A C T

RESEARCH CENTER

research@essec.edu

