D. Andrews, Laws of large numbers for dependent non-identically distributed random variables, Econometric Theory, vol.4, pp.458-467, 1988.

A. Aue, I. Berkes, and L. Horváth, Strong approximation for the sums of squares of augmented garch sequences, Bernoulli, vol.12, issue.4, pp.583-608, 2006.

A. Aue, S. Hörmann, L. Horváth, and M. Reimherr, Break detection in the covariance structure of multivariate time series models, The Annals of Statistics, vol.37, pp.4046-4087, 2009.

I. Berkes, S. Hörmann, and L. Horváth, The functional central limit theorem for a family of garch observations with applications, Statistics & Probability Letters, vol.78, pp.2725-2730, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00595953

P. Billingsley, Convergence of probability measures, 1968.

T. Bollerslev, Generalized autoregressive conditional heteroskedasticity, Journal of Econometrics, vol.31, pp.307-327, 1986.

T. Bollerslev, Glossary to arch (garch), CREATES Research Paper, vol.49, 2008.

M. Bräutigam, M. Dacorogna, and M. Kratz, Pro-cyclicality of traditional risk measurements: Quantifying and highlighting factors at its source, 2019.

M. Bräutigam and M. Kratz, On the dependence between functions of quantile and dispersion estimators, 2019.

M. Carrasco and X. Chen, Mixing and moment properties of various garch and stochastic volatility models, Econometric Theory, vol.18, pp.17-39, 2002.

Z. Ding, C. Granger, and R. Engle, A long memory property of stock market returns and a new model, Journal of Empirical Finance, vol.1, pp.83-106, 1993.

J. Duan, Augmented garch (p, q) process and its diffusion limit, Journal of Econometrics, vol.79, pp.97-127, 1997.

R. Engle, Autoregressive conditional heteroscedasticity with estimates of the variance of united kingdom inflation, Econometrica: Journal of the Econometric Society, vol.50, pp.987-1007, 1982.

R. Engle and V. Ng, Measuring and testing the impact of news on volatility, The Journal of Finance, vol.48, pp.1749-1778, 1993.

J. Geweke, Modeling the persistence of conditional variances: a comment, Econometric Reviews, vol.5, pp.57-61, 1986.

L. Glosten, R. Jagannathan, and D. Runkle, On the relation between the expected value and the volatility of the nominal excess return on stocks, The Journal of Finance, vol.48, pp.1779-1801, 1993.

M. Higgins and A. Bera, A class of nonlinear arch models, International Economic Review, vol.33, pp.137-158, 1992.

S. Hörmann, Augmented garch sequences: Dependence structure and asymptotics, Bernoulli, vol.14, pp.543-561, 2008.

O. Lee, Functional central limit theorems for augmented garch (p, q) and figarch processes, Journal of the Korean Statistical Society, vol.43, pp.393-401, 2014.

T. Mikosch, Limit theory for the sample autocorrelations and extremes of a garch (1,1) process, The Annals of Statistics, vol.28, pp.1427-1451, 2000.

A. Milhøj, A multiplicative parameterization of arch models, 1987.

D. Nelson, Conditional heteroskedasticity in asset returns: A new approach, Econometrica: Journal of the Econometric Society, vol.59, pp.347-370, 1991.

S. Pantula, Modeling the persistence of conditional variances: a comment, Econometric Reviews, vol.5, pp.79-97, 1986.

G. Schwert, Why does stock market volatility change over time?, The Journal of Finance, vol.44, pp.1115-1153, 1989.

J. Segers, On the asymptotic distribution of the mean absolute deviation about the mean, 2014.

S. Taylor, Modelling financial time series, 1986.

M. Wendler, Bahadur representation for u-quantiles of dependent data, Journal of Multivariate Analysis, vol.102, pp.1064-1079, 2011.

J. Zakoian, Threshold heteroskedastic models, Journal of Economic Dynamics and Control, vol.18, pp.931-955, 1994.

G. Zumbach, Correlations of the realized volatilities with the centered volatility increment, 2012.

G. Zumbach, Discrete Time Series, Processes, and Applications in Finance, 2012.