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Abstract

Recently, new classes of positive and measurable functions, M(p) and M (+00),
have been defined in terms of their asymptotic behaviour at infinity, when
normalized by a logarithm (Cadena et al., 2015, 2016, 2017). Looking for
other suitable normalizing functions than logarithm seems quite natural. It
is what is developed in this paper, studying new classes of functions of the type
zlgrolo logU(x)/H(z) = p < oo for a large class of normalizing functions H. Tt

provides subclasses of M(0) and M (£00).

1 Introduction

Recently Cadena et al. (see [3, [, [, [5 [6] [7, [§]) introduced and studied the
class of positive and measurable functions with support RT, bounded on finite

intervals, such that
1
i 0gU@) _ 0 (1)

z—oo  logx

where p is a finite real number, called the order of the function U given the use of
such functions in complex analysis and entire functions. Notation: U € M(p).
Relations of the form extend the class of regularly varying functions. Recall
that a positive and measurable function U is regularly varying at infinity and
with real index p, denoted by U € RV, if it satisfies

lim L(tm)

T—00 x)

=tP, vVt > 0. (2)

It has already been proved in [8] that U € RV, = U € M(p) but that the
converse is false. We also considered there O— type of relations and, among
others, studied functions for which limsup,_,  logU(z)/logz < oc.

It is clear that (|1f) and ([2)) also make sense when p = oo or p = —o0o. In general, it
is not simple to characterize the corresponding classes of functions M (+00), as
seen in [§]. Tt is also quite natural to look for other suitable normalizing function



in , than logx. It turns out that there are different types of interesting
relations. The first extension leads to a subclass of M(0), while the second one
produces a family of subclasses of M(£o0). More precisely, in this paper we
study functions U characterized by the relation

lim logU(x)

z—oo  H(x) =P (3)

for a large class of functions H.

This type of behavior can be encountered in various examples, hence our mo-
tivation for this general study. For instance, Bingham et al. considered
for H € RV, (see (7.3.2) in [1]). Such property appears also in connection
with entire (complex) functions of the form f(z) = Y oo anz" (see [8]). An-
other example is the case of classical proximate order functions p(.) defined by
p(x) =log g(z)/log x, where g is a regularly varying function. The class of func-
tions U satisfying lead then to generalized prozimate order functions of the
form p(x) = log g(x)/H (), where H may be different from the logarithmic func-
tion. Another case, considered by several authors, concerns semi-exponential
tail distributions of the form F(z) = P[X > x| = A(z)exp{—B(x)z®} where
AB € RVopand 0 < a < 1. Clearly we have —log F(x) = —log A(x) +
B(z)z® o B(z)z™ and holds. Gantert (see [9]) used those functions to

log P[S, /nEA]
n®B(n)
the nth partial sum. Let us mention a last recent example. In [I1], Mimica

obtain asymptotic expressions for , as n — 00, where S, denotes

considers the Laplace-Stieltjes transform f(z) = / e **dF(z) where F(.) is a
[0,00)
measure on [0,00). One of his main results provides conditions on f(.) to make
sure that
lim log F'(z,00) N
T—00 H(;L') B

where « is a constant and H is the identity function H(x) = x.

2 The classes M(L, p) and MS_L(L,P)

2.1 Definition

In our effort to generalize 7 we introduce the following classes of functions.
Throughout the paper, L(.) denotes a positive and measurable function.

Definition 2.1. Consider the class of positive and measurable functions U with
support R, bounded on finite intervals, such that

logU(x)
O )



where p and a are real numbers.
If faoo L(t)t~1dt < co, we consider functions U for which we have

) log U(x)
1 Vo0 -~ .. = P, 5
P [ L(t)t—tdt P (5)

Remark 2.2.
1. If L(x) R with 0 < ¢ < oo, then implies that U € M(ep).

2. If holds with [>° L(t)t~'dt < oo, then logU(x) =, € <00, acase

with not so much interest.

Let us consider various possible behaviors for the positive and measurable func-
tion L that we present as different sets of assumptions on L.

Assumption A. Assume that

L(z) — 0 and /00 L)t 'dt =00 (a €R).

Tr—r00

Under Assumption A, the class of functions satisfying will be denoted by
MO (L> p) :
Assumption B. Assume that L(z) —o0 asx — oo.

Note that this assumption implies that / L(t)t~tdt = oo.

a

Under Assumption B, the class of functions satisfying will be denoted by
MZ(L.p).

Assumption C. Assume that / L(t)t~'dt < oo, with a € R.

Under Assumption C, the class of functions satisfying will be denoted by
Mg (L, p). This class of functions will be discussed only briefly in this paper.

2.2 Examples
Standard functions can be encountered in those classes, as we can see in the
following examples.

1. I U(x) = (logz)”, then U € My(L, p) with L(z) = 1/log .

2. Let U(x) =e” (log @)

If 0 < B < 1, then U € M(0) N Mg(L, p) with L(z) = B(logz)’~1.
If B <0, then U € M(0) " Mg (L, p) with L(z) = —B(logz)?~L.

w



IfU(@) =e™ ", a> 1, then U € M(0) N Mg (L, p) with L(z) = ax™.
I U(z) = e, a >0, then U € M (L, p) with L(z) = ax®.

U'(x) S w
L(z)U(z) 2=
with a € R. For each £ > 0, we can find x. such that, for x > x.,

. Assume that a function U has a derivative U’ such that

<T@ (a+e>@-

x U(x)

(@ —¢)

Under Assumption A, U € Mg (L, a); under Assumption B, U € M{ (L, a);
under Assumption C, U € Mg (L, @).

. Suppose that a € RVy and that U € RV} is a positive and measurable
function. We say that U belongs to the class II(a) if U satisfies, V¢ > 0,

lim U(tx) — U(x)

z—00 a(z)

= logt. (6)

The class II(a) was introduced and studied among others by de Haan (see
[10]). If (6) holds, we have (see [1], Chapter 3)

U(tx) N Ul(tx) — U(x) N a(x)logt
U(x) 2o Ulz)  aooe Ufz) -

logU(tx) —logU(x) = log

so that logU € II(L) with L(x) := a(z)/U(z) € RVy. From the repre-
sentation theorem for the class II (see Theorem 3.7.3(ii) in [I]), it follows
that log U can be written as

logU(z) =C+ A(z) + /I At tat, =>a, (7)

where A € RVy and A(z) ~ L(z). Now consider two cases.
T Tr—r00

(i) If/ A(t)t7'dt — oo, then Karamata’s theorem shows that
T—00

@ xz
A(z) = 0(1)/ A(t)t~'dt and (7)) implies that U € Mg (L, 1).
a
(ii) If [ A(t)t~'dt < oo, then (7)) implies that
oo
logU(x) — C —|—/ A(t)t~tdt =: D; so, for x > a, we have
T—00 a

D —logU(x) ~ / A(t)t~'dt. We can then deduce, since
Tr—r0o0 T
A(z) ~ L(x), that V := e” /U belongs to the class M (L, 1).

T—r



2.3 The class My(L, p)

2.3.1 First properties
Proposition 2.3. Under Assumption A, if U € Mo(L, p) then U € M(0).

Proof. We have, using L'Hopital’s rule,

CL(t)tdt L(t)t—'dt _
lim M = lim wlogU(x) xfa ®) = px lim f
z—oo  logx T—00 fa L(t)t—1dt log x T—00 log

O

The following result shows that the class My(L, p) does not contain regularly
varying functions with index different from 0.

Proposition 2.4. Suppose that Assumption A holds and that U € RV, with
a#0. Then U ¢ Mo(L,p) for any p.

Proof. The representation theorem for regularly varying functions (see [I], The-
orem 1.3.1) states that U can be written as U(z) = ¢(x) exp {/x ﬁ(t)t_ldt},
where ¢(z) hc # 0 and B(z) T Taking logarithms in this expression
provides, under Assumption A,

t)t—Ldt
lim 7:303;[](36) = lim f all = lim B(x)
w—oo [T L(t)t~1dt  w—oo f L(t)t—1dt  z~oo L(x)

This limit is not finite since @ # 0 and L(z) — 0. Hence the result. O
Tr—r00

In our next result, we collect some algebraic results.

Lemma 2.5. Suppose U € Mo(L1,a), with Ly satisfying Assumption A.

(i) If Ve My(L1, ), then UV € Mo(L1,a+ ) and UV € Mo(L1, a0 — ).
(ii) If V.e Mo(L2,B) and Lo(z)/L1(x) T 0, then UV € Mo(L1, ).

(ii) If xzV'(x)/V(x) T B>0, then UoV € Mo(LoV,ap).

Proof. Properties (i) and (ii) follow directly from the definition (4).

Let us check (iii). The condition zV’'(z)/V(x) — S > 0 ensures that, for large
values of z, V'(x) > 0, i.e. V() is increasing, implying V() - Hence,
log U(V(x))

—_— Q.
JY@ Ligye-rde v

from , it follows that



V(x) T
But the change of variables t = V'(2) gives / L)t tdt = / L(V(2))
a b

(Y@ LyeLat

= —
J, L(V(2))z7tdz =~ b
Combining the two limits provides the result. O

Then, using I’Hopital’s rule, we obtain that

2.3.2 Characterization theorem

We can obtain a characterization theorem for functions belonging to Mg(L, p).
We denote in what follows, for a € R and = > a,

V(z) := exp {/j L(t)tldt} : (8)

Theorem 2.6. Under Assumption A, we have:
U(x)

Ulz) and ——— — o0.

L N ST
Ue MO( ,P) = Ve>0, VP+€(Q;) T—00 VP—G(Q;) z—00

It is straightforward to deduce the following.

Corollary 2.7. Under the conditions of Theorem [2.6, if U € Mo(L, p), then
for each € > 0, there exists x. > 0 such that, for all x > z.,

VP=(2) < U(z) < VP*(a). (9)
Proof of Theorem [2.6L The proof of the theorem is based on the following
lemma, inspired by Theorem 1.1 in [5] or [§].

Lemma 2.8. Let U and g denote measurable and positive functions with support
R* and assume that g(x) — oo. Let p € R. The following statements are
T—r00

equivalent:

(i) logU(x)/g(x) — p;

(ii) Ve > 0, U(x)e~Pt9@) & 0 and U(x)e P=99@) 5 oo,

Tr— 00 T—r 00

Proof of Lemma , First suppose that (i) holds and let € > 0. For each
0 € (0,¢€), there exists x5 such that for all z > x5,

(p—0)g(x) <logU(x) < (p+0)g().

U(x)
exp{(p + €)g(x)}
> exp{(e — d)g(x)} et hence the result (ii).

It follows that
U(x)
exp{(p — €)g(z)}

< exp{(d — €)g(x)} T 0 and, similarly,




Now assume that (ii) holds. For each § > 0, there exists x5 such that for all
x> xs, Uz) e”PH99@) < 5 1t follows that log U(x) < logd + (p + €)g(x) and
then also that limsuplogU(z)/g(x) < p + €. In a similar way, we obtain that

Tr—r00

lirr_1>inf logU(xz)/g(x) > p — e. Now (i) follows. O

Note that Assumption A implies that V € RV, lim V(xz) = oo and that
xr—r 00

xV'(x)/V(z) = L(z) = 0. Applying Lemma with g := V concludes the

proof of the theorem. O

2.3.3 Representation theorem

We can also provide a representation theorem for the class My (L, p), as follows.

Theorem 2.9. Suppose Assumption A holds. Then U € My(L, p) if and only
if U is of the form

log U (x / B(t)L(t)t~dt (10)
where a(x) = 0(1)/ L(t)t~dt and B(x) — p, as x — oo.
Proof. From definition , it follows that

r—00

logU(z) = (p+ e(z))/ L)t 'dt, withe(x) — 0.
Therefore we can write

log U (x / B(t)L(t)t1dt

where S(z) = p+ e(z) and ax) = e(x)/ L(t)ttdt — /I e(t)L(t)t~dt.

Clearly o(z) = 0(1)/ L(t)t~'dt and B(z) — p, as  — oo, hence (I0).

a
The converse result is obvious. O

2.3.4 Integrals

Proposition 2.10. (Karamata’s theorem). Let U € Mo(L, p). Under Assump-
tion A, we have:

(i) If a > —1, then 1:7170‘/ tU(t) dt € Mo(L,p).

(ii) Ifa < —1, then x*lfa/ ©U@) dt € Mo(L, p).



Remark 2.11. Proving the converse result is an open problem. Moreover, it is
not clear what happens when o = —1.

Proof.
(i) First consider the case where o > —1. We choose ¢ > 0 and use (9] .
Multiplying by z® and taking integrals, we find that

/ U di+ / VP (t)dt < / U (t)dt < / Ut di+ / VP () dt.

Te a a Te

Since V' € RV, we find that VP*¢ € RV, so t*VPEe(t) € RV,. Applying
Karamata’s theorem (see [I], Proposition 1.5.8) gives that, under Assumption
A

)

xT
1
/taniE(t)dt ~ Tyt & .
z z—oo 1+« T—00

€

It follows that, there exists xg > . such that, for all x > x,

1—c¢ 1 * 1+e¢
p=e < — teUt)dt <
Tha @S :c1+a/a Ult)dt < q

pte
n on ().

Using logV(z) — oo and taking € — 0, we conclude that
Tr—r0o0

1 v

(ii) In the case where a < —1, the proof follows, using similar steps as for (i)

(o)
-1
with now (via Karamata) / tOVPE(t)dt ~ ?mlﬂ“/”ie(m). O
a

-
2.3.5 Laplace transforms

Recall that the Laplace transform of U is given by U(s) = s/ e **U(z)dx.

0
Assume now the conditions given in [§], Lemma 1.2, namely that U is a non-
decreasing right continuous function with support RTand U(0+) = 0, that

U(s) < 00,Vs > 0, and that = 7U(x) is a concave function for some real num-
ber n > 0. Then we have the following Karamata Tauberian type of theorem.

Theorem 2.12. Under Assumption A and the conditions of Lemma 1.2 in [8]
(recalled above), assuming p > 0, we have:

Ue My(L,p) if and only if U(1/x) € Mo(L, p).

Proof. First suppose that U € Mg(L, p). Using (9) with V defined in [§] and
Lemma 1.2 in [8], we can say that there exist positive constants a,b, ¢, such
that, Vo > x, N

aVP(z) < U(l/x) < bVPT(cx).



Since V € RV, it follows that U(1/z) € Mo(L,p). The converse implication
can be proved in a similar way, using the same lemma. O

In fact, the implication U € Mq(L, p) = U(1/x) € Mq(L, p) can be proved
without the concavity condition:

Proposition 2.13. Let U € My(L,p). Assume that U(.) and V (.) are bounded
on bounded intervals and that U(s) < oo, Vs > 0. Then, under Assumption A,
U(1l/z) € Mo(L,p).

Proof. Using @, we have

3/ ;*”U(x)dw—ﬁ—s/ e~ VP~ (z)da < U(s) < 8/ ;’SIU(SC)dx‘i‘S/ e VIt (z)da.
0 @ 0 ’

€ €

Since V € RV, we have s [~ e "V, (z)da ~ VrEe(1/s) (see [1], Theorem
s—

1.7.1). Also, since V**¢ and U are bounded on bounded intervals, we have
3/ e STV PE(z)dr = O(1) and S/ e U (x)dx = O(1),
0 0

hence (1 —e)VP~¢(s) +O(1) < U(1/s) < (1 + )V’T(s) + O(1).
Since, under Assumption A, V(z) — oo, we find that U(1/x) € Mo(L,p). O

Remark. We could also consider O—versions of this class of functions.

2.4 The class M (L, p)

Recall that for the class M (L, p), we assume that L satisfies Assumption C.
It implies that L(z) — 0. Moreover if U € M (L, p), then logU(z) — 0,
Tr—r00

xr—r 00
hence U(x) — 1. The following relation follows.
T—r00
Proposition 2.14. Under Assumption C,

—1
B) holds > lim —2\)

oo (X L(—tdt

Remark. The proposition implies that M (L, p) C RVj.

In the next result we obtain a representation theorem.
Theorem 2.15. Under Assumption C, we have
UeMy(L,p) < logU(z)=a(z) —|—/ B(t)L(t)t™ dt,

where, as © — oo, B(x) = p and a(x) = 0(1)/ L(t)ttdt.

T



Proof. First assume U € Mg (L, p). Define the function e, with e(z) — 0, as
—00

x

_ logU(z)
E(m)_ffL(t)t*ldt r

oo oo

We have log U(x) = (s(x)-i—p)/ L)t~ tdt = a(w)—i—/ B(t)L(t)t~dt, where

xr 0o 00 T
B(z) =e(z) + p and a(z) = e(x) / L(t)ttat —/ e(t)L(t)t~ dt. The result
follows. The converse result is str;ighforward. ¢ O

2.5 The class M (L, p)

Here we consider U € M (L, p), and throughout this section we assume that
L satisfies Assumption B.

2.5.1 Some properties

Proposition 2.16.

(i) Suppose that U € M (L, p). If p > 0, then U € M(c0).
If p <0, then U € M(—00).

(ii) Suppose that U € M(p). Then U € M (L,0).

Proof. (i) We have

Lt dt T Lt dt
lim Lg U(x) = lim log U(a:) X fa ( ) =px lim 7& ( ) .

z—oo logx T—00 far L(t)t—1dt log x T—00 log x

x
The result follows since li_>m / L(t)t'dt/logz = oo by 'Hopital’s rule.
X o0 a

(ii) Using the representation theorem for M(p) (see [8], Theorem 1.2), we have

Tr—0o0

U(z) = c(x) eXp/ B(t)ttdt, with log c(x)/log = = 0and 5(z) — p.
a T o0
Taking logarithms, we obtain, using I’Hopital’s rule and Assumption B,

log U(x) . loge(x) log z N I
im ————— = lim - + lim =2 —~— — —
emoo [TL()t-1dt  wooo logx  [TL(t)t-ldt  wwoo [T L(t)t1dt

In our next result, we collect some algebraic results.

10



Lemma 2.17. Suppose that U € M (L1, ).
(i) If Ve M{ (L1,B), then UV € M (L1, a+ B) and U/V € M (L1, — B);
(ii) If V.€ M (L2, B) and La(x)/L1(x) =0, then UV € MG (L1, a);

(i) If 2V'(x)/V (x) = B>0,thenUoV € M{(K,aB), where K = Lo V.

Proof. (i) and (ii) follow from the definition, whereas (iii) follows as in Lemmal[2.5]
O

2.5.2 Characterization theorem

Following the proof and the notation of , Lemma and Theorem we
have the following result.

Theorem 2.18. We have the following equivalence:

UeM{(L,p) & Ye>0,U(z)/VF*(z) = 0 and U(x)/VP~(z) — oo.

T—r 00

Remark 2.19. Let x > 0 and t > 1. We have

“//(é? = exp {/ltL(xy)yldy}-

Since L(z) — oo, it follows that, for t > 1, V(xt)/V(z) — o0, whereas for
T—00 T—00
t <1, we have V(xt)/V (x) = 0. It shows that, under Assumption B, V is
T o0

rapidly varying. In Section[3, we will discuss other conditions on V.

2.5.3 Integrals

In this section, we consider integrals of the form [ U(t)dt or [ U(t)dt.

Proposition 2.20. Introduce the function W defined by W (x) = z/L(x). As-
1
sume that U is differentiable and satisfies U(x) ~ =W (x)U'(x), p > 0. Then
Tr— 00 p
we have:

(i) If W'(z) >0 and W'(z) —_a >0, then UeMS(L,p),

/wU(t)dt ~ W(x)U(z) and /wU(t)dteMg(L,p—ka).

T—00 p—|—a

(ii) If W'(x)_— oo, then / Ut = oYW (@)U (z)  and

/ “Ulhdt € ME(L,0).

0

11



Proof. (i) Clearly U(x) -~ %W(x)U'(x) & %l((f)) ~ px~tL(z); it implies

(as already seen in Section 2.2, Example 5) that U € M (L, p), U(z) -
and there exists a such that / t)ydt ~ / W)U’ (t

r—r00 p

Now consider R(z) = Applylng I’Hopital’s rule, we obtain that

lim R(z) = lim

=1+p 'l "(z) =1 .
T—00 T—00 W(x)U/(x) Tp a:1—>Holo w (33) - Oé/p

’ W(x)U(x) /m
It follows that / Ut)dt ~ , hence [ U(t)dt € MI(L,p + a),

a () T—00 p(1+0é/p) a ()z O( p )
when applying Example 5 in Section 2.2 for the function / U(t)dt.

a

) J. UL L
/
(ii) If W' (x) LT 0% then R(m)mjoooo and ’[’(ac)U(x) +500 pR(z) oo 0. O

Remark 2.21. -
1. A similar result holds for the case where p < 0 and the integml/ U(t)dt

!
2. Assume W) — pwith0< B <1 Then W € RV and
W(z) wz—oo
W' (x) — 0.
Tr—r00

A related result follows directly from Theorem 4.12.10 in [IJ.

Proposition 2.22. Let f(z) :/ L(t)t~tdt and U € M (L, p).
0

— 00

(i) If p > 0 and f € RV,, a > 0, then log/ U(t)dt ~ logU(x) and
0 x

/ U(t)dt € M7 (L, p).
0 oo
(i) If p < 0 and f € RV,, a > 0, then —log/ Ut)dt ~ —logU(z) and

T — 00

/Oo U(t)dt € M (L, p).

It seems to be quite difficult to consider integrals of functions in the class
M (L, p) without extra conditions.

3 The class M;(L,p)

In this section, we are interested in studying a subclass of the large class M (oc0)

logU
of positive and measurable functions for which lim L(x) =00
z—oo  logx

12



We consider positive and measurable functions U so that

1
lim 108U (@)

2 =p€eR, 11
w—oo [Th=L(t)dt P (1)

where b(.) is a suitable function such that b(z)/x = 0, to ensure that U
satisfying belongs to the class M (o).
Compared with (4)), we have b=!(z) = 27'L(z) so that L(z) — oc.

r—r00

Example 3.1. Let us give examples of functions of M(oco) satisfying .

logU
L(x) — —a, and holds

X T—r

1. Let U defined by U(z) = ae~**. Then
with b=1(x) = 1.

2. Let U be the standard normal density (U(z) = ce~*"/2). Then

log U(x) 1 “irn
e and b~ 1(z) = x gives (11).
3. Let U(x) = el*°8® then log U(x) — 1 and holds with b=1(z) =
' ’ xlogr z—oo
log x.

In the next section we discuss the suitable functions b(.) that we will use.

3.1 Definitions and Examples

Let us recall a few definitions (see [I], Sections 2.11 & 3.10, [2], or [12]).

Definition 3.1. The positive and measurable function b is called ’self-neglecting’,
denoted by b € SN, if

b(z)/x — 0 and lim b(z +yb(x))

=1 locally uniformly in y.
T—00 T—00 b(x)

Note that

x

be SN = lim b~ (t)dt = o and lim b'(z) =0 = be SN.

Tr—00 a T—r 00

Definition 3.2.

e The positive and measurable function f belongs to the class T'(b) if

be SN and f satisfies lim f(a+yb(z))

e The positive and measurable function f belongs to the class I'_(b) if

1/f € T(b).

=éeY, for all y.

13



We can derive straightforward properties (see [I], Section 3.10, and [10]).

Property 3.1.
1 Iff €T (), then /xf(t)dteF(b) and /xf(t)dt ~ b(2)f(x).

Tr— 00

— 00

2 IffcT_(b), then /Oo F(t)dt € T_(b) and /oo Pl ~ b)f(z).

3. If f € T(b) then holds locally uniformly in y (the proof can be adapted
from [12] and [2]).

From Bingham et al. (see[I], Theorem 3.10.8) or Omey (see [12]), we have the
following representation theorem for functions in the class T'(b).

Theorem 3.3. f € I'(b) for some function b € SN if and only if f can be
T B(t
written as f(x) = exp {a(m) +/ /B()dt}, with a(z) — a€R,
. <) -
B(x) — 1 and where ¢(.) is a positive, absolutely continuous function such
Tr—r0o0
/
that ¢'(x) 2 0, and c(x) o b(x).

Example 3.2.
1. The exponential density f(xz) = ae™** belongs to the class T'_(1/a).

2. The standard normal density f(z) = \/%6_12/2 belongs to the class
r_(1/x).

3. U(x) = el1°8% ¢ M(—00) but U ¢ T' (see Example 1.8 in [5]).

Definition 3.4. Let b € SN. The class My(b,p) is the set of positive and
measurable functions U such that holds.

Note that if b € SN and U satisfies b(z)U’(z)/U(x) - P then U € M1(b, p).
xT o0

3.2 Some properties
3.2.1 General

Lemma 3.5.
For p >0, M1(b, p) C M(0c0), and for p <0, M1(b, p) C M(—00).

Proof. We have

log U (x) i log U(z) ijb—l(t)dt_

LI ()t

xlgrolo logz 500 [I b1 (t)dt logz pxxlgrgo logz prgr;o b(x)’
Since z/b(z) — oo, the result follows. O
Tr— 00
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In the next result we collect some algebraic results.
Lemma 3.6. Assume that U € My(by, p1).
(i) If V€ My (ba, p2) and by(z)/ba(x) =G then UV € My (b1, p1 + cp2)
x oo
and UJV € M1(b1, p1 — cp2).
(ii) If V € RV,, then UV € My (b1, p1).

(iti) If pr # 0 and V' € My (b, p2) with by bounded and by(x)/ba(x) = 0,
then V(z)/U(z) — 0andU+V € Mi(b1,p1).
xr—r 00

Proof.

(i) The result follows directly from the definitions.
(ii) We have

logU(x)V(z) =log V(z)+logU(z) = (a+o(1)) log z+(p1+o(1)) /L byt (t)dt

a

and lim loi = lim M

T = 0, hence the result.
emoo [ThrN(t)dt  wmoo x

(iii) We deduce from (i) that U/V € M, (b1, p1). It follows that

Ulx)
V(z)

o8 1 = (o1 +o(1) [ b5 ()t

which, combined with [ by (t)dt — oo (via the assumptions), gives that

V(z)/U(x) T 0.

Now we have, using (i),

log(U(x) +V(z)) =logU(z) +log (1 + V(x)/U(x)) ~ logU(x).

T—r 00

‘ 1
Since / bl_l(t)dt — 00, we obtain that Og(Ux(x}1+ V(z)) — 1.
: v Thid e

3.2.2 Integrals

Here we discuss integrals of functions in the class M; (b, p). Note that we can

alter the auxiliary function b so that it satisfies b’(x) — 0.
T—00

Lemma 3.7. Assume that U € My (b, p) with b such that ' (x) — 0.

T—r00
oo

If p > 0, then / U(t)dt € My(b,p), and if p < 0, then / U(t)dt € My(b,p).

15



Proof. Let assume that p > 0. If U € M (b, p), then for each 0 < € < p, there
exists x. such that Vo > x.,

exp{<p—e> / zb*(t)dt} <UE) < exp{<p+e> / zb*(t)dt}, (12)

from which we deduce that, for z > =z,

/:L(t)dt g/:U(t)dt g/:R(t)dt

where L(#) = exp {(p _ o) / (1) dt} € M(b,p—e) and

a

R(t) = exp {(p + e)/ b(t) dt} € M(b, p + €). Clearly we have

R(t + yb(1) vy
A A e T S

ba)R(z)

T
hence R € T'(b/(p + €)), d/tht ~
ence (0/(p+¢)), an : (H)dt ~ P

Now, using the definition of R,ewe have

b(x) R(x)

lo
g bt e

=logb(z) —log(p+e)+ (p+e) /z b1 (t)dt.

log b
Using 'Hopital’s rule provides lim ogblz) _ lim b'(z) = 0.

T—00 ; b1 (t)dt T—00
It follows that [ R(t)dt € My(b, p+ €).
Similarly, we obtain / L(t)dt ~ ba)L(z) and / L(t)dt € My(b,p—e€).

e T—oo  p—E€

€

We can conclude, via (12), that f;i U(t)dt € M1(b, p).
The proof when p < 0 follows the same steps. O

Remark 3.8.

(i) In view of Lemma (i), the result given in Lemma holds when
replacing U(x) by x*U(x).

(i) The proof of Lemma[3.7,(i), shows that for e > 0, there ewists x. such
that, for all x > x.,

HP™%(z) < U(z) < H "¢ (x)

where H(z) = exp{/m b_l(t)dt} € I'(b) satisfies b(x)H'(z)/H(x) = 1
(see Theorem [2.18). ‘
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Example 3.3.

1. Consider the tail distribution F(z) = e=*~0-2sin,
We have log F(z)/x = —1 and F € M;(1,—1). The density, given

by f(z) = F(x)(1 + 0.5cosx)(> 0), belongs to M;(1,—1). We see that
b(x)f(z)/F(x) does not converge to a limit as x — oo.

Note that F" (a,z) = exp{—nan,(z + 0.5sin(a,z)/an)}. If na, — 1,
n—oo

-—_n
then a, — Oand F (a,z) — e 152

2. Consider U(z) = ¢*"+°°5 with 8 > 1. Then U'(z) = U(x)(Bx’L+sinx)
and b(x)U'(z)/U () = 1.

Note that both U and U’ € My (b1, 1), with b=1(z) = Bz ~1.

3.2.3 Inverse functions

Proposition 3.9. Let U € My(b,p) and suppose that U has a derivative U’
satisfying b(x)U' (x) /U (z) S P> 0. Then the inverse function of U, denoted

V = U™, belongs to Mo(L,1/p) with L defined by L(x) = b(V(x))/V ().

oy / b(V(z)) _ b(V(x))
Proof. We have V'(z) = TV @) so that V'(z) o V) - pr

It follows that, introducing by defined by bo(x) = 2V (z)/b(V (x)),

bo(@b(V(z)  bo@)V'(x)

xV(x)p oo V(x) zjoo 1/p
and we see that, for L(z) = b(V (x))/V (z), _logV(z) = 1/p.

[T L(t)t—1dt oo
Note that L(U(x)) = b(z)/x, L(z) — 0 (since b € SN), and
Tr—r 00

x x
/ L(t)t—ldt:/ b(V (t))/(tV(t))dt. Tt follows that
z V(x) V(x)
/ L(t)—Ldt :/ bt /(U)W (B)dt ~ p/ Vtdt — .
a V(a) z—00 V(a) T—00
Hence we obtain that V € Mo(L,1/p). O
Note that we provided conditions to show that U € Mj(b, p) implies that its

inverse function V€ My(L,1/p). It is not clear if these additional assumptions
can be omitted.
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4 Concluding remarks

The previous results easily extend to sequences. For a given sequence of positive
numbers (b, ), we can consider the class of sequences (a,,) satisfying for instance
lim, o0 logan/ > p_ kb, = a. If (a,) is a regularly varying sequence, we
have that lim,,_, loga,/logn = «, a constant.

We may also study O—type of results. Under Assumption A, we may define py,
and py as follows:
logU(x)

L. logU(x) . .
— liminf 22 d =1 08O\ ith pp < po.
PE RS T nyeta Y T S Ly tar T RS

This leads to inequalities of the form (see Corollary 7 with V defined in ,
VPL=E(z) < U(x) < VPUTE(2).

Finally note that many distribution functions F' and densities f satisfy a relation

of the form loa(1  F
- log(1— F(x)

A% log i)

So it may be interesting to study functions U satisfying the following relation:
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