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Abstract
This paper studies the properties of multi-step projections, and fore-
casts that are obtained using either iterated or direct methods. The
models considered are local asymptotic: they allow for a near unit root
and a local to zero drift. We treat short, intermediate and long term
forecasting by considering the horizon in relation to the observable sam-
ple size. We show the implication of our results for models of predictive
regressions used in the financial literature. We show here that direct
projection methods at intermediate and long horizons are robust to the
potential misspecification of the serial correlation of the regression er-
rors. We therefore recommend, for better global power in predictive
regressions, a combination of test statistics with and without autocor-

relation correction.
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1 Introduction and overview

Two parallel literatures have developed or accelerated recently that aim to estimate relationships
over a so-called multi-step horizon. On the one hand, there has been a renewed interest in assessing
the relative merits of two forecasting methods: those of iterated and direct multi-step forecasts
(denoted IMS and DMS). The former technique constitutes the standard in econometrics and
consists in estimating a one-step ahead model relating, say, y: to y;—1 in a sample of T observations
and using it to forecast yry1 using yr and extrapolating the relation to generate a forecast for yp o
using the forecast for ypy; that has previously been obtained. Direct multi-step forecasting by
contrast will aim to develop a distinct model for each forecast horizon A > 1: relating, in-sample, y;
to yi—p so that a forecast for yry, can be obtained ‘directly’ using yr. The relative performances
of these forecasts was first derived in general settings by Weiss (1991), but it has been been a
continuous interest, since, as in e.g., Clements and Hendry (1996), Ing (2003, 2004), Marcellino,
Stock, and Watson (2006), and Schorfheide (2005), most recently, Carriero, Clark, and Marcellino
(2015) Chevillon (2016), McElroy and McCracken (2017) and Hendry and Martinez (2017).

On the other hand, the seminal work by Fama and French (1988), Campbell and Shiller (1988)
and Stambaugh (1999) has spurred a whole literature within finance of authors who aim to assess
the predictive power a variable z; has on another, say z; over some horizon. The prototypical
“predictive” or “long horizon” regression will take the form of a regression of z;4, on xy, but
Z?Zl Ztyi OT Z?zl x¢4; also appear as regressand and regressor in the literature (see e.g. Lanne,
2002, Torous et al., 2004, Valkanov (2003), Boudoukh et al., 2008, Hjalmarsson, 2011, Phillips and
Lee, 2013, Phillips, 2015, and the references therein). The long horizon regression literature shares
with that on direct multi-step forecasting three key features: (i) the model which is estimated is
not a priori that which would most efficiently chose (i.e. the one-step ahead model) but one that
induces the errors in the regression to be serially correlated; the chosen multi-step technique works
for the estimated model because (i7) this model is potentially misspecified as the errors are serially
correlated (see Ferson et al., 2003, and Pdstor and Stambaugh, 2009) and (4i7) the variables that
are being used are non-stationary or nearly so (in addition to the papers above, see inter alia
Stambaugh, 1999, Lettau and Ludvigson, 2001).

In this paper, we propose a local-asymptotic model that builds on the work of Kemp (1999),
Valkanov (2003), Torous et al. (2004), Chevillon and Hendry (2005) and Hjalmarsson (2011). We
prove a new key property of direct multi-step estimators, namely their robustness to misspecifi-
cation of the serial correlation of the error process. We then show how this property also applies
in the case of long-horizon regressions and that it provides a new justification for why they have
proved so successful empirically. We show that the bias that was found by Hjalmarsson relies on
his assumption that the horizon h is small compared to the observed sample T', h = o(T), but
that it vanishes when considering h = O (T') , as suggested by Cochrane (2006) and sheds light on
his results. Our analytic results lead us to recommending at long horizon the combination of a
standard test and that with Heteroskedasticity and Autocorrelation correction (HAC). We show

by simulations that the combination achieves better global power.



This paper is organized as follows. Section 2 presents the forecasting and predictive regression
models that we consider and the way they are related. We then derive the distributions of iterated
and directed multi-step estimators and forecasts in Section 3. The same section applies these
results to predictive regressions. A Monte Carlo assessment follows in Section 4. In the paper,
row vectors are denoted as (1 : 22) and column vectors as (x1,x2) . Throughout, we also use the
following notations: A" = Z;:ol A for h > 1, ‘=" denotes weak convergence of the associated
probability measure, W (r) is a standard Brownian motion on C [0, 1], and |w] denotes the integer

part of w for any real scalar w.

2 The models and local-asymptotic assumptions

We introduce here the literatures on multistep forecasting and long-horizon regressions. These
literatures present similarities which have not always been stressed.

Throughout the paper, we are considering the simple autoregressive model for the process {y:}
Ye =T+ pYi—1 + & (1)

for t > 1, where yp has a finite distribution and the error € is assumed to satisfy the following

condition.

Condition P. A sequence {e;} satisfies Condition P if and only if

(i) Elet) =0 forall t e Z;

(i) suptE|et\B+" < oo for some >2 and n > 0;

iii) {e;} is weakly stationary with covariance function series {& (i)}io_ . such that >0 i€ (i) <
00.

Condition P allows to derive general results for general distributions of the errors. Here we
restrict our attention to weakly stationary €; as it allows to derive more explicit results. Yet, our
results hold replacing (ii:) above with the less restrictive assumption that €, is strongly mixing with
mixing coefficients a,, such that > °_, oz,ln_z/ﬁ < oo and that limg_,o, T~ 'Var {Zjll 6]} =& < o0
(as in Phillips, 1987). In the following we will be led to restricting the serial dependence of e; and
consider the cases where it is a white noise process or follows a moving average or order one, an
MA(1). Also, where use the notation &, = > .o &, (i) for the long run variance of any process
uy satisfying the condition. In the specific case of € in (1) we write 02 = &..

In the time series forecasting literature, the standard multistep forecasting technique consists
in estimating the parameters (7, p) of model (1) and then to use the estimators (7, p) to compute

forecasts recursively at all horizons h > 1 :

Jeshlt =7 + Blrrn—11p = PUIT + oy (2)
where we let y;, = y; and ptht = Z?;OI p'. This constitutes the plug-in or iterated multi-step
(IMS) technique.



Direct multistep (DMS) has often been proposed as an alternative: it which consists in esti-

mating the parameters (75, pp,) of the projection of y;4p on y,
Yt = Th + PrYe—n + Why, for A > 1, (3)

with (15, pp) = (,D{h}T, ph) and wp; = Z?;OI p'ei_i. The DMS forecasts are obtained from estima-

tors (Th, prn) as
Yirhlt = Th + PrYs- (4)

To achieve robustness to misspecification, the literature has often considered (7, p) and (75, pp) to
be the ordinary least squares (OLS) estimators and we follow this approach here. The rationale
for DMS lies in that when €; in (1) is serially correlated, IMS forecasts are biased and DMS can
prove more accurate in terms of mean-square forecast error (MSFE).

The predictive regression literature (since Fama and Schwert, 1977, and Rozeff, 1984, see
Stambaugh, 1999) has considered testing the null of not predictability in a bivariate setting: a
standard model (see e.g. Valkanov, 2003) lets, for t = 0,...,T

PRI ®
Yitr1 T 0 p Yt €41

where both ¢; and ¢; are assumed to satisfy Condition P.! For instance, in Pdstor and Stambaugh
(2009), z; denotes the return on an asset, y; an imperfect predictor thereof, and the null hypothesis
is Hp : 8 = 0. Model (5) is often expressed, for h > 1, as

2t = ap + BpYe—n + wht (6)

with (an, Br) = (a+ Brp=1 Bp" 1) whpn = BY i) p" e _nsi + &4 or using 2], =
Zle zi—p+i as a regressand (see Valkanov, 2003, and references therein). In Expression (6), the
hypothesis of interest is H’(} : B = 0. The empirical literature has shown that whereas Hg:I
often does not reject, this is not the case when considering large h, in which case H} may reject
and y;_p appears helpful in predicting z;. The question of how large h should be is an empirical
one: Hjalmarsson (2011) studies the case where h is fixed, whereas Valkanov (2003), Torous et al.
(2004) and Hjalmarsson (2011) have considered letting the horizon grow with the sample size T'
as respectively h = O (T') and h = o (T) . In their setting, Torous et al. and Hjalmarsson allowed
in addition for the error (€411, €:11) to exhibit autocorrelation. This complicates the derivation of
the distributions of the estimators and test statistics but it yields insight regarding the role played
by h. Indeed, Hjalmarsson shows that the estimators of the regression coefficient of Zth_ hi1 O0
y;_p suffers from second-order bias generated by the correlation between e; and ;. This result
is similar to that of Banerjee et al. (1996) in the context of a comparison between iterated and
direct multistep forecasting. Here the main insight we gain about predictive regressions from multi-
step forecasting occurs under predictability (8}, # 0), hence our results allow to devise tests with

increased global power.

1This precludes assumptions such as in Deng (2013) where €; exhibits a moving average local unit root.



In the following, we assume that the parameters of (6) are estimated using OLS. This choice
assumes that the errors ¢; are martingale difference sequences (MDS) and is common in empirical
work, see e.g. Stambaugh (1999). In reality, this assumption may be wrong and &; may be auto-
correlated as shown by Péstor and Stambaugh (2009) where they follow an MA(1). Although the
literature has also considered variance estimators which are heteroskedasticity and autocorrelation
consistent (HAC), we do not study them specifically here. Indeed, these do not correct for the
bias in the autoregression. Also, by taking into account the serial correlation in the estimation of
the variances of wp ¢+ and wy ¢+ they should benefit multistep or long horizon estimators and only
strengthen our argument.

In this paper, we aim to capture three key issues that arise both the in predictive regression and
multistep forecasting frameworks: (7) the interaction between the horizon h, the available sample
size T, (it) the persistence in the time series y; and z; and (iii) the serial dependence in e; and
€¢. For this we consider the local-asymptotic framework that is now common in the econometric
literature.

First, we follow the now standard assumptions that p is close to unity: we follow authors such
as Phillips (1987) or Campbell and Yogo (2006) and model them as local to unity

pr=exp(¢/T) =1+ 6/T+0 (T7), )

Expression (7) implies that y; is near integrated and that 7 acts as a near drift. This latter issue
has generally been avoided in the early literature by imposing « = 7 = 0 which corresponds
to using demeaned variables, but not in the some seminal articles (e.g. Campbell and Yogo,
2006). Owing to the near non-stationary nature of the variables, demeaning may not provide more
accurate estimates. In particular if 7 is indeed nonzero but very small so that a near linear trend
is mistaken for a non zero mean (see for instance Péstor and Stambaugh, 2009, where 7 is low
when p is close to unity). Chevillon and Hendry (2005) have shown that small nonzero drifts can
have a significant influence on the multistep forecasts when dealing with non-stationary variables.
Also, the literature on returns forecasting has acknowledged the importance of slowly drifting
expected returns (see e.g. Lettau and Van Nieuwerburgh, 2007). For these reasons we allow for
the parameter 7 in (1) to be nonzero but assume that it is small and model it via local-asymptotics
as a Pitman drift:
m=t (8)
Such a local drift would be of low magnitude, justifying the local-asymptotic assumption. Local-
to-zero drifts have been used inter alia in Monte Carlo simulations of unit root tests in Vogelsang
(1998), Rossi (2005a) and Busetti and Harvey (2008); they have been studied analytically by
Haldrup and Hylleberg (1995) and Stock and Watson (1996). Parameterizing the drift as (8)
induces a (nonlinear since pr < 1) deterministic trend of order O (\/T ) . In the paper, we denote
by y; the triangular array that is generated by the non-constant parameters (rr, pr) .
Second, we consider either hold the horizon h constant, or letting it grow as a constant fraction

of the sample size T as in the following definition.



Definition 1 Let h > 1 denote the horizon of interest.

We refer to the horizon begin long with respect to the sample size T if there exists a constant
c € (0,1) such that h/T — c as T — oc;

the horizon is short if h is constant irrespective of T'; and

the horizon is said intermediate in a sequential asymptotic setting where h/T — ¢ as T — oo and

then we let ¢ — 0.

Long run forecasting has been studied by Stock (1996), Phillips (1998), Kemp (1999) and in
long-run predictive regression by Valkanov (2003), Torous et al. (2004), Turner (2004) and Elliott
(2006). Although different, the sequential asymptotic intermediate horizon framework relates the
setting of Hjalmarsson (2011) where h/T — 0.

Finally, the problem of misspecification may arise even for h = 1 if g; or ¢; exhibits serial
correlation and cross correlation. We define their joint autocovariance function

E[][]: _[ & (k) sg,euc)}
€t €t—k

| &c (k) E(k)

(1]

with 2 = 327°° __Z; and denote ¢ = 37 €. (k), 0 = S.02° . & (k) , with as before 02 =
+oo
oo & (K) -

3 Estimators and Forecasts

This section provides our main results. First, we consider the asymptotic distribution of the
OLS estimators (7, p) and (73, pp) under various assumptions on the horizon. Then we derive the

implications of our results for forecasting.

3.1 Distributions of empirical moments

Under Condition P, T1/2 Z}ZTJ €; = oW (r), as T — oo, where W (r) denotes a Wiener process.
We define the Vasicek process? Ky 4(r) = ¢fs(r) + N e®r=8)dW (s),for r € [0,1], where the
functional® f() : R — C'[0, 1] satisfies f (:) : v — (e?" —1) /¢ for ¢ € R\ {0} and fo (r) = r. By
extension, for a given o > 0, denote by Ky 4 (r) the functional Ky 4 (r) = 0Jy /4,4 (r) solution to

the linear stochastic differential equation.
dK . (r) = [ + 9Ky (r)] dr + odW (r) (9)

with initial condition Ky 4 (0) = 0. Ky 4 () is a Gaussian process for fixed r with expectation
¥ fs (r) and variance o2 fay (). For ¢ = 0, it reduces to an Ornstein-Uhlenbeck (OU) J, (1) =
Ko’qg (’l") .

21t is standard in the literature to parametrize instead the process imposing ¥ = —\¢ for some X > 0.
3We denote by D [0,1] the space of real-valued functions on the interval [0, 1] which are right continuous and

have finite left limits (cadlag). C[0,1] is the subspace of D [0, 1] of continuous functions. We will straightforwardly

extend this definition below to allow for » > 1 in forecasting.



First, holding h constant, the variance of the fixed horizon multi-step disturbance wy, ; admits
the variance

U?H = lim T~ tht—ha —1—22 — )& (i

T—o0

and let its long-run variance oi = limy_ 0o T~ WVar [Z£ zjwh z} = h%02. Then, simply, for r €

0,1, T-Y2 3 0 s = 0, W (r) = hoW (1), as T — oo.

When letting h be a fraction of the sample size T': h = O (T') , wp,¢ becomes a non-stationary
series exhibiting a stochastic trend and the usual scaling factors for integrated processes no longer
hold. We define the operator dg which, for any diffusion process Z (r) defined on C'[0, 7], n > ¢ lets
857 on C'[0,n] be such that: 657 (r) = Z (r) —e®Z (r —¢), for ¢ <r <nand 657 (r) = Z (r),
for 0 < r < ¢. A proposition follows that provides all the asymptotic convergence properties that

we require in the paper.

Proposition 1 Let y; be generated as (1) under Condition P with local asymptotic parameters (7)
and (8). Then, the following holds as T — oo,
under short horizon, h € [1,T) is constant,
_ _ 1 _ 1
(an) T2y 70y = Ky g, T2 0= [y Kpo, T2X, 02 = Jy K24
(bn) T S0 Ynwne = ho [y Ky odW + 4 [ho? — o2, ]
(cn) T-1/2 Zg}? wp; = hoW (r), T} ZtT:h wit — aﬁ,h.
under long horizon h/T — c € (0,1), as T — oo,
_ _ T 1 _o T 1
(ac) T2y 1) = Ky g (17“)7 T3 e = [, Ko, T Qthg vi = Jo K g
(be) T2 ysnwns = [, Ky g (r—c)85Jp (r)dr — 5e?e™9¢[f4 (c)]
2
— C — 1 C C
(ce) T I/Qwh7LTTJ =05Js(r), T 3/2 Z?:h why = [, 65y (r) dr, QZt hwht = f {6 Jp (1 } dr.
To allow for a comparison between short and long horizons in Proposition 1, the following

corollary considers the intermediate horizon setting. The notation A éo B means that as ¢ — 07,
c—r
forallz e R, Pr(A<z)/Pr(B<z)— 1.

Corollary 2 (Intermediate Horizon) Under the assumption of 1, the asymptotic distributions

under long horizon settings satisfy as c —> 0:

(@0) [} Koo = Jy Koo [IED, = f3 K3
) S Ky (r—0) 557 <r>dr—§cw2 “Ufo () 2 Veo [y KM ) dW (r)

(ce) 05 J¢ (r+c¢) %0 oW (r+c)—W(r)], fc 5;J¢ r+c)dr cf)O VeaW (1), and
L 2
f 0553 (r) dr S, 00
One of the key implications of the different behaviors under short and long horizons relates

to the sample covariance between the regressors and the disturbances in expressions (1) and (3).

Under short horizons:

T T h—1
-t (Z Yt—hWh t — hz yt—1€t> = — Z (h —1i)& (i) (10)
t=h t=1 i=1



so differences between multi-step and scaled one-step moments only arise asymptotically when the
error ¢; is autocorrelated.

Expressions under long horizons are more involved, but intermediate horizons allow for an easy

comparison:
. _ L 1
Th_I)T;OT 2 Zyt—LchchTj,t o 2o fo Ky (r)dW (r),

T2 (I_CTJ S yt_let) = c (0 fol Ky dW + 3 [0 — 03]) ) (D
This latter expression show that in OLS estimation, there will be a trade-off of bias and efficiency be-
tween one-step ahead and multistep projections. Indeed the expectation of Th_rgo T723 y,_ [T | W|cT ] t
is nonzero but o (c) whether or not the error is autocorrelated.* By contrast the corresponding
expectation of T2 (LCTJ ZZ;I yt—1€t) is zero in the absence of misspecification but O (¢) other-
wise. In terms of variance, the order is reversed: the multistep moments have asymptotic variance
in the O (c) and the scaled one-step in O (c?) for ¢ — 0.

The previous analysis show that whether the horizon is short or long will have a significant
impact on the estimators. Short horizons multistep estimation will be affected by misspecification,
and this may be beneficial or detrimental. By contrast, long horizon multi-step estimation will be
mostly unaffected by the misspecification. This is due to the fact that as h — oo, the multi-step

error wp, ¢+ becomes an integrated process whose autocovariance function is constant; in other terms,

2

the correction ho® — o7,

— 0 in Proposition 1-(b,) .

3.2 OLS Estimators

To emphasize the different behaviors, define the scaled deviations of OLS slope and intercept

estimators from the parameters as:®
yp=T(pr —1) =, and wp=TY2(Fp—71p) = m. (12)
We define, for notational ease, the following stochastic matrix

1
1- K
Dc—[ ¢ L W].

1 1
[ Kps [ K7,

The one-step OLS estimator is then characterized by

[ o ]:D()l[ ) oW (1) o ] (13)
Yo — ¢ o Jo KypdW + 757

The presence of a local-to-zero drift implies that the stochastic and the deterministic trends have

identical asymptotic orders of magnitude, both O, (T'/2). The unit-root estimator is super-

consistent but the corresponding error is of order O, (T*I) and not the O, (T’3/ 2) observed

4The term %cdﬂe*“ [fo (c)]2 that arises in proposition 1-(bc) is O (c3). It is zero in the absence of a drift, i.e.
when ¢ = 0.
5We define yr as deviation for pr for unity rather than from pr for ease of notation in the long horizon setting.



in the presence of a true linear trend. When ¢; is white noise, 0 = o, and we denote the esti-
mators of a true AR(1) as (7,7 ) = oDy (W (1) ,fol dedW) . In the presence of dependent
errors, (0% —02) /2 = Y77, & (i) and this is the channel through which misspecification of the
innovations affects the estimators. The correlation between 7wy and -y is then a positive function
of — fol Ky 4dr and the latter’s expectation has a sign opposite that of .

Now, the previous results may be used for computing IMS and DMS estimators of the mul-

/
tistep parameters (Th_’T,phyT)/ = (pé«h}TT,p/}}) . The IMS estimators are naturally defined as

/
(?{h},T7b\{h},T)/ = (A;h}?T,Z)\’Tl) . The DMS estimators (?h’T,ﬁh,T)/ are computed via OLS of (1)

over a sample of size T. We denote the asymptotic limits as follows. Under short horizon (fixed h),

IMS : (\/T (?{h},T — Th,T) T (ﬁ’% - 1)) = (Tr{h}/y{h}) )

DMS : (\/T (Thr —7,0), T (Prr — 1)) = (Th,n) ,

and under long horizon, as h/T — ¢,

IMS : (T—l/2 (Tthyr = Thr) S P — 1) = (T} Wey) »

DMS : (T71/2 (?h,T — Th,T) aﬁh,T - 1) = (ﬂ_ca’yc) .

Using the results above, the following Proposition relates the distribution of the multi-step esti-

mators to those of the one-step.

Proposition 3 Let y; be generated as (1) under Condition P with local asymptotic parameters (7)
and (8). Then the following holds as T — oo,

under short horizon, h € [1,T) is constant, and the limits are,

IMs ;| T ] _hlﬂo
L V{r} Yo

DMS : Wh]:h 7o X

L Th Y0

+ 5 (ho? ~02,) Dy [ 0];

under long horizon, h/T — c € (0,1), the limits are

Ms < | e ] [ e © = Fo @10+ F () 70 ]

L e} L T ()%
- -

DMS : WC]—[ 0 ]—FDCI[ 1 f66¢J¢(T)d: 2
| e dfy (c) [ Kyg (r—c)05Js (r)dr — sep?e™ % [fy (c)]

Proposition 3 allows for a comparison of IMS and DMS estimation accuracy. Both estimators
are consistent for the multistep parameters at short but not at long horizons. Indeed for the
latter, the estimators must be scaled by an additional T' (or h) to ensure they weakly converge.
At short horizons, IMS and DMS yield identical asymptotic distributions when ¢; follows a white

noise and these are simply h times the one-step. By contrast, serial correlation in ¢; implies that



DMS distributions which are not A times that of the one-step model. To see the impact of the
autocorrelation of ¢;, consider the differences between (w{h}, ’y{h}) and the corresponding random

variables (W{Xh},'y{xh}) when ¢, is white noise (we define (7,,~,) similarly): then

(W{h} = Ty Viny — W{Xh}) = h (0 — 7570 — )

ho? — o2
(TFh *W;fﬁh *7}7) = o2 _ U;)h (770 *Woxﬁo *’Y(T)
€
haj*o'zzu e’} Ay —1 h—1 . . . .
where —5—st = h — (32,6 (1))  D_,—; (h—1i)& (i). In particular, if ¢ follows an MA(q),
then for h > ¢, ho® — o2, = qo® — aaq. This shows that if ¢; follows a moving average (as in e.g.

Pastor and Stambaugh, 2009, where it is an MA(1)) then the impact of the serial correlation in ¢;
is increasing linearly in the horizon for IMS but bounded by that at horizon ¢ for DMS. Banerjee,
Hendry, and Mizon (1996) find a similar result. Now the actual distribution of (ﬂ'o — 75, Y0 — %X)
depends on the parameters of the DGP but its expectation has the sign of (—,1) (02 — 062) =
(—,1) Zi:ll (h—1)& (i). Since, in general, the bias in autoregressive parameter estimators is
negative an AR(1) with a near unit root, this implies that E(WOX) < 0. Hence if ¢; is negatively
autocorrelated then the probability E [70 — %x] < 0 so the distribution of v is shifted to the left, i.e
p further away from unity, with a larger absolute bias than when ¢; is white noise. As the horizon
grows, then IMS compounds the bias but that of DMS remains bounded (if ¢; follows a moving
average). Given the negative expected correlation between the intercept and slope estimators,
positive ¢ will have the same effect on the bias of the multistep intercept estimator. This is what
Chevillon and Hendry (2005) found in their simulations.

Proposition 3 also allows for a comparison of the estimators at long horizons, but nonlinearities
render the analysis of analytical results difficult. For this reason, the following corollary considers

intermediate horizons.

Corollary 4 (Intermediate Horizon) Under the assumptions of Proposition 3,the asymptotic

distributions under long horizon settings satisfy as ¢ — 0 :

X
Tic} L, o and Te L Je X7To
Y} —€P | 70 | Y —¢ Ye—cp | 0 Yo — ¢

Corollary 4 confirms the analysis that was made previously that intermediate horizon DMS

estimators are robust to serial correlation of €; since their distribution is a proportional to the
unbiased (7, 7). This is not the case for IMS which are biased. Yet, as ¢ — 0, /¢ is of higher

magnitude than ¢, so DMS suffers from higher variance than IMS.

3.3 Forecasting

We now derive the distributions of the forecast errors. Parameter estimates are used to forecast
the series h steps ahead from an end-of-sample forecast origin yr using the expressions of Section
2. Define the IMS forecast errors under short horizon as €7 = yr4n — Yrinr and under long

horizons as €}, = h™'/%€, 7. Denote the corresponding DMS forecast errors as €, and € .

10



In short-horizon forecasting, consistency of the estimators imply that the asymptotic limit of the
forecast error is simply e — Z;L;é €ET+h—j zﬁ 90 and similarly for ej,;r. Hence, for a comparison
we derive the short horizon distributions as deviations from Z;L;é €r+h—j;. For the long horizon
case, we need to extend the definition of Ky 4 (1) to cover r € [0,1 + ¢] for some ¢ € (c,1). The

following proposition provides asymptotic distributions of the forecast errors.

Proposition 5 Let y; be generated as (1) under Condition P with local asymptotic parameters (7)
and (8). Then the following holds as T — oo,
under short horizons h € [1,T),

~ h— 1
T2 (€hr — Zj:(} preryn—;) = —mmy — (Y — o) Ky (1)
T2 (Gur — 00 Pherin—j) = —mn— (yn — he) Ky (1)

and under long horizons h/T — c € (0,1),

Veeir = = [mey + (ey — 0S5 () Ky ()] + 6575 (1+¢),
\/Egz,T = [T+ (ve — 0fp (c) Kyp (1)] + 52J¢ (1I+4¢).

The key to forecast accuracy is here the correlation between the slope estimator and the de-
meaned forecast origin. Indeed, whereas for stationary processes it has been customary to assume
that the correlation between the forecast origin and the estimators has little impact, this assump-
tion does not hold in the presence of trending behavior (see Ing, 2004). In short horizon forecasting,
the proposition implies that

h—1
T'/? (€njr — enir) = *hz (1 —1i/h) & (3) M(l)g
i=1 J (K Y. ¢>

where K ; = Ky ¢ (1) — fol Ky ¢ (u) du. This expression shows that for e, ~ MA(q), whichever

(14)

method is more precise at horizon ¢ + 1 will tend also to be so for h > ¢ + 1, and the difference in

forecast errors is close to being linear in h. When ¢, is white noise and the horizon short, both meth-
2
ods are asymptotically equivalent. Expression (14) also shows that if E {K oW/ S (K v ¢) ] >0,

such as when ¢ > 0, then negatively autocorrelated €; imply that E [gh\T - gh|T] > 0. In particular,
if ¢; follows an MA(1) , then

sign (E [énjr — enr]) = —sign (& (1) ¥) . (15)

Heuristically, if E[€h|T] and E[€h|T] have the sign of ¢, then & (1) < 0 implies that forecast biases
favor DMS: E [|&,r|] > E [|énr|] -
Next, we consider intermediate and long horizon settings. For low ¢, the forecast errors from

either method do not behave comparably with respect to the horizon:

11



Corollary 6 (Intermediate Horizon) Under the assumptions of Proposition 5, the limiting dis-

tributions as ¢ — 0 satisfy:

i £y Ve = ) K (1) = Vem + o |G =) (16a)
Cor c%o — (% —¢) Kyo(1) —m5 +0 [W a+ C)ﬁ v (1)] (16b)

The corollary shows the insight we drew from the estimators carry over to the forecasts: (i)
since DMS estimator biases are not affected by serial correlation of €; at intermediate horizons nor
are the forecast; yet (i) DMS forecasts have higher variance. There therefore exists a trade-off
between DMS robustness to dynamic misspecification and the compounded variance due to the
horizon effect. The corollary shows though that at intermediate horizons in the presence of serial
correlation of €, biases differ by an order of magnitude: E [€} ]| /E [€} ;] = O (v/¢), but variances
are comparable Var [eqT] =0(1), Var [EZT] =0().If (7§ —9) K,p@ (1) has zero expectation,
then DMS is unbiased but not IMS so the contribution of the IMS bias to the MSFE is of order c.

3.4 Predictive Regressions

The results that were derived in the multi-step autoregression can be used to obtain the distri-
butions of the estimators in the predictive regression of z; on y;_p. Define the bivariate Brow-
nian motion H (r) such that T2 " (¢, ) = H(r) = (H (r),oW (r)) where we write
H = cU + o6W. In Expression (6), a1 = (1 — p)a + B7 hence since (1 —pr) = O (T'), only
7 needs to be considered local asymptotic. To match the results from Proposition 1, we let
Gy (r) = [y e?""dH (s) = (G, Js). A proposition follows.

Proposition 7 Let {z:,y:} generated by (5), where €; and e; satisfy Condition P and with local
asymptotic parameters (7) and (8). Then the following holds, as T — oo, if B # 0

under short horizon, for h € [1,T) constant, there exist’ w; € R such that

(an) T7V2 3 wne = H (1) + 0 (h—1) BW (r)

(bn) T~V Sy entwne = [y Ky od (H + 0B (h—1) W) + @y

under long horizon, for h/T — c € (0,1),

6The definition of wy, is

_ 1 (h=1) L on- 1
@ = 55 (=D& + & O+ 77"V [0 = 1) — & (O0]) = 5047 (= D& & (W] = z& (= 1)
(17)
oo h—1 h—1 )
Y e () = D e (M=) + | Do [(h = Do = e () = P [(h = Déere = e (G = (h = )]
2 2 2

fj T (b= 1) & — & (k- 3)]

12



(ac) T3 00w = B [ 85 Jds
(bC) T Zz:h Yt—hWh,t = B fcl Ky (’I“ — C) 5;J¢ ('r) dr — %cﬁ¢2€—¢c [f¢ (C)]2

Corollary 8 Under the assumptions of Proposition 7, if B = 0 the results simplify to
() T2 wne = H (1), (55) T S0, g nwne = fy KyodH + 3572, & (i)
(@) T™V2 5 wng = H(1) = Hi(0), (0) T X/, yenwne = [ Kyg (s — ) dH (s)

Elements (b},) and (b)) show that only long horizons are robust to the cross-correlation > -, & . (i)
Proposition 7 shows that the results that were derived for multi-step forecasting can be used for
the analysis of the predictive regression. In particular, the scaled empirical moments converge to
distributions that are very close to those of DMS. They share the similar properties that when
h = | T'| misspecification of the regression errors has a negligible impact. By contrast, if a modeler
had attempted to forecast using a one-step predictive regression, she would have been subject to
errors comparable to those found in IMS forecasting.

Indeed consider Eh the OLS estimator of 3, in the regression z; = ap + BrYt—n + wht. Let

éf? = > 2, 1 & (i), then a straightforward application of Proposition 7 yields the following

proposition.

Proposition 9 Under the assumptions of Proposition 7, the following holds:

first if B # 0, X

T(E‘ﬁ) = (fol (KZ>¢)2dT> (fol Kg)(bd(gU—&—a(SW)—i—wl) def A3

~ 2 -1

T (ﬁh - ﬁ) = (fol (Kg@) dr) [fol K" ,d(U+o[6+8(h—1]W)+ wh} “ Nsimy

~ 2 -1

By e = 5 (170 (R,) ar) [ = 5 () = dewte ey 0] L
and if =0
(TBaTE}HTE\_CTJ) = (

Jo Kg,quH':fgf)e I Ki‘(detii’,? S K$,¢(S—C)iH(s)>
1 ) 1 ) 1—c .
Jo (wa) dr Jo (Kg,qs) dr 0 (ng) dr

Corollary 10 Under the assumptions of Proposition 9, at intermediate horizons,
L 0B fo Kb ,dW . L fy KL dH
Moo Sy Ve Tlr g HA#0 and doe = e

otherwise.
c—0 c—0 fol(Kg‘d))ZdT

Corollary 11 Consider the regression of h™* 22:1 Zevk on a constant and xy, the estimator of

the coefficient of x: admits the following distribution:
if his fized, T (Buy = B) = h™ Sy Mooy
if h/T — ¢, Be — Bfy(c) = j;f Mg sds.

Proposition 9 shows that intermediate and long horizon predictive regressions are robust to
dynamic misspecification (yet not to contemporary correlation of the errors). As ¢ — 0, the

behavior of ¢=1/2)\g .. is close to that of A\g provided that all =, are diagonal. The main difference
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is that the former involves the stochastic integral of K :, » With respect to increments in W whereas
that of A involves the increments of H. Hence, when 8 # 0, Ag . is immune at intermediate horizons

to the long run endogeneity and serial correlation of the errors in the predictive regression.

4 Monte Carlo

In order to illustrate the theoretical results presented above, we perform some simple simulations.
We first compare the distributions of IMS and DMS forecast error under dynamic specification to
those under correct specification. For this, we simulate an ARMA(1,1) data generating process
(DGP) y¢ = 7 + pyt—1 + € + e;—1 where € ey (0,1) as well as an AR(1) with the same long
run variance y; = 7 + pys—1 + (1 + 0) €;. Parameters vary as follows: and p € {£+.99,+.95,+.6,0},
0 € {£.9,£.4} and T € {100,250} (with an initialization of 200 observations) with h ranging from
1 to |T/3]. For each DGP, we compute 5,000 replications of the IMS and DMS forecast errors
based on an AR(1) model. We report the p-values of a Kolmogorov-Smirnov test for the null of
equal distributions of the forecast errors under the ARMA(1,1) and AR(1) DGP. Non-rejection
of the null is interpreted as evidence that for the DGP and horizon considered, the forecasting
method is robust to the dynamic misspecification considered.

Figures 1 and 2 report the p-values of the Kolmogorov-Smirov test as a function of the horizon
and for, respectively, T'= 100 and 250 observations. The simulations all confirm that the p-values
reject equal distributions of the forecast errors (and hence robustness to dynamic misspecification)
at very low horizons in the presence of severe misspecification (large |0|). Yet the p-values increase
rapidly with A when p is positive. This is especially true of DMS; this is less so for IMS: for
instance, when p = .99 and 6 = —.4, the test rejects at the 10% level for A < 0.15 x T.

The figures also report cases where p < 0 and we see that the forecasts then tend to be less
robust, in particular when 6 > 0 and p is close to —1.

To assess how the results on multistep forecasting carry over to predictive regressions, we
simulate Model (5) where &« = 7 = 0 and § = 1. Under dynamic misspecification &; follows an
MA(1) process with parameter 0 and standard Gaussian white noise innovations, whereas under
correct specification &, AN (0, 1+ 9)2). We consider both the case of Corr(es,e;) = 0 (no
endogeneity) and of Corr(es, ;) = 1/v/2 ~ .7 (endogenous case). We let ¢; AN (0,1) and consider
various values of p and h as before. We only record the case of T' = 250. Results are reported
in Figures 3 and 4, respectively for the exogenous and endogenous situations: the graphs present
the p-values of the Kolmogorov-Smirnov test for the null that the standardized B (i.e. divided by
their estimated standard error, without autocorrelation correction) have identical distributions for
gy ~ MA(1) or g ~ iid. The figures report patterns similar to those observed under multi-step
forecasting.

Finally, we assess the implications of the results above for the test of the null Hy : 8 = 0 at the
10% significance level in the predictive regression model with p = 0.99. For this, we consider the

simple situation where critical values of the test statistic is obtained by parametric bootstrap over
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IMS, 6=-0.9 100 DMS, 8=-0.9

15

Figure 1: The figure reports p-values of the Kolmogorov-Smirnov test that the distributions of
forecast errors (IMS, left and DMS; right) are the same in the models with misspeficied and correctly
specified error dynamics. The horizontal axis is the horizon h. The sample size is T = 100

observations.

—+—+p=-0.99 — p=-095 — p=-06 - p=0 —— p=0.6 - p=0.95 — p=0.99
IMS, 6=-0.9

0 20 0 e 8 TG 20 60 80
DMS, 8= 0.4

20 40 60 80
IMS, 6=0.9

1.0

Figure 2: The figure reports p-values of the Kolmogorov-Smirnov test that the distributions of
forecast errors (IMS, left and DMS, right) are the same in the models with misspeficied and correctly
specified error dynamics. The horizontal axis is the horizon h. The sample size is T = 250

observations.
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no endogeneity, fi/se. —— p=-06 —— p=0 —— p=0.6 p=0.95 — p=0.99
100 8=-09 ; 3 100p =04
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Figure 3: The figure reports p-values of the Kolmogorov-Smirnov test that the distributions of
standardized B are the same in the predictive regression models with misspecified and correctly
specified error dynamics (without long run endogeneity). The horizontal axis is the horizon h. The

sample size is T' = 250 observations.

endogenous, fiise. —— P=06 ——- p=0 — p=06 -~ p=0.95 — p=0.99
1001 6=-09. \ : 100 6=-04

0.75
0.50

0.251

100r "
0.75F
0.50F
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Figure 4: The figure reports p-values of the Kolmogorov-Smirnov test that the distributions of
standardized S are the same in the predictive regression models with misspeficied and correctly
specified error dynamics (with long run endogeneity). The horizontal axis is the horizon h. The

sample size is T = 250 observations.
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a sample of T = 250 observations under the assumption that e; is 4id and normal.”

Figures 5-8 report the rejection probabilities of four statistics: t( is obtained as as simple ¢-test
where the DGP shows no serial correlation in the errors, ¢y, gac is computed with a New-West
HAC correction (in a DGP with no serial correlation), ¢ is the statistic where &, follows an MA(1)
with parameter 6 (where § =-0.4 in Figures 5 and 6, 6 =-0.9 in Figures 7 and 8) and tga¢ is the
statistic with Newey-West HAC correction where e; ~ M A (1). In all DGPs considered the long
run variance of &, is (1 + #)®, and we consider both the exogenous case (Corr(ey, ;) = 0 in Figures
5 and 7) and the presence of endogeneity (Corr(e;,¢;) = 1/v/2 in Figures 6 and 8).

The figures show that misspecifying the dynamics of ¢; yields very low local power for the
standard ¢ statistic close to the null 5 = 0 at all horizons when Corr(e, ;) = 0. In the exogenous
case, tgac is slightly undersized but shows better local power than t. As the horizon h grows
though, HAC corrections lower the power, whether or not ¢; is serially correlated. By contrast,
standard ¢ test do not suffer from this upper limit and the power tends to unity as |3| gets larger.
Hence a combined test that rejects if either ¢ or tgac rejects will yield better local and global
power at all horizons. When 6 =-0.9 so the degree of misspecification is large, the local power
remains low though.

Similar results hold for the endogenous case where Corr(es,¢;) = 1/+/2. The main difference is
that both ¢ and ¢ty 4¢ are locally biased and skewed at low h. Both are unreliable here when h = 1
(tmac become very liberal).

Overall, our simulations show that the robustness of long horizon projections to dynamic mis-
specification advocates the use of the non HAC corrected statistic. To ensure better power, this
statistic should be combined with its HAC version which the empirical literature has usually con-

sidered: the combined test rejects occurs if either statistic does.

5 Conclusions

In this paper, we have studied the properties of iterated and direct multi-step forecasts in the
presence of model misspecification and non-stationarity (both stochastic and deterministic trends).
We have shown that in this framework, most general random walk estimation results apply when
standard Brownian motions are replaced with trending Ornstein-Uhlenbeck processes. This allowed
us to characterize the non-linear patterns exhibited by both estimators and forecasts. In particular,
by letting the forecast horizon h grow with the sample size, we were able to show how much IMS
and DMS differ in terms of long range forecasting. A Monte Carlo simulation illustrated the
analytical results that were derived from the weak trend framework. Namely, that DMS is exhibits
robustness to dynamic misspecification at intermediate horizons, and, these can be possibly very

short in finite samples.

TThis critical value is unobtainable in practice since we compute it under a known p so this constitutes an
unfeasible bound where we do not need to resort to the corrections considered in the literature, e.g., Bonferroni as
in Rossi (2005) or the IVX of Phillips and Magdalinos (2009) and Kostakis et al. (2015)
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Figure 5: The figure reports the rejection probabilities of four test statistics (to,%o,mac,t and

tgac) for the null that 8 = 0. The sample size is T = 250 observations, § = —0.4 and there is no
endogeneity.

endogenous case, 6=-0.4 -——-Pr.Rg.t, t— t
h=1 h=2 Hac
1.0 \ —= 10
05" 05
L Lo b by ) B L L L L B
-0.3 -0.2 -0.1 0.3 -0.3 -0.2 0.2 0.3

Figure 6: The figure reports the rejection probabilities of four test statistics (to, %o, mac,t and
tmac) for the null that S = 0. The sample size is T = 250 observations, § = —0.4 and there is
contemporaneous endogeneity: Corr(es, ;) = 1/v/2.
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Figure 7: The figure reports the rejection probabilities of four test statistics (to,%o,mac,t and
tgac) for the null that 8 = 0. The sample size is T = 250 observations, § = —0.9 and there is no

endogeneity.
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Figure 8: The figure reports the rejection probabilities of four test statistics (to, %o, mac,t and

tmac) for the null that S = 0. The sample size is T = 250 observations, § = —0.9 and there is
contemporaneous endogeneity: Corr(es, ;) = 1/v/2.
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The recommendations that we were able to derive are as follow. A forecaster who is confident
that her model is well-specified ought to use iterated multi-step forecasts when the horizon is small
compared to the sample size. If she must obtain long horizon forecasts using the available data, she
should then resort to DMS. By contrast, should she suspect that her model might be misspecified,
then DMS ought to be used at all horizons.

The Direct Multi-Step Forecasting framework has also been show to be useful for the analysis
of predictive regressions as found in the literature. It follows that long-horizon regressions can be
understood to work well when the model is misspecified for the serial correlation of the regression
errors. Using simple simulations, we were able to show that, at intermediate or long horizons,
a combination of the HAC test often considered in the empirical literature with the non-HAC
version of the statistic achieves better global power than either separately. The literature has
also considered alternative test, (optimal under Gaussianity in the case of Jansson and Moreira,
2006) or, e.g., Campbell and Yogo, 2005) or finite sample distributional adjustments (McCloskey,
2012). Although we do not explicitly study them here, our theoretical analysis seem to indicate

that similar results are likely to hold.

References

Andrews, D. W. (1988). Laws of large numbers for dependent non-identically distributed random
variables. Econometric theory 4(3), 458-467.

Banerjee, A., D. F. Hendry, and G. E. Mizon (1996). The econometric analysis of economic policy.
Ozford Bulletin of Economics and Statistics 58, 573-600.

Boudoukh, J., M. Richardson, and R. F. Whitelaw (2008). The myth of long-horizon predictability.
The Review of Financial Studies 21(4), 1577-1605.

Busetti, F. and A. Harvey (2008). Testing for trend. Econometric Theory 24 (1), 72-87.

Campbell, J. and R. Shiller (1988). The dividend-price ratio and expectations of future dividends
and discount factors. Review of Financial Studies 1, 195-228.

Campbell, J. Y. and M. Yogo (2006). Efficient tests of stock return predictability. Journal of
Financial Economics 81(1), 27-60.

Carriero, A., T. E. Clark, and M. Marcellino (2015). Bayesian vars: specification choices and
forecast accuracy. Journal of Applied Econometrics 30(1), 46-73.

Chevillon, G. (2016). Multistep forecasting in the presence of location shifts. International Journal
of Forecasting 32, 121-37.

Chevillon, G. and D. F. Hendry (2005). Non-parametric direct multi-step estimation for forecasting
economic processes. International Journal of Forecasting 21, 201-18.

Clements, M. P. and D. F. Hendry (1996). Multi-step estimation for forecasting. Ozford Bulletin
of Economics and Statistics 58, 657-683.

20



Deng, A. (2013). Understanding spurious regression in financial economics. Journal of Financial
Econometrics 12(1), 122-150.

Elliott, G. (2006). Forecasting with trending data. In G. Elliott, C. W. J. Granger, and A. Tim-
mermann (Eds.), Handbook of Economic Forecasting, Chapter 11, pp. 555-604. North-Holland.

Fama, E. and K. French (1988). Dividend yields and expected stock returns. Journal of Financial
FEconomics 22, 3-25.

Fama, E. F. and G. W. Schwert (1977). Asset returns and inflation. Journal of financial eco-
nomics 5(2), 115-146.

Ferson, W. E., S. Sarkissian, and T. T. Simin (2003). Spurious regressions in financial economics?
Journal of Finance 58(4), 1393-1413.

Haldrup, N. and S. Hylleberg (1995). A note on the distribution of the least squares estimator of
a random walk with drift: Some analytical evidence. Economics Letters 48, 221-8.

Hendry, D. F. and A. B. Martinez (2017). Evaluating multi-step system forecasts with relatively
few forecast-error observations. International Journal of Forecasting 33(2), 359-72.

Hjalmarsson, E. (2011). New methods for inference in long-horizon regressions. Journal of Financial
and Quantitative Analysis 46(3), 815-839.

Ing, C.-K. (2003). Multistep prediction in autoregressive processes. Econometric Theory 19, 254—
279.

Ing, C.-K. (2004). Selecting optimal multistep predictors for autoregressive process of unknown
order. The Annals of Statistics 32, 693-722.

Jansson, M. and M. J. Moreira (2006). Optimal inference in regression models with nearly inte-
grated regressors. Econometrica 74(3), 681-714.

Kemp, G. C. R. (1999). The behavior of forecast errors from a nearly integrated AR(1) model as
both sample size and forecast horizon become large. Econometric Theory 15, 238-256.

Lanne, M. (2002). Testing the predictability of stock returns. Review of Economics and Statis-
tics 84, 407-15.

Lettau, M. and S. Ludvigson (2001). Consumption, aggregate wealth, and expected stock returns.
the Journal of Finance 56(3), 815-849.

Lettau, M. and S. Van Nieuwerburgh (2007). Reconciling the return predictability evidence: The
review of financial studies: Reconciling the return predictability evidence. The Review of Fi-
nancial Studies 21(4), 1607-1652.

Marecellino, M., J. Stock, and M. Watson (2006). A comparison of direct and iterated multistep ar
methods for forecasting macroeconomic time series. Journal of Econometrics 135, 499-526.

McCloskey, A. (2012). Bonferroni-based size-correction for nonstandard testing problems. Techni-
cal report, Brown University.

McElroy, T. and M. W. McCracken (2017). Multistep ahead forecasting of vector time series.
Econometric Reviews 36(5), 495-513.

21



Péstor, L. and R. F. Stambaugh (2009). Predictive systems: Living with imperfect predictors. The
Journal of Finance 64(4), 1583-1628.

Phillips, P. C. (2015). Halbert white jr. memorial jfec lecture: Pitfalls and possibilities in predictive
regression. Journal of Financial Econometrics 13(3), 521-555.

Phillips, P. C. and J. H. Lee (2013). Predictive regression under various degrees of persistence and
robust long-horizon regression. Journal of Econometrics 177(2), 250-264.

Phillips, P. C. B. (1987). Towards a unified asymptotic theory for autoregression. Biometrika 7/ (3),
535-547.

Phillips, P. C. B. (1998). Impulse response and forecast error variance asymptotics in nonstationary
VARs. Journal of Econometrics 83, 21-56.

Rossi, B. (2005a, October). Optimal Tests For Nested Model Selection With Underlying Parameter
Instability. Econometric Theory 21(05), 962-990.

Rossi, B. (2005b). Testing long-horizon predictive ability with high persistence, and the meese-
rogoff puzzle. International Economic Review 46(1), 61-92.

Rozeff, M. S. (1984). Dividend yields are equity risk premiums. The Journal of Portfolio Manage-
ment 11(1), 68-75.

Schorfheide, F. (2005). VAR forecasting under local misspecification. Journal of Economet-
rics 128(1), 99-136.

Stambaugh, R. (1999). Predictive regressions. Journal of Financial Economics 54, 375-421.

Stock, J. H. (1996). VAR, error correction, and pretest forecasts at long horizons. Ozford Bulletin
of Economics and Statistics 58, 685-701.

Stock, J. H. and M. W. Watson (1996). Confidence sets in regressions with highly serially correlated
regressors. mimeo, Princeton University.

Torous, W., R. Valkanov, and S. Yan (2004). On predicting stock returns with nearly integrated
explanatory variables. Journal of Business 77, 937—66.

Turner, J. L. (2004). Local to unity, long-horizon forecasting thresholds for model selection in the
AR(1). Journal of Forecasting 23, 513-539.

Valkanov, R. (2003). Long-horizon regressions: theoretical results and aplications. Journal of
Financial Economics 68, 201-32.

Vogelsang, T. (1998). Trend function hypothesis testing in the presence of serial correlation.
FEconometrica 66, 123-148.

Weiss, A. A. (1991). Multi-step estimation and forecasting in dynamic models. Journal of Econo-
metrics 48, 135-149.

22



Appendices

A Proof of Proposition 1
A.1 Short horizon

For r € [0,1], we write the series as the sum of a moving average and a deterministic component:

| Tr]—1 |Tr|—-1 .
—1/2 _ p—1/2 ¢|Tr]/T io)T -1 ~1/2 io)T ,
T yirr) =T e Yo + [E —o e ]wT + T g —o e €\ Tr|—i-
Hence,
o T Y LTr) r|—1t
T I/QyLTrj — efLT J/T\/;)TJNNQ5 (r) (1+O( +T 1/22 eUTrI=)e/T .

where T-1/2 Zgy ellTrl=0¢/Te; = J, (r) Phillips (1987). Proof of (ay,) follows. Now, we write
the statistic (by,) as a functional on D [0,1]. We first square T~ 1/2y; :

T 'y =T (Th + puye—n + wh,t)2
h=1 h=1
-2 (Z ez(b/T) w +71 2h¢/T 2 +T wh + o—3/2 <Z e(1+h)¢/T> DYe—n.-
i= i=0

Hence

2
o —1he/T — =12, _ 2he/T, 2 _ 72 1—eho/T 2
Yt—h,TWh it = Y7 — € Y¢—h,T (

1—e?/T

—1,.2 —3/2 [ _he¢/T 1—ehd/T —3/2
- T wh,t — 2T (6 1_6¢/T> 'l/]yt_h’T - 2T wQUhﬁt.

We notice that, summing over ¢,

T T h—1 T
T Z (yt2T - e2h¢/Tythh,T) =7 Z yir =T~ Z Yir — (62h¢/T - 1) T Z Yinr
t=h = —

t=T—h+1
T 2h-1
T! (yt2T T hT) = (Tl Z Yir — 20hT~ QZ% nr — 1 Z Yion T)
t=h t=T—h+1

1 (2hp)" 2 _—
+T2<§(z+2'T1 Zyt W
hence, as T'— oo
T
T3 (v — ) = h Ky (1) —2¢/ (o (1)) dr
t=h
Collecting the elements we find:
1 h 2 ! 2 12 !
TS venrng = 5 § {Kus OF =20 [ Koo 00 dr = 17102, ~ 20 [ Koodr
0 0

= g {{Kw,¢ (1)} - 2/0 (VK + 0K 4 (r)] dr — h—laih} . (A
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Now, using [t6’s lemma:
K] 4 (1) = (2Ky.o (1) [ + 0Ky o (r)] + 07) dr + 20Ky, (r) dW (r), (A.2)
{Kyo ()Y =0+ 2/01 [WE g (r) + 0K 4 ()] dr + 2"/01 Ky (r)dW (r). (A.3)
whence the result, using (A.1) and the definition of o7, .

A.2 Long Horizon

Preliminary results Item (a.) is clear using the Functional Central Limit theorem (FCLT)
and the Continuous Mapping theorem (CMT) respectively. As regard (b.), we first derive the
asymptotic distribution of sample moments of the multi-step residuals wp, ¢ (this constitutes the
proof of (¢.)). They follow an MA(h — 1)

t

h—1
j t—35)¢/T
wh,tZE Pr€t—i = E et=9)%/ €5
i=0 j=t—h+1

which, using Ur (r) = T-1/2 S €, can be rewritten so that we let appear a stochastic integral:

LrT) _ j/T
T Pwr) pry =Y 6¢(UTJ7J)/T/ dUr (s)
J=l(r—o)T ] +1 G=n/T
| T7)

3/T r
/ LT/ T=3) g (5) = / AT /T=9) g7 ()
(i-1)/T

i=T(r=o) 4170 rc

= a/ e?r AW (s) = oy (r) —oe®Jy(r—c).
We recognize the quasi-difference of an Ornstein-Uhlenbeck process:
T_l/zchTj,LrTJ = (5;J¢ (r) = (58J¢ (’I“) —ofe (C) J (7" —c). (A.4)

Using the continuous mapping theorem, we obtain the limit distributions of empirical moments of

T=12wy, |1y, first the sample mean: 73/ ZtT:h wyy = T73/2 Ef:[cTJ W eT |, | Tr]

T 1
T—3/2 Z Wer),j = 0/ 6 ds (r)dr, (A.5)
j=leT) ¢

and the sum of squares:

T 1
T2 ) whgy; =0 / (6575 (r)] dr. (A.6)

j=leT]

A useful lemma
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Lemma 12 Using the definition of §§ and Ky 4 (1) from the main text, then for nonzero ¢

1 1 1
/ (05K .0 (r)]? dr = / Kiw (r)dr — 920/ Ki,d, (r—c)dr

o¢ o?
- EKﬂw (1 =€) 05Ky, (1) = 6% (1 —¢) ry

1
05 [ 53R (1) + (1= 0) Koy (=)}
+ %C (/c 06K y.g (1) dW (r — ) +/C Ky (r—c)d[osW (r)]>

Proof. Develop

05K .6 (N]° = K2 4 (1) + 6%°K2 , (r — ¢) — 20° Ky 4 (r) Ky (r — ¢)
= K2, (r) — 0%°K3 , (r —c) — 20° [5§Ky,g (r)] Ky,g (r — ©) (A7)

When taking the integral over (c,1) with respect to r, we recognize the sum of fcl 05°K7, , (r)dr
and of —20 fcl 05K (r)] K (r — c)dr. We analyze them in turn. First, Expression (A.2) implies
that

02CdKi7¢ (r—c)=(20*Ky (r —c) [0 + ¢Kys (r — ¢)] + 0°°0%) dr4+200* Ky (r — ¢) dW (r — ¢)
(A.8)

hence
d [Kiﬂﬁ (r) — QQCKiwﬁ (r—c)]
= (2[00 {Ko (1) = 0% Koy (r = )} + 0 {3 (1) = 6%°K3  (r = )}]7) dr

+0 (L—0%)dr+20 [Kye (r)dW (r) — 0> Ky 4 (r —c)dW (r —c)] .

Integrating over (c, 1)
1 1
/ d[K} 4 (r) —0*K] 4, (r—c)] = (1-6%) (1—c)o” + 2¢/ {Kyo(r)—0*Kys(r—c)}dr
1
+ 2¢/ {K?M (r)— GZCK?#@ (r— c)} dr

1 1
+ 20 [/ Ky (r)dW (r) — HQC/ Kyg(r—c)dW(r—c)|.
Therefore

1 1
2¢/ {K?Mﬁ (r) —GQCKi’d, (r—c)}dr:2gb/ 6§CK12M) (r)dr

=K} (1) = 0K} ,(1—¢) = K} 4(c) = (1-6) (1 -¢)0
- 2¢/ {Kyo(r)—0*Kys(r—c)}dr

— 20 [/:de(r)dW(r)—920/01K¢’¢(r—c)dW(r—c) .
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Now, for fcl (06K y,6 (r)] Ky,¢ (r — c)dr, using the formula for stochastic integration by parts, if
c#0:

d[Ky,g (1) Kyg (r—c)] = [0 {Kype (r) + Ky (r — o)} + 20Ky, (r) Ky, (r — c)]dr
+ 0Ky (r)dW (r—c)+ 0Ky (r—c)dW(r),

since dW (r) and dW (r — ¢) are independent.

Combining (A.2) and the previous expression, the difference
Ky (r—c) 65Ky 5 ()] = d[Ky g (r) Ky g (r = o)] = 0°dKF , (r —c)
is then equal to

{0 {66Kyo (r)+ (1= 0°) Ky g (r—c)} + 20Ky 4 (r — ¢) 65Ky ¢ (r)] — 0?6} dr
+ o {[05K p,p ()] dW (r — ¢) + Ky 4 (r — ¢) d[05W (r)]}.

We then re-express 20K, ¢ (1 — ¢) [0§K .o (r)] dr as

Ky (r) Ky (r—co)) = 0°dK] ; (r —¢) = {0 {05Ky (r) + (1= 0°) Kyo (r — )} — 00} dr
— 0 {[05Kp,¢ (N]dW (r — ¢) + Ky g (r — ) dsgW (r)} .

The expression for 2¢ fcl (06 Ky ¢ (1)) Ky, (r — ¢) dr is therefore
1
Koo (1) K (L= 0 = 0K (1= 0) = [0 {850 (1) + (1= 0°) Ko (= b dr — 0% (1= )
1
0 [ (Ko (AW (=) + Ko = ) dB5W (1)
and the result follows using (A.7). m

Proof of (b.). We can now move to finding the expression for (b.). For nonzero ¢, we square

. 2
ye, 7 and express it as the sum (7p,17 + ph,rYt—h, + Wh )", O

2 2 1—e?h/T ’ -1 20k /T, 2 2
Yir =1 T oo/t T " +e Yi—h, + Why

1 edh/T 1 edh/TY
-+ 21!1 (1—6925/’1—‘) T 1/2e¢h/Tyt—h,T —+ 26¢h/Tyt_h,Twh,t —+ 2’1/) (1—@¢/T> T l/z’wh7t-

Summing over ¢ ranging from h to T' and rearranging yields

2eM/T—2 g Yt—h, TWht =772 E th)T—ewh/TT_2 E y?fh)T (A.9)
| = e#h/T?
2 (=1 -2 2
ot () T
11— /T
oh/T —3/2
~ 2e ( 1_€¢/T)T S v
1
1

(A
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Deterministic components admit the following limits as T — oo

T(l—e¢/T) — —¢

1= e#h/T
Wﬁﬁﬁ()

2¢h/T

Using the continuous mapping theorem, and Slutsky’s formula for weak convergence (since e —
),
1
T2 Zsz — 2h/Tp=2 Z yf_hj = / [Kiwb (r) €2¢CK3)7¢ (r—c)]dr. (A.10)
Combing (A.5), (A.6) and (A.10) in Expression (A.9), we obtain
2e¢0T ™ QZyt h,TWh, ¢ :>/ 52 Kw¢
1
. 2
(e - / (55 (1) dr
1—c
— 2pe?e fy (c) Ky 4 (r)dr
0
1
— 29 f4 (c) / 05 (r)dr. (A.11)

Now, from lemma 12, we let for ease of notation

1 1
C C 2
F:/C 62K, (r)dr—/c [65 Ky (r)] dr

¢c
= Ko (1= 0 () 431 -0 %
1
— 6¢C% / {6§>K¢’¢ (7“) + (1 — €¢C) Kw@ (7" — C)} dr
oe®e

e </{215;va¢ (r)dW (r —c) +/: Ky (r—c)d[ogW (T)])

so the right-hand side of Expression (A.11) is equal to

1—c

1
/[55,K¢7¢(T)]2d7“+F

‘ 1 9 1
Lo = [ (057 (0] dr - 2075, (0 [ Kus )i —205,0) [ ssear

Recall that Ky 4 (r) =¥ fg (r) + Jy (r) so that the previous expression is equal to

/ (065 f5 ()] dr + 20 / (05 £ ()] [65T5 ()] dr + F

1
U5 (0 =20y (0) [ K () dr =208, 0 / 557, (r) dr
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Notice that §5fs (r) = fy(r) — e?fy(r—c) = fu(c) for all 7, hence the previous expression

becomes
W fs () (1—c)+F

1—c
— 2 f4 (0)* — 2™ fy (c)/ Ky,g (r)dr
0
9 1—c
= —c?fy (¢)" = 2e™ f (o) Ky (r)dr+ F
0
Now we replace F' with its expression and get:

1—c

— ) fy (¢)” = 20 fy (c) - Kue(ndr

eqbc c @2c 02

+ ?Kw@ (1 —C) (5(2;K¢,¢ (1) +e ‘(1 —C) E
¢c’(/} ! c ¢c

—e 3 {05K g (r)+ (1 =€) Ky (r—c)}dr
et

p (/cl 0K y.g (r)dW (r —c) + /Cl Kyo(r—c)d [62W (r)])

We rewrite 65 Ky o (r)+(1 — %) Ky (1 — ¢) as Ky (r)+(1 — 2e%°) Ky 4 (r — ¢) and the previous

expression rewrites as

1—c
— C’(/J2f¢ (0)2 — [21/Je¢cf¢ (c) — e‘z’cg (1 - 26¢C):| Ky (r)dr
0
+ 6:: Kw@ (1 — C) 5;K¢,7¢ (1) + 62¢C (1 — C) O;
d) 1
—emg i Ky 4 (r)dr
ge®e

([ sestes =+ [ Kooty )

and 2e%° f, (c) + (1 — 2e?°) \°/¢p = —e?° /¢ hence the result:

o2

c
72 Z Yt—h, TWh t = ~%3 (1-c¢) e?e — §ef¢c¢2f¢ (0)2 (A.12)

1
+ %Kw (1 =) 05Ky, (1)

1}[} c 1
+ % |: . Kw@ (’I") dT — K¢,¢ (T‘) dT:|

1—c
_ 9
2¢
We notice that e_¢cfd2> (€)= (fo(c)+ fs(—0)).
We can simplify the result further using Expression (A.3:

</615;K¢,¢ (T)dW(rc)+/cle)¢ (rc)d[agvv(r)]) ,
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1 1
(Foo O =022 [ [0 () + 0K2 ()] dr+20 [ Koy ()W (1),
0 0
{Kpo (Y —{Kys (@} =1-c)o” + 2/ (WK g (r) + K7 4 (r)] dr + 2‘7/ Ky (r)dW (r)
(Kps(1—0)’ =(1—-¢) o+ 2/0 B (WK yg (r) + K7 4 (r)] dr + 20/0 _CKW, (r) dW (r)
and

d[Ky,g (r) Kyg (r—o)] = [0 {Kype (r) + Ky (r—c)} + 20Ky, (r) Kyg (r —c)]dr
+ 0Ky (r)dW (r—c)+ 0Ky 4 (r—c)dW(r),

which, when integrating over [c, 1] yields

Ky (1) Ky (l—c)= /C1 Y{Kyg(r) + Ky g (r—c)bdr+2¢ /cl Ky (r) Ky,g (r —c)dr
+a/1Kw7¢(r)dW(r—c)—&—U/le,(b(r—c)dW(r).
This implies that
Kyg(1—¢) 05Ky 6 (1) = Kyg (1) Ky g (1—¢) = e”Ky 4 (1)
= /Cl Y{Ky,g (r) + Kyg (r—c)}dr+ 2925/61 Ky (1) Ky g (r—c)dr
— 2¢%¢ /Ol_c (WK g (r) + K3 4 (r)] dr — e® (1 —c) o?
1 1
+J/C Kw,(ﬁ(r)dW(r—c)—i-U/c Ky o (r—c)dW(r)
_ 2e%g /0 T Ky () AW ()
We rearrange the previous expression as
Ky, (1 —¢) 65Ky (1)
-0 (/1 65K y,p (r)dW (r —c) + /1 Kys(r—c)d [5;W(r)}>

1

c 1—c
= YEy,g (r)dr —/ YKy (r)dr+2 (1 - 6¢C)/ VYEy,g (r)dr
1—c 0 0

1 1—c
26 [ Ko 0) Koo (r=dr 2% [ 63 () dr = e (1 = ) .
c 0
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So that the right-hand side of (A.12) rewrites as

c o2 102
-5 {6‘%2% () + ed’c] + e

2 ] 2 ¢
1 1 c 1—c

+ 5 [ YK g (r)dr — / YKy (r)dr+2 (1 —e®) YKy (r)dr+
2¢ 1—c 0 0

1 1—c
+2¢ / Ko (r) Ky (r—c)dr —2e%° /O PK7 4 (r) dr]

1
- %ed’c (1—c¢)o?

c 1
+ v [/ Ky (r)dr— Ky (1) dr}
2¢ Lo 1—c
1 B 1—c 1-c
= —5eve o ()’ = fs (C)/ YKy g (r)dr +/ (K (1 +¢) = e*Kyg ()] Ky,g (r) dr,
0 0
1 1
= —§C¢267¢6f¢ (0)2 + / Ky (r—c)dgdy (r)dr (A.13)
When ¢ = 0, (A.12) rewrites as afcl [6$W (r)] Ky, (r — ¢) dr — 3¢%c® which implies that Ex-

pression (A.13) also holds for ¢ = 0.

B Proof of Corollary 2
First note that
Jo (r+¢) = e®Jy (r) = Jy (r+¢) = Jo (r) = ¢f5 (c) Ty (1)
— [t w -0t (0 34 0)
hence for low horizon, such that replacing ¢ with cdr

52‘”J¢ (r+cdr)=Js (r+cdr) — Jg (1) — ¢pcdy (1) dr + o, (cdr)
=cpJy (r)dr + o [W (r +cdr) — W (r)] — ¢cJy (1) dr + o, (cdr)
=0 [W (r+cdr) —W (r)] + op (cdr)

and W (r 4+ c¢dr) — W (r) ~ N (0, cdr), with the definition dW (r) = W (r + dr) — W (r) . Then (e.)

rewrites for low horizons as
557 Jg (r + cdr) C%O VeadW (1) + op (cdr)
c L
5¢J¢ (r+c¢ vkd W (r+c)—W(r)+op(c) (B.14)

Hence (f.) becomes

/010 85y (r+c)dr céo VeaW (1) + o, (c) . (B.15)
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Now, as regards (d.),

1—c

Ky (r) 0505 ( + ¢) dr fa/ Ky (r) AW (1) + 0p (¢) (B.16)

2
Finally, for (g.) we see that, [6;‘"% (r+ cdr)] = o2cdr + 0, (cdr) so (g.) rewrites as.

1
/C (656 (1)] dr c%o o?c+o,(c)

C Proof of Proposition 3
C.1 Short horizon

Results for DMS follow from Proposition 1 since estimators are computed by OLS. Now for IMS,
We first consider fixed horizons pf = (1 + Tfl'yT)h =14 hT 'y + O, (T~2), hence the result

for the slope estimator:
T (py —1) =hyr + 0, (T7). (C.17)

As regards the intercept:

h—1 h
T(hy,r = Z prr = (TT + Tfl/QWT) 1+ T myr)’

1=0 i3

I
-

Il
o

= (TT + T2 ) Z (L +4T gy + 0p (T ygny 1))

=h (TT + T 1/27rT) ( + 7T ’y{h},T>
= (70 +T72nr) + 0, (T7*?)
since (TT + T_1/27TT) =0, (T_1/2) . Now
T gpir (h/T) hw <1+h_1+0<1>>
{h},T = T!'T — 7 1 7 = = o =3
v A A 2T T2
and

T (Finy.r — Tnyr) = ho + 0, (T71). (C.18)

Now, letting h = |¢T'|, we see that p = /T = ¢79 and h~ 1/2p{h} = T_IMCT1/2¢-
¢
Also, by definition v = T (pr — 1) = 0. The estimated slope therefore converges to

pr=(1+ Tﬁl’YT)h =1+ h’ICT’YT)h — ehlog(1+h ™ ervr) g0
hence

Ph—1= e —1=f (c)7.
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Similarly, we obtain the asymptotic distribution:

h—1 . h—1
O Z S G N R gos(i+hteryr) 1) = /T | 1
et = (S Yo () o

=0

[ frog+n=1eryr) (R) “1a \  fe (R/T) }

- [flog<1+h-1w> 0 (r 7725 fo /)"

_ 12 {CTfhloguM—lcTw) 1) 1o (h/T)}
flog(l—ﬂ—h*l('T’)IT) (1) fd)/T (1)

fh log(14+h~tervyr) (1)
D

+ T1/2
flog 1+h=Yeryr)

and hence the convergence:

T2 (o7 — o) = { fJ;c(W) - j:o(( H v fJ;CZO)
o (

= [f’yo (C) - C)] Y+ f’yo (C) To- (C.19)

C.2 Long Horizon

We first focus on the IMS forecast error and apply the short horizon results derive previously to
enir = yr+n — (Tiny,r + Ppyr) - Then,
& = eV (14 er) — Y2505 — p V2 phyr (1)
20;1/2YT(1+CT)_CT/ hYT( )
— h—1/2p{h}7.T _ L2 ( {h}A B p{ 1 )
— e (P — o) Yo (1)

1 f¢> (er)
fo(/T) T

Given that ph = = /T = ¢c1¢ and h=1/2p {h} =T" 71/21/1, the scaled forecast error

e =h" 1/2eh‘T can be decomposed into
e = CT1/2 (Yr (1+cr) — e“T?Yp (1))
T-1! _ _ {h}~ h
~ mmyfo (er) e o — e BTV (R — o)
fo (T71)
— e (P = 1= 0fs (er) Yr (1),
where the estimated slope converges as ﬁ% = 7. Recall the definition of (7‘({0}, 7{6}) , then

cresr = Kyp (1+c¢) =Ky (1)
—fo ()Y —my
— (Vey — 06 () Ky (1) (C.20)

and the IMS part of the theorem follows, using Expression (C.19).
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By contrast the multi-step forecast error is much simpler:

h—1
enT = Yr+n — Yrnr = (hr — nr) + (P — Brr) yr + Z D€ +h—j

§=0
but now the rates of convergence of estimators differ since 7='/2 (7}, 7 — 7, 7) = 7. and (ﬁhg« — prL) =
Yo + 1 — A€ This leads to
T 28 = = = (e + 1= X) Ky g (1) + Ko (1+¢) = XKos (1)

or, rewriting with the scaled forecast error, since |cT'| —1/2 enr = h’l/zeh‘T
Gog = ¢ oo — (Y + 1= X) Ky g (1) + Kog (14 ¢) = XKo g (1)} (C.21)

and hence the results.
Independence between Ky, 4 (1 + ¢) —e“? Ky 4 (1) and the remainders of the RHS of expressions

(C.20) and (C.20) follows from uncorrelatedness and Gaussianity.

D Proof of Proposition 7

We use the definition:
2t = ap + BrYe—n + wh,t (D.22)

with
h—1
(an, Bn) = (a + Bropft Y, ﬂp'%fl) s wne =By o e nyi
i=1

. A/ .
and let vy = (€4, €) SO wp 4 = (1, 8 Z::ll plelL’) ve. Let first h € [1,T) be fixed, then T-1/2 Zﬁ}} v =
H (r) implies

7]
T2 whe = (1,(h—1)8) H(r) (D.23)
t=h

whereas if h = |¢T'], then

{ T=Y20 ) ) = (0 8) 35Gy (1) (D.24)

T3 ZtE}TLJ wpe = (0:8) [T 065Gy (s) ds.
This proves (ap) and (a.) using the definition of J4. In the following, we use H = (H, W) and for
all ¢,

—
- —
—_— —

X2

lfs(i) gm(i)]_
Ceeli) & ()
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Now for (by) and (b.), i.e. the distribution of Z}Z;} Ti—pwh,e. We assume throughout that
B # 0. Using y;—n = B~ (2¢—ny1 — @ —&r_ny1), replacing it in Expression (D.22) we get an

expression similar to the multi-step forecasting model
Z = (0‘ (1—ph) + BTTP{Th}) + plp2e—n + Wy (D.25)

where wp; = wpi1s — pher—pn and wo, = 0. Letting h = 1 in Expression (D.25) yields z; =
(a (1 = pr) + B1r) + pr2i—1 + wiy, where wyy = &, — per—1 + Bei—1. The intercept above is the
sum of two terms, 87 = O (T_1/2) and a (1 —pr)=0 (T‘l) so we may disregard the impact of
a when using the results we derived in univariate forecasting.

To apply the results from the forecasting section, we need to compute the covariance function

of wy ¢,
h . h .
Ewp (1) = Cov | ey — plher_n + B Z P ety Etmi — prret—n—i + B Z o e
=1 =1
h .
=& () —ph&c (h+i)+ B> ph & (i +1)
j=1

— plpée (h— i) + p7éc (i pTﬁZpT e (G—h+1)

Jj=1

h
+BY o e (G—10) pTBZpT EecG—h—i +ﬂ222pj+k 2 (b j+1)

j=1 j=1k=1

= (L+p7") & (i) = plp [& (h+3) + & (b — )]

+8 ZPT 566 ]+Z)+£€E( —1i) — PT[fse( h+®)+£ss( _h_i)]]

+/D’QZZ/>”” k—j+i)

j=1k=1

with variance

Euwn (0) = (1 + p7") & (0) — 2plp&z (h) + 28 ZpT [€ec (7) — Pbec (5 — B)]

h
+5QZZ T2 (k- ),

Jj=1k=1

_ _h)\2 D\ 2
and long run variance &,, = (1 — p’%)z &+ 25(11_ppTT) Ee+ P2 (%) &c. Specifically for h = 1
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the expressions become

Ew, (0) = (14 p7) 02 + 202 = 28 (prée.c (0) — & (1))

Sun (1) = (L4 p7) & (i) — pr (& (i +1) + & (i — 1)
— Blpr (€ee (i) + e (=) = (e i+ 1) + &c e (1 —14))]
+ B2 (i)

with long run variance &,, = > oo &uy (1) = (1 — pr)P & + 2 (1 — pr) Béc + B%E. From the
assumption wi ; = ((1 — prL), BrL) v, it follows that

| T | Tr|—1
T_1/2 Zwlyt :T_1/2 ELTT‘J +(1_pT7ﬂ)/ Z Vt—’_(_pTVﬁ)IEO
t=1 t=1

= (0,8) H(r) = foW (r)

hence T-/2 ) 2 = 8K, 4 (r). Also for fixed b, T=Y/2 5y, = nBoW (r), whereas for
h/T —c¢>0

T 1 T 1
T 2wy gy = B6GTy (1), T2 whpy = B / 85 Js (r)dr, T2 wj, = / (6575 (r)] dr.
t=h ¢ t=h ¢

To derive the required results using those on univariate forecasting, we rewrite:

|77 ] |77 ]
Z Ye—nwhe =B Z (ze—(ho1) — @ = €1—pt1) (Who1e + P Terns1)
t=h t=h
7] |77 ] |77 ] |77 ]
=B D sy Wh s AT B e Ei(he1) — @ Wht — D Et(h—1)Wht
t=h t=h t=h t=h

(D.26)

The asymptotic distribution of the first term on the RHS is derived from the multi-step forecasting

model, Proposition 1,

T

1
1
71 Z 2~ (h—1)Wh—1,¢ = (h —1) 520/ Ky »dW + 3 [(h=1)&wp_y — Ewn_y (0)]
t=h—1 0
T

1
— c 1 —aoc
T2 E 24 W|eT—1] = 52/ Kyg(r—c)ogds (r)dr — 50[321/1 e[ fs (c)]2
t=|cT—1]| ¢

For the other terms, we start with with

| Tr] T | Tr] |Tr)]

D G (h-1)E—(h-1) = @ Y Er—(ht) + B D YthE—(h-1) T D E1-(h_1)
t=h t=h t=h

t=h
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where

[Tr] [Tr] t—h
Zyt h€t—(h—1) ZZP (T + €) €4—(h—1) + 0p (T')
=h i=1
| Tr] |Tr] t—h
S0 31 0 37) ERAIES 3) ot URRARERACY
t=h i1=1
Hence, starting with h fixed, noticing that
T t—h T t—h
ED D piteiciony =Y > o e (t—(h—1) —i)
t=h i=1 t=h i=1
T—h
=pp - _1 _Z)pres(')
i=1

- T—h
= [T - (h - 1)] ngfl Z pé“gé,e (Z) - pljl‘il Z ip’il’ge,e (7’)
i=1 =1

hence for fixed h since Zfil i€ce (1) < oo, and using the weak law or large numbers for non-

identically distributed processes (see e.g. Andrews, 1988), 7! Zt N Zl P € (h-1) B e (—

and

T 1 o]
TS s = | Koo ()43 (=)
0 i=1
[Tr]

T Zzt (h—1)Et— (h1:>/8/ Ky.g (s)dH: (s +ﬂZ§ee* +o?.

Now if h = [T, ZET,:J 1h P (€igt— (1) — &ee (t— (R —1) — 1)) = O, (\/T) and

Z/OTgea dea_ ?z::( +ﬁ+ )Zfa,e(_i)
= Zé‘ (—i)+0(T™")
i=1

hence T~ ZtT:h Yt—hEt—(h—1) = fol_c Ky.¢ (s)dH (s) + (1 —¢) efe Zz 18ee (—i), and

l1—c

T
T 2 (e =8 Ky (s)dH (s) + B (1~ c)e? Zfee(—) (1-c)o?.
t=h

i=1

Now the third term in (D.26) is ), wx, whose asymptotic behavior depends on the rate of h:
for fixed h

LrT]

T2 Z wpe = H (r) + hBoW (r)
t=h
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whereas for h/T — ¢ >0

T 1/2 Wier|,|Tr] = ﬂ5¢J¢ 3/2 Z W\ceT | t = ﬂ/ 5¢J¢
t=|cT]

T2 Z WLcht:>5/ (65 ()] dr.

t=|cT|

The fourth term in (D.26) is

h—1
Z Et—(h—1)Wh,t = Z (5 Z pzf_lcftf(hfl)et—i + €t(h1)5t>
t

t =1

—5ZZPh e ()€t (h-1) +th (h—1)€

t

so for h fixed, T~ 1Zt B Et—(h—1)Wh,t :>ﬁZZ 1 Yec(l—i)+ & (h—1), and if h = [T,
S S T e e 1) = Oy (T).
We now collect all the terms, starting with h/T — ¢

Y g hwht-ﬁ/ Koo (= ) 53, (r) dr — SeBe™ [, (0)]

t=h

and if h fixed,

T Zyt hwht—/ Ky g¢d(Hi+ (h—1) foW) + wp,

=
with
= 55 [(h = )€y = €y (O] + 5 [02 = (= 1)
+ ié‘ - h:é‘ (1
where 7 7

_ 2 A1\ 2
Swp_y = (1 ) &e +6M£Ee +52 $ &e.
1 — PT

Euns (0) = (14 pi““”) & (0) — 2076 (h)

+25 ZPT gee pg"il €,€ (-7_ (h_]‘))}]

h—1h—-1

+B2Y D e (k- )

j=1k=1
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SO

(h - 1) fw; 1 gwh—l (O)
= (14" ) (=D& —& O] =205 [(h = 1) & — & (B)]

+ 25 Z p%fl [(h - 1) 66,6 - fa,e (]) - ngl [(h - 1) ge,e - ga,e (.7 - (h - 1))]]
h—1h—1

+82D D o (=) &= & (k— )]

j=1k=1

and

[(h - 1) fwh—l - g’th—l (O)] + % [‘7 - fe Z ga el— §g € ( )

i=h+1

1

2

1 _

55 (=D& +e O]+ /" V-1 & <o>])
Ly, e e

GO =D& & (W] - 56 (= 1)

>

h—1
> &
i=1

+
i=1
h—1 )
+ p’JT_l [(h - 1) 56,6 - é-E,E (j) - p’jlfl [(h - 1) 65,6 - ge,e (] - (h - 1))]]
j=1
B h—1h-—1 )
+3 Pr 2 (= 1) & = & (k= )]
j=1k=1

Notice that if ; is not autocorrelated then
(h_1)€5+§e(0):h05 and (h—l)fg—ga(O):(h—Q)O'g,

if & e =& (0) = 0., i.e. the cross correlation is only contemporaneous:

0o h—1
Z fE,e (_Z) - Z fs,e + Z pT - 1 ge € - [(h - 1) 5576 - fa,e (] - (h - 1))]]

1—pr

0 h=1

_  h—1)\2
{(1PT)(/1—1)0EE p2Th 30576—0576 h>2

and finally if €; is not autocorrelated

h—1h—1 1 _ 21
Bzzpj-i-k 2 E fe( )}:g lfiTQ hé,
j=1k=1 Pr
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Under these assumptions for h > 2

1 _ _
wp = 25 (h—2p§ 1(h—1)+p§«(h 1)(h—2))03
102 2(h—1)
(1o 2h-3 Bl—p
L—pr ’ C 2 1-p7
=T ) (- ) 2o
=23 Pr Pt Pr
—1\2 2(h—1)
(1—p7 ") 2h—3 Bl—p
) (h—1)e.. - (1 PN R
+ 1—PT ( )057 ( +pT )UE, +2 1_p%‘ O

and w; = 0.

E Proof of Corollary 8

We assume § = 0. From the assumption v; = ((1 — prL),0)’ (1, &), it follows that

[T7] | Tr|-1
ZWZQT@ + (1= pr) Z e+ (—pr:0)eg
=1 t=1

=€|Tr] —€0+0p (1)=0,(1)

From (5), z¢4pn = & + €44h = o+ wh e p With wp eyn = €445 Therefore, if as T — oo, h € [1,T) is
fixed
[Tr)

T2y wpy = H(r) (E.28)
t=h

and if h/T — ¢, then

E.29
T-1/2 LTZJ whe=H(r)—H(c). ( )

{ T’l/zwLCTJ,LrTJ =0
t=
This proves (ap) and (a.) using the definition of Jy. Now for (by) and (b.) ,i.e. the distribution of
T

T
_ B(t—h)/T T-1/2 fo ((t—=h)/T) t=h=1 T ,
; Yt—hWht ; (6 Yo + Y —f¢ (/T + Zz‘:o e €t—h—i | €t

Hence for h fixed TS0, v nwns = fol Ky (s)dH (s) + Y ;o) & (i), and as h/T — c,
Yol &ee (i) = 0s0

T 1
Tt Zyt,hwh’t = / Ky (s—c)dH (s).
t=h ¢
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