Predicting risk with risk measures : an empirical study

Abstract : In this study we consider the risk estimation as a stochastic process based on the Sample Quantile Process (SQP) - which is a generalization of the Value-at-Risk calculated on a rolling sample. Using SQP's, we are able to show and quantify the pro-cyclicality of the current way nancial institutions measure their risk. Analysing 11 stock indices, we show that, if the past volatility is low, the historical computation of the risk measure underestimates the future risk, while in periods of high volatility, the risk measure overestimates the risk. Moreover, using a simple GARCH(1,1) model, we conclude that this pro-cyclical e ect is related to the clustering of volatility. We argue that this has important consequences for the regulation in times of crisis.
Type de document :
Pré-publication, Document de travail
ESSEC Working paper. Document de Recherche ESSEC / Centre de recherche de l’ESSEC. ISSN : 1291-9616. WP 1803. 2018
Liste complète des métadonnées

Littérature citée [22 références]  Voir  Masquer  Télécharger

https://hal-essec.archives-ouvertes.fr/hal-01791026
Contributeur : Michel Demoura <>
Soumis le : lundi 14 mai 2018 - 11:50:22
Dernière modification le : mardi 19 mars 2019 - 01:23:27
Document(s) archivé(s) le : lundi 24 septembre 2018 - 21:05:45

Fichier

WP1803.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01791026, version 1

Citation

Marcel Bräutigam, Michel Dacorogna, Marie Kratz. Predicting risk with risk measures : an empirical study. ESSEC Working paper. Document de Recherche ESSEC / Centre de recherche de l’ESSEC. ISSN : 1291-9616. WP 1803. 2018. 〈hal-01791026〉

Partager

Métriques

Consultations de la notice

911

Téléchargements de fichiers

210