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Abstract

We analyze risk diversification in a portfolio of heavy-tailed risk factors under the assumption of second
order multivariate regular variation. Asymptotic limits for a measure of diversification benefit are obtained
when considering, for instance, the value-at-risk . The asymptotic limits are computed in a few examples
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1. Introduction

An important issue in risk management is assessing the effects of adding an investment to a portfolio
of risk factors (time series of returns) and understanding how this aggregate risk relates to the
individual risk factors. Broadly studied under the labels of risk concentration or risk diversification,
the past couple of decades have seen tremendous developments in the understanding of this topic.
Our interest is in a portfolio of risk factors that are heavy-tailed, where adequate care is necessary
to study the aggregation of the risk factors; see Dacorogna et al. (2015), Embrechts et al. (2002),
Ibragimov et al. (2011), Puccetti and Rüschendorf (2013) for detailed discussions on diversification,
especially under heavy-tailed returns.

In this paper, we consider the particular risk measure value-at-risk. Recall that for a random variable
(risk factor) X with distribution function F , the value-at-risk at level 0 < β < 1 is defined as

VaRβ(X) := inf{y ∈ R : P(X ≤ y) ≥ β} = F←(β).

Consider a portfolio of risk factors X = (X1, . . . , Xd). We assume for this paper that X1, . . . , Xd are
identically distributed (homogeneous) non-negative random variables with a common continuous
distribution function. The behavior of the sum

Sd = X1 + . . .+Xd

and its value-at risk VaRβ(Sd) have been studied under various assumptions, either on the marginal
distribution F (where X1 ∼ F ) or on the dependence structure of X. If X1, . . . , Xd are independent
and identically distributed (iid) with a regularly varying tail distribution with tail parameter α,
that is, F = 1 − F ∈ RV−α (see Section 1.1 for details) then it is well-known that VaR(Sd)
is asymptotically sub-additive or super-additive according as α > 1 or α < 1 (see Degen et al.
(2010), Embrechts et al. (2009)) and an accurate estimation for high threshold has been proposed
in Kratz (2014). Since an assumption of regular variation provides only a first order approximation,
researchers have studied second order behaviors of VaRβ(Sd) under a second order regular variation
assumption on F ; see Degen et al. (2010), Mao and Hu (2013). Furthermore, there has been a
series of studies on the asymptotic behavior of the tail of Sd and VaRβ(Sd) under specific copula
assumptions on the dependence structure of X; see Albrecher et al. (2010), Alink et al. (2004),
Barbe et al. (2006), Kortschak (2012), Sun and Li (2010); or by providing risk bounds under
assumptions on marginal densities, see Peng et al. (2013), Puccetti and Rüschendorf (2013).

In this paper we work under the assumption that X = (X1, . . . , Xd) is multivariate second order
regularly varying. This assumption encompasses examples of independent, asymptotically indepen-
dent, as well as dependent risk factors and brings together a variety of marginal and dependence
assumptions on the joint distribution of F under one broad umbrella. The structure of the paper is
as follows. In Section 1.1 we briefly collate notations to be used in the paper. The various notions
of regular variation both first order and second order as well as univariate and multivariate are
described and discussed in Section 1.2. In Section 2 we discuss risk aggregation under multivariate
second order regular variation. The main results of risk diversification for value-at-risk are discussed
in Section 3. Some examples to illustrate our results are given in Section 4. We provide conclusions
and future directions in Section 5. The appendix in Section 6 recalls, for completeness, results from
Resnick (2002) that characterize second order regular variation in terms of vague convergence of
signed measures, and which are used in our results.
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1.1. Notations

A brief summary of some notation and concepts used in this paper are provided here. We use bold
letters to denote vectors, with capital letters for random vectors and small letters for non-random
vectors, e.g., y = (y1, y2) ∈ R2. We also define 0 = (0, 0) and ∞ = (∞,∞). Vector operations are
always understood component-wise, e.g., for vectors x and y, x ≤ y means xi ≤ yi for all i. For
a constant k ∈ R and a set A ⊂ Rd, we denote by kA := {kx : x ∈ A}. Some additional notation
follows with explanations that are amplified in subsequent sections. Detailed discussions are in the
references.

E∗ A compactified version of a nice subset of the finite-dimensional Euclidean
space, often denoted E with different subscripts and superscripts, as required.
For example, we often denote E = [0,∞]d \ {0} and E0 = (0,∞]d.

B(E∗) The Borel σ-field of the subspace E∗.

ℵ The set {x ∈ E : ||x|| = 1}, where || · || denotes the Euclidean norm in Rd.

M+(E∗) The class of Radon measures on Borel subsets of E∗.
v→ vague convergence of measures, often on M+(E∗); see Resnick (2007).

f← The left-continuous inverse of a monotone function f .

For a non-decreasing function f , we have f←(x) = inf{y : f(y) ≥ x}.

For a non-increasing function g, we have g←(x) = inf{y : g(y) ≤ x}.

RVρ The class of regularly varying functions with index ρ ∈ R, that is, functions
f : R+ → R+ satisfying limt→∞ f(tx)/f(t) = xρ, for x > 0; see Bingham et al.
(1989), de Haan (1970), de Haan and Ferreira (2006), Resnick (2008).

1.2. Preliminaries

Regular variation often forms the basis for studying heavy-tailed distributions. In this section we
recall definitions and properties of regular variation and second order regular variation in both
univariate and multivariate case (Bingham et al., 1989, de Haan, 1970, de Haan and Ferreira,
2006, Resnick, 2002, 2008). Definition 1.5 for multivariate second order regular variation forms the
key assumption of our models for this paper. We also define the related concept of hidden regular
variation in Definition 1.6, which may be used to generate models possessing multivariate second
order regular variation as seen in Example 4.3.
Recall that a function f : R+ → R+ is regularly varying (at ∞) with parameter ρ ∈ R if

lim
t→∞

f(tx)/f(t) = xρ

for any x > 0. We write f ∈ RVρ.

1.2.1. Regular variation in one-dimension

A large class of heavy-tailed distributions belonging to the maximum domain of attraction of the
Fréchet distribution corresponds to the paradigm of regular variation of the tail of the distribution.



4 B. Das and M. Kratz

Definition 1.1 (Regular variation, Bingham et al. (1989)). A random variable X with distribution
function F has regularly varying (right) tail with index α ≥ 0 if F = 1−F ∈ RV−α. Alternatively,
we say that there exists a function b : R+ → R+ with b(t) ↑ ∞ as t→∞ such that

lim
t→∞

tP[X > b(t)x] = x−α. (1.1)

In terms of vague convergence we can think of convergence in the space (0,∞], where

P[t−1X ∈ ·]
P[X > t]

v−→
t→∞

µα(·)

with µα(dx) = αx−α−1dx. We write F ∈ RV−α or, by abuse of notation, X ∈ RV−α.

A consequence of the definition is that b ∈ RV1/α and a natural choice is b(t) = (1/F )←(t). For
example, Pareto, Fréchet, Stable or Burr distribution with parameter α haveRV−α tail distributions
(see e.g. Embrechts et al. (1997)).
Furthermore, often some distributions with regularly varying tails have a second order property that
is not captured by the scaling in the definition of regular variation. The Pareto-Lomax distribution
is one such example, analyzed below. The following definition provides one approach to studying
such distributions.

Definition 1.2 (Second order regular variation; de Haan and Resnick (1993), Resnick (2002),§3).
A random variable X with distribution function F such that F ∈ RV−α with α ≥ 0, possesses
second order regular variation with parameter ρ ≤ 0 if there exist functions b(·) ∈ RV1/α and
A(t) →

t→∞
0 that is ultimately of constant sign, |A(·)| ∈ RVρ with ρ ≤ 0 and c 6= 0 such that

tF (b(t)x)− x−α

A(b(t))
−→
t→∞

cx−α
xρ − 1

ρ
=: H(x). (1.2)

The right hand side of (1.2) is interpreted as H(x) = c log(x) when ρ = 0. We write F ∈
2RV−α,ρ(b, A,H) or, by abuse of notation, X ∈ 2RV−α,ρ(b, A,H). The arguments in the brack-
ets are often dropped for simplicity.

Remark 1.3. An equivalent representation of second order regular variation is the following:
F ∈ 2RV−α,ρ(A,H) if there exists an ultimately positive or negative function A with A(t) →

t→∞
0

such that

lim
t→∞

F (tx)

F (t)
− x−α

A(t)
= cx−α

xρ − 1

ρ
=: H(x)

for some constant c 6= 0 and parameters α > 0, ρ ∈ R. The parameters α, ρ of course remain the
same in both definitions. With a choice of b(t) =

(
1/F

)←
(t), the functions A and H also coincide.

Example 1.1. Consider the Pareto-Lomax distribution function for α > 0 given by F (x) =
(1 + x)−α, x > 0. Choosing b(t) = (1/F )←(t) = t1/α − 1 and A(t) = (1 + t)−1, we obtain

lim
t→∞

tF (b(t)x)− x−α

A(b(t))
= lim

t→∞

t(1 + (t1/α − 1)x)−α − x−α

(1 + t)−1
= −αx−α(x−1 − 1) =: H(x).

Hence F ∈ 2RV−α,−1(b, A,H).
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1.2.2. Regular variation in multiple dimensions

Multivariate regular variation facilitates the study of jointly heavy-tailed random variables and is a
natural extension to Definition 1.1. The following definitions explain multivariate regular variation
as well as second order regular variation for joint tail distributions of random variables. The notion
of vague convergence of measures is used for convergence of measures on the non-negative Euclidean
orthant Rd+ and its subsets; see Resnick (2007) for further details.

Definition 1.4 (Multivariate regular variation, Resnick (2007)). Suppose X = (X1, . . . , Xd) is a
random vector in a cone [0,∞)d. Then X is multivariate regularly varying with limit measure ν, if
there exist b(t) ↑ ∞ and a Radon measure ν 6= 0 such that, on E = [0,∞]d \ {0},

tP
(

X

b(t)
∈ ·

)
→
t→∞

ν(·) on M+(E). (1.3)

We write X ∈MRV−α(b).

It is easy to check that ν(·) is homogeneous in the sense that, for α ≥ 0 and relatively compact
A ⊂ E,

ν(cA) = c−αν(A), c > 0 . (1.4)

We can also check that b(·) ∈ RV1/α.

Definition 1.5 (Second order multivariate regular variation, Resnick (2002)). Suppose X ∈
MRV−α(b) and there exists A(t) →

t→∞
0 that is ultimately of constant sign with |A(·)| ∈ RVρ, ρ ≤ 0,

such that

tP
(

X
b(t) ∈ [0,x]c

)
− ν([0,x]c)

A(b(t))
→
t→∞

H(x) (1.5)

locally uniformly in x ∈ (0,∞]d \ {∞}, where H(x) is a function that is non-zero and finite.
Then X is second order regularly varying with parameters α ≥ 0 and ρ ≤ 0. We write X ∈
2MRV−α,ρ(b, A, ν,H); some or all of the parameters may be omitted according to the context.

Observe that putting d = 1 in Definitions 1.4 and 1.5 gives us back the univariate versions Defi-
nitions 1.1 and 1.2 . In order to use (1.5) in terms of vague convergence of signed measures, we
impose further conditions on the distribution F of X as aptly noted in (Resnick, 2002, Section 4).
Appropriate conditions, used in this paper to obtain the results, are described in Assumptions 1
and 2 in the Appendix (Section 6).

The connection between second order regular variation and hidden regular variation has been
discussed in detail in Resnick (2002). Recall that a d-dimensional non-negative random vector
X ∈ MRV−α(b, ν) possesses asymptotic independence if ν((0,∞]d) = 0, meaning that, the limit
measure ν concentrates only on the coordinate axes. In the presence of such a phenomenon of
asymptotic independence, hidden regular variation, as described below, is sometimes observed.
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Definition 1.6. A random vector X ∈ Rd+ has hidden regular variation if X ∈MRV−α(b) and
there exist a function b0 and a limit measure ν0 6= 0 on E0 = (0,∞]d, such that lim

t→∞
b(t)/b0(t) =∞

and for A ∈ B(E0),

lim
t→∞

tP
(

X

b0(t)
∈ A

)
= ν0(A).

Many models with hidden regular variation also happen to exhibit second order regular variation;
specifically we can look at additive models and mixture models; for further details see Das and
Resnick (2015), Weller and Cooley (2014). Example 4.3 in Section 4 is created in this way.

2. Aggregation under multivariate second order regular variation

In order to aggregate multiple risks factors (with the same marginal distribution or at least equiv-
alent tail order), multivariate regular variation helps in providing justification for sub- or super-
additivity; see Degen and Embrechts (2011), Embrechts et al. (2009). We observe here that further
structure and intuition can be provided by assuming second order regular variation. The key idea
in this section is to relate second order regular variation of the multivariate kind with the same of
the univariate kind. This eventually helps us in evaluating risk measures for sums of homogeneous
random factors with different dependence structures.
Aggregation of risk under multivariate regular variation is relatively straightforward to check. For
example, assuming that X ∈ MRV−α(b) with identical marginals Xi ∼ F , then, using the defini-
tion, we can check that, if Sd :=

∑d
i=1Xi ∼ FSd for d ≥ 2, then FSd ∈ RV−α with the same function

b(·) as in the Definition 1.4. Moreover, b(·) need not be asymptotically equivalent to (1/FSd)
←(·).

The following proposition extends this implication to the case where X possesses second order
regular variation.

Proposition 2.1. Assume X ∈ 2MRV−α,ρ(b, A, ν,H) with functions b(t) ↑ ∞ and A(t) → 0,
as t → ∞, so that Condition (1.5) holds in terms of vague convergence of signed measures, under
either Assumption 1 or Assumption 2 (see Appendix). Then

Sd ∈ 2RV−α,ρ(bd, Ad, Hd), where
bd(t) := (ν(Γd))

1/αb(t),

Ad(t) := A((ν(Γd))
−1/α t),

Hd(x) := χ(x(ν(Γd))
1/αΓd) = cd x

−α xρ−1
ρ , with cd = ρ2α

2ρ−1χ(2(ν(Γd))
1/αΓd),

(2.1)

where χ is defined as χ([0,x]c) = H(x), and

Γd := {z ∈ Rd+ : z1 + z2 + . . .+ zd > 1}. (2.2)

By construction we have Ad(bd(t) = A(b(t)). We also extend the notation for Γd in (2.2) defined
for d ≥ 2 to the case where d = 1 as

Γ1 := {z ∈ Rd+ : z1 > 1}.
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Remark 2.2.

(i) Assuming X ∈ 2MRV−α,ρ(b, A, ν,H) along with either Assumption 1 or Assumption 2,
implies that χ(kΓd) 6= 0 for some k > 0 and hence the constant cd is non-zero. Nevertheless,
we can construct examples where cd = 0, yet X ∈ 2MRV−α,ρ(b, A, ν,H) holds; see Example
2.2. Both Assumptions 1 and 2 require that the marginal distributions are identical, which
is violated in Example 2.2.

(ii) Note that although X ∈ MRV−α does mean that at least one of the marginal distributions
is RV−α, such an implication is not necessarily true for a 2MRV condition. Assuming X ∈
2MRV−α,ρ does not necessarily imply that one of the components is 2RV. For instance, if
the components of X are all iid F that is Pareto(α)-type 1, meaning F (x) = 1− x−α, x > 1
and α > 0, then X ∈ 2MRV−α, although none of the margins are 2RV.

(iii) The reverse implication of Proposition 2.1, properly worded, would say that, if any convex
combination of X is 2RV then X ∈ 2MRV. We conjecture that such a result would require
further conditions on the random variables to hold. See Basrak et al. (2002) for the condi-
tions that allows this to happen for regularly varying random vectors (not necessarily 2RV
or 2MRV), and also Boman and Lindskog (2009), Hult and Lindskog (2006) for further
investigation.

Proof of Proposition 2.1. Since X ∈ 2MRV−α,ρ(b, A, ν,H) and either Assumption 1 or As-
sumption 2 holds (this also ensures identical marginals), we have

µ±t
v→ χ±, on E,

where, for t > 0, µ+
t , µ

−
t , χ

+, χ− are positive Radon measures with µt = µ+
t −µ

−
t and χ = χ+−χ−,

χ : A → R for a Borel subset A ⊂ [0,∞)d \ {0} defined by χ([0,x]c) = H(x) and µt defined in
(6.7). Hence we have

µt(Λd) =
tP
(

X
b(t) ∈ Λd

)
− ν(Λd)

A(b(t))
→
t→∞

χ(Λd) (2.3)

for any relatively compact Λd ⊂ E. Define bd(t) = (ν(Γd))
1/αb(t). Then, for x > 0,

tP
(

Sd
bd(t)

> x

)
= tP

(
X

b(t)
∈ x(ν(Γd))

1/αΓd

)
−→
t→∞

ν
(
x(ν(Γd))

1/αΓd

)
= x−α

using (1.4). Now, let Ad(t) = A((ν(Γd))
−1/αt) for t > 0. Then by applying (2.3), we get for x > 0,

tP
(

Sd
bd(t) > x

)
− x−α

Ad(bd(t))
=
tP
(

X
b(t) ∈ x(ν(Γd))

1/αΓd

)
− ν(x(ν(Γd))

1/αΓd)

A(b(t))

= µt(x(ν(Γd))
1/αΓd) −→

t→∞
χ(x(ν(Γd))

1/αΓd).

Defining Hd(x) := χ(x(ν(Γd))
1/αΓd), we know that Hd is not identically zero by the assumption

χ(kΓd) 6= 0 for some k > 0. Hence using Remark 1.3 and Theorem 2.3.9 in de Haan and Ferreira
(2006), we can represent Hd as follows: for x > 0,

Hd(x) = cd x
−αx

ρ − 1

ρ
, where cd =

ρ2α

2ρ − 1
χ(2(ν(Γd))

1/αΓd)

(
=

ρ2α

2ρ − 1
Hd(2)

)
.

Hence Sd ∈ 2RV−α,ρ(bd, Ad, Hd), as claimed.
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2.1. Examples of different degeneracies under second order regular variation

In this section we provide examples of a couple of degeneracies that come up while trying to connect
second order regular variation in the multivariate and the univariate case. Suppose X1, X2, . . . , Xn

are iid 2RV−α,ρ. Then using (Mao and Hu, 2013, Theorem 3.1, 3.2), we know that the sum
n∑
i=1

Xi ∈

2RV−α,ρ. But can we say X ∈ 2MRV? This may not always be true as we see in the following
example.

Example 2.1. Suppose X1, X2 are iid random variables with distribution function F such that

F (x) =
1

2
x−α(1 + xρ), x ≥ 1,

where α > 0, ρ < 0. This family of distributions belongs to the Hall-Welsh class of heavy-tailed
distributions. For any α > 0 and ρ < 0, it is immediate that X1 ∈ 2RV−α,ρ(b, A) where b(t) = t1/α

and A(t) = tρ. Take a set of the form [0, (x1, x2)]c for x1 > 0, x2 > 0 and observe that

tP
(

X

t1/α
∈ [0, (x1, x2)]c

)
→
t→∞

1

2

(
1

xα1
+

1

xα2

)
=: ν([0, (x1, x2)]c).

At the second level

tP
(

X
t1/α
∈ [0, (x1, x2)]c

)
− 1

2

(
1
xα1

+ 1
xα2

)
tρ/α

=
tP(X1 > t1/αx1) + tP(X2 > t1/αx2)− tP(X1 > t1/αx1, X2 > t1/αx2)− x−α1 /2− x−α2 /2

tρ/α

=
1

2
(x−α+ρ

1 + x−α+ρ
2 )− t−1−ρ/a

4
x−α1 x−α2 (1 + tρ/αxρ1)(1 + tρ/αxρ2) = H∗(x1, x2, t). (say) (2.4)

Now, we have

lim
t→∞

H∗(x1, x2, t) =


1
2(x−α+ρ

1 + x−α+ρ
2 ) if ρ+ α > 0,

1
2(x−2α

1 + x−2α
2 )− 1

4x
−α
1 x−α2 if ρ+ α = 0,

−∞ if ρ+ α < 0.

We can check that no other choice of A(·) (up to equivalent tail behavior) would provide a finite
limit for (2.4) as t → ∞. Hence we have X ∈ 2MRV−α,ρ iff α + ρ ≥ 0. Thus for any choice of ρ
such that α+ ρ < 0, X1 ∈ 2RV−α,ρ, but X is not 2MRV.

In the next example, we have independent (but not identically distributed) random variablesX1, X2,
where the marginal distributions are both 2RV−α,ρ, and the joint distribution is also 2MRV, yet,
we cannot use Proposition 2.1.

Example 2.2. Let X = (X1, X2) = B(Z1, 0) + (1 − B)(0, Z2), where B ∼ Bernoulli(1/2) and
independent of Z1, Z2, which are independent random variables with distribution functions F1, F2

respectively, such that, for x ≥ 1,

F1(x) =
1

2
x−2(1 + x−1) and F2(x) = x−2(1− 1

2
x−1 +

1

2
x−2).
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Note that we created a random vector whose realizations are all on the two axes (there is no interior
point). We can check that both X1, X2 ∈ 2RV−2,−1(b, A) where b(t) = t1/2 and A(t) = t−1. Take a
set of the form [0, (x1, x2)]c for x1 > 0, x2 > 0 and observe that, as t→∞,

tP
(

X

t1/2
∈ [0, (x1, x2)]c

)
→
t→∞

1

4x2
1

+
1

2x2
2

=: ν([0, (x1, x2)]c).

At the second level,

tP
(

X
t1/2
∈ [0, (x1, x2)]c

)
−
(

1
4x21

+ 1
2x22

)
t−1/2

→
t→∞

1

4

(
x−3

1 − x
−3
2

)
=: H(x1, x2) = χ([(0, 0), (x1, x2)]c).

Since the random vectors lie only on the axes, we have P (X1 +X2 > x) = P (X ∈ [0, (x, x)]c), and
we can check that for any x > 0,

tP
(

X
t1/2
∈ xΓ2

)
− 3

4x2

t−1/2
=
tP
(
X1+X2

t1/2
> x

)
− 3

4x2

t−1/2
=
tP
(

X
t1/2
∈ [0, (x, x)]c

)
− 3

4x2

t−1/2
→
t→∞

x−3 − x−3

4
= 0 = χ(xΓ2).

Hence we can conclude that c2 = 0 (as defined in (2.1)). Thus Proposition 2.1 cannot be used.

3. Diversification index

3.1. Risk measures and diversification

In risk management, evaluating diversification benefits properly is key for both insurance and
investments. Indices have been introduced to quantify and compare the diversification of portfolios,
such as the closely related notions of diversification benefit defined by Bürgi et al. (2008) as

1−
ρ̃(
∑d

i=1Xi)∑d
i=1 ρ̃(Xi)

, with ρ̃(·) := ρ(·)− E(·),

and the associated diversification index defined by Tasche (2008) as,

Dρ(X) =
ρ(
∑d

i=1Xi)∑d
i=1 ρ(Xi)

(3.1)

for d risks (Xi, i = 1, · · · , d), ρ denoting the associated risk measure. This index Dρ(X) is also
referred to as a measure of risk concentration by some authors. Neither index is a so-called universal
risk measure and they depend on the choice of the associated risk measure ρ and on the number d
of the underlying risks in the portfolio (see e.g. Emmer et al. (2015)). As indicated earlier, in this
paper we restrict to the popular risk measure value-at-risk (VaR) as the choice for ρ and obtain
asymptotic results for the diversification index. For notational convenience, we define the associated
quantity Q1−β(X) for 0 < β < 1 for a random variable X with disribution F as

Q1−β(X) = VaRβ(X) := F
←

(1− β) = inf{x ∈ R : P(X > x) ≤ 1− β}.

The diversification index associated with VaR under different assumptions on the marginal distri-
butions and dependence structure, as well as its asymptotic limits can be found in the literature
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(see e.g. Bürgi et al. (2008), Dacorogna et al. (2015), Degen et al. (2010), Embrechts et al. (1997).
We denote the diversification index DVaRβ as Dβ to emphasize the role of β in the calculation of
the index. The following result was obtained under the assumption of independence and identical
distribution of the marginal Xi’s.

Lemma 3.1 (cf. Example 3.1, Embrechts et al. (2009)). Assume X1, . . . , Xn are iid with distri-
bution function F where F ∈ RV−α with α > 0. Let Sd :=

∑d
i=1Xi. Then

lim
β↑1

Dβ(X) = lim
β↑1

VaRβ(Sd)

d VaRβ(X1)
= lim

γ↓0

Qγ(Sd)

d Qγ(X1)
= d1/α−1. (3.2)

The rate of convergence for the limit in (3.2) can be obtained by using an additional assumption of
second order regular variation; see Albrecher et al. (2010), Degen et al. (2010), Mao and Hu (2013),
Omey and Willekens (1986). Some studies relax the condition of independence of marginals and
obtain limits as in (3.2) as well as rates of convergence; for instance Hua and Joe (2011) work under
a scale-mixture dependence with second order regularly varying marginal distributions, Kortschak
(2012) works under an assumption of asymptotic independence, and Tong et al. (2012) assume an
Archimedean copula as the dependence structure. In this paper, we consider an alternative approach
assuming that the random vector is multivariate regularly varying (MRV) as well as it possesses
second order regular variation (2MRV) in order to obtain the rate of convergence. To the best of
our knowledge, this approach has not been looked at and forms a broad class containing examples
with regularly varying margins (both possessing 2RV and not possessing 2RV) as well as different
families of dependence structures.

3.2. Main Result

The following result provides the rate of convergence for the diversification index Dρ(X) when
taking VaR as a risk measure for a random vector X = (X1, . . . , Xd) that exhibits second order
regular variation. Note that even if X ∈ 2MRV, the marginal random variables Xi need not
to be 2RV. We assume that the marginals are identically distributed although not necessarily
independent.

Theorem 3.2. Let X ∈ 2MRV−α,ρ(b, A, ν,H) with functions b(t) ↑ ∞ and A(t)→ 0, as t→∞.

Assume either Assumption 1 or Assumption 2 holds. From Proposition 2.1, we have Sd =
d∑
i=1

Xi ∈

2RV−α,ρ(bd, Ad, Hd) with bd, Ad and Hd as defined in (2.1). Then, for d ≥ 2,

lim
β↑1

Dβ(X) = lim
β↑1

VaRβ(Sd)∑d
i=1 VaRβ(Xi)

= lim
γ↓0

Qγ(Sd)

dQγ(X1)
= Kd where Kd :=

1

d

(
ν(Γd)

ν(Γ1)

)1/α

with Γd defined in (2.2), for any d ≥ 1. Moreover, if

|χ(2(ν(Γd))
1/αΓd)| <∞, ∀d ≥ 1, and |χ(2(ν(Γd))

1/αΓd)| 6= |χ(2(ν(Γ1))1/αΓ1)|, ∀d ≥ 2, (3.3)

then we have, for any x > 0,

lim
γ↓0

D1−γx(X)−Kd

A (b (1/γ)))
= lim

γ↓0

Qγx(Sd)
dQγx(X1) −Kd

A (b (1/γ)))
= C

Kd

αρ
(x−ρ/α − 1), (3.4)
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for a constant C 6= 0 that is identified, for d ≥ 2, as

C =

{
cd − c1 if X1 ∼ 2RV
cd ( 6= 0) otherwise

with cd and c1 defined in (2.1).

Remark 3.3.

(i) Note that if |χ(2(ν(Γd))
1/αΓd)| = ∞, the question about the limiting rate of convergence

above remains open.
(ii) Even if cd 6= 0 and c1 6= 0, it is possible that C = cd− c1 = 0; we have not found any example

of this type.

In order to prove Theorem 3.2, we need the following result that is a direct application of a lemma
from Vervaat (see Vervaat (1971)).

Lemma 3.4. For any positive random variable X ∈ 2RV−α,ρ(b, A), we have

lim
γ↓0

1
b(1/γ)Qγx(X)− x−1/α

A(b(1/γ))
=

c1

αρ
x−1/α(x−ρ/α − 1) =: H∗1 (x)

with 0 < c1 <∞ defined in (2.1).

Example 3.1. The following example is an application of Lemma 3.4. Suppose X ∼ F , where

F (x) = 1− F (x) =
1

2
(x−α + x−2α). Hence, for 0 < p < 1, F

←
(p) = 21/α(

√
1 + 8p− 1)−1/α.

With b(t) = F
←

(1/t) we have, for x > 0,

tF (b(t)x) =
t

2

1

2

(√
1 +

8

t
− 1

)
x−α +

1

4

(√
1 +

8

t
− 1

)2

x−2α

 = x−α
(

1 +
2

t
(x−α − 1) + o(t−1)

)
→
t→∞

x−α.

Moreover, taking A(t) = t−α, we have A(b(t)) = 2
t

[
1− 2

t + o(1/t)
]
, from which we deduce that

lim
t→∞

tF (b(t)x)− x−α

A(b(t))
= x−α(x−α − 1) =: H(x).

Hence, X ∈ 2RV−α,−α(b, A,H) with c = −α as defined in (1.2). Applying Lemma 3.4, we have

lim
γ↓0

1
b(1/γ)Qγx(X)− x−1/α

A(b(1/γ))
=

1

α
x−1/α(x− 1),

which can also be directly verified. Note that Qγx(X) = VaR1−γx(X) = b(1/(γx)).

Proof of Lemma 3.4. The proof is an application of Vervaat’s Lemma that we recall here for
the sake of completeness.
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Vervaat’s Lemma (see Vervaat (1971)). Suppose y is a continuous function on [0,∞) and {zt(x)}t≥0

is a family of non-negative, non-increasing functions. Also assume that the function g has a negative
continuous derivative. Let δ(t)→ 0 with δ(t) > 0 eventually and

lim
t→∞

zt(x)− g(x)

δ(t)
= y(x)

locally uniformly on (0,∞). Then, locally uniformly on (g(0), g(∞)),

lim
t→∞

z←t (x)− g←(x)

δ(t)
= − (g←)′ (x) y(g←(x)) .

Let γ = 1/t, so that γ ↓ 0 as t → ∞. Applying Vervaat’s Lemma with zt(x) = tP[X > xb(t)] =
tFX(xb(t)), g(x) = x−α, δ(t) = A(b(t)) and y(x) = H1(x) given in (2.1), we obtain:

lim
t→∞

z←t (x)− g←(x)

δ(t)
= lim

t→∞

1
b(t)F

←
X (x/t)− x−1/α

A(b(t))
= lim

γ↓0

1
b(1/γ)Qγx(X)− x−1/α

A(b(1/γ))
,

hence the result given in Lemma 3.4.

Proof of Theorem 3.2. Since X ∈ 2MRV−α,ρ(b, A, ν,H), and Xi’s are identically distributed,
if Xi ∼ F then F ∈ RV−α. Proposition 2.1 (with the same notations) provides that Sd is

2RV−α,ρ(bd, Ad, Hd) such that, for x > 0,
tP [Sd > bd(t)x]− x−α

Ad(bd(t))
−→
t→∞

Hd(x). Applying Lemma 3.4

for Sd gives then

lim
γ↓0

1
bd(1/γ)Qγx(Sd)− x−1/α

Ad(bd(1/γ))
=

cd
αρ
x−1/α(x−ρ/α − 1) =: H∗d(x), with 0 < cd <∞. (3.5)

First of all, since F ∈ RV−α, introducing the notation b1 when looking at any Xi, we can write

lim
β↑1

Dβ(X) = lim
β↑1

VaRβ(Sd)∑d
i=1 VaRβ(Xi)

= lim
γ↓0

Qγ(Sd)

dQγ(X)
= lim

γ↓0

1

d
×Qγ(Sd)

bd(1/γ)
× b1(1/γ)

Qγ(X1)
×bd(1/γ)

b1(1/γ)
=

1

d

(
ν(Γd)

ν(Γ1)

)1/α

= Kd.

Now, to assess the second order property, observe that for any x > 0,

D1−γx(X)−Kd

A (b (1/γ)))
=

Qγx(Sd)
dQγx(X) −Kd

A (b (1/γ)))
= I(x, γ)− II(x, γ)

where

I(x, γ) = Kd
b1(1/γ)

Qγx(X1)

[
Qγx(Sd)
bd(1/γ) − x

−1/α
]

A(b(1/γ))

and

II(x, γ) =

 Kd × b1(1/γ)
Qγx(X1) ×

[
Qγx(X1)

b1(1/γ)
−x−1/α

]
A(b(1/γ)) if X1 ∼ 2RV

0 otherwise .
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Indeed, if X1 is 2RV, then we have
tP (X1 > b1(t)x)− x−α

A1(b1(t))
−→
t→∞

H1(x) := c1 x
−αx

ρ − 1

ρ
with c1 =

ρ2αH1(2)
2ρ−1 and H1(2) = χ(2(ν(Γ1))1/αΓ1). Moreover b1(t) = (ν(Γ1))1/αb(t), A1(t) = A((ν(Γ1))−1/αt),

and, by construction,

A(b(t)) = Ad(bd(t)) = A1(b1(t)). (3.6)

Note that we also used the fact that dKd = bd(t)/b1(t) (for any t > 0), when writing the expression

of the ratio
D1−γx(X)−Kd

A(b(1/γ))
=

Qγx(Sd)
dQγx(X) −Kd

A (b (1/γ)))
.

Now, we obtain via (3.5), that

lim
γ↓1

I(x, γ) = Kd · x1/α ·H∗d(x) = Kd
cd
αρ

(x−ρ/α − 1).

Similarly, when X1 is 2RV, applying Lemma 3.4 for X1 gives

lim
γ↓0

1
b1(1/γ)Qγx(X1)− x−1/α

A1(b1(1/γ))
=

c1

αρ
x−1/α(x−ρ/α − 1) =: H∗1 (x), with 0 < c1 <∞.

from which we deduce that

lim
γ↓1

II(x, γ) = Kd · x1/α ·H∗1 (x) = Kd
c1

αρ
(x−ρ/α − 1).

Hence (3.4) holds and the theorem is proved.

In the subsequent section we provide examples for both cases where C = cd and when C = cd− c1.
Note that proportional growth rate of D1−γ(X) can be deduced immediately from Theeorem 3.2
providing the following corollary.

Corollary 3.5. Under the conditions of Theorem 3.2, we have, for any x > 0, y > 0,

lim
γ↓0

D1−γx(X)−D1−γ(X)

D1−γy(X)−D1−γ(X)
=
x−ρ/α − 1

y−ρ/α − 1
.

Under the assumption that we can statistically estimate Dβ at moderately high values of β, Corol-
lary 3.5 may provide a way to extrapolate values of Dβ to extreme levels of β. For instance, let
X ∈ 2MRV−α,ρ and suppose our data allows us to compute estimates of the diversification index
for VaR at 90% and 95% which is given by D̂0.90(X) and D̂0.95(X), then for any p � 0.95 (with
0 < p < 1), we can use Corollary 3.5 to estimate Dp(X) as

D̂p(X) = D̂0.90(X) +


(

1−p
0.1

)−ρ/α
− 1

(0.5)−ρ/α − 1

[D̂0.95(X)− D̂0.90(X)
]
.
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4. Examples

In this section we apply Theorem 3.2 in different examples possessing 2MRV to compute the
asymptotic limit for the diversification index Dβ; our examples are carried out in dimension d = 2
for convenience.
In both Examples 4.1 and 4.2, the dependence structure is given by a survival Clayton copula
that exhibits asymptotic dependence, hence the conditions of Assumption 1 hold. Example 4.1
additionally possesses 2RV across the marginal distributions, whereas Example 4.2 does not. In
Example 4.3, we discuss a general class of distributions possessing hidden regular variation that
exhibits asymptotic independence and Assumption 2 is satisfied.

Example 4.1 (Pareto-Lomax marginal distribution with survival Clayton copula).

Suppose X = (X1, X2) ∼ F with identical (α, 1)-Pareto-Lomax marginal distributions, with α > 1,
s.t.

F 1(x) = F 2(x) = (1 + x)−α , ∀x > 0,

and that the dependence structure of X is given by a survival Clayton copula on [0, 1]2, with
parameter θ > 0:

P[X1 > x1, X2 > x2] =
[
(F 1(x1))θ + (F 2(x2))θ − 1

]−1/θ
=
[
(1 + x1)αθ + (1 + x2)αθ − 1

]−1/θ
.

(4.1)

Step 1: It has been already shown in Example 1.1 that X1 ∈ 2RV−α,−1(b, A1, H) with

b(t) = t1/α − 1, A1(t) = (t+ 1)−1, H(x) = −αx−α(x−1 − 1), and c = c1 = α. Applying Lemma 3.4
provides

lim
γ↓0

VaR1−γx(X1)

(1/γ)1/α−1
− x−1/α

γ1/α
= lim

γ↓0

Qγx(X1)

(1/γ)1/α−1
− x−1/α

γ1/α
= x−1/α − 1.

Step 2: Now we verify that X is 2MRV and identify the right parameters. We have

t P
(

X

b(t)
∈ ([0, x1]× [0, x2])c

)
→
t→∞

x−α1 + x−α2 −
(
xαθ1 + xαθ2

)−1/θ
=: ν (([0, x1]× [0, x2])c) . (4.2)

Choosing A(t) = −(t+ 1)−min(αθ,1), we have

lim
t→∞

tP
(

X
b(t) ∈ (([0, x1]× [0, x2])c

)
− ν(([0, x1]× [0, x2])c)

A(b(t))
= H(x1, x2), with

H(x1, x2) :=



1
θ

(
xαθ1 + xαθ2

)−1− 1
θ if θ < 1/α

α
[
(x1 + x2)

−(α+1)
(x1 + x2 − 1)− x−(α+1)

1 (x1 − 1)− x−(α+1)
2 (x2 − 1)

]
if θ = 1/α

α
[(
xαθ1 + xαθ2

)−1− 1
θ
[
xαθ−1
1 (x1 − 1) + xαθ−1

2 (x2 − 1)
]

−x−(α+1)
1 (x1 − 1)− x−(α+1)

2 (x2 − 1)
]

if θ > 1/α

(4.3)
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from which we deduce that

X ∈ 2MRV−α,−1(b, A, ν,H) with


b(t) = t1/α − 1

A(t) = −(t+ 1)−min(αθ,1)

ν defined in (4.2)
H defined in (4.3).

(4.4)

For the next steps, we compute the density function f of the distribution function F , as well as the
density function λ of the limit measure ν, aand obtain:

f(x1, x2) = α2(1 + θ) (1 + x1)αθ−1 (1 + x2)αθ−1
(

(1 + x1)αθ + (1 + x2)αθ − 1
)− 1

θ
−2

(4.5)

and

λ(x1, x2) = α2(1 + θ)xαθ−1
1 xαθ−1

2

(
xαθ1 + xαθ2

)− 1
θ
−2
. (4.6)

Step 3: We check that Assumption 1 holds. This boils down to verifying conditions (6.4)-(6.6).
We do this for the case αθ = 1, the alternative case (αθ 6= 1) is analogous but is skipped for this
part. Hence (4.5) and (4.6) simplify to

f(x1, x2) = α(α+ 1)(1 + x1 + x2)−(α+2) and λ(x1, x2) = α(α+ 1)(x1 + x2)−(α+2). (4.7)

We have, for any x ∈ E,

f(tx)

t−2F̄1(t)
− λ(x) = λ(x) t−1

(
α− 2 + α

x1 + x2

)
−→
t→∞

0.

Therefore, (6.4) holds and from the form of f(tx)
t−2F̄1(t)

−λ(x), it is clearly bounded if λ(x) is, which is

true for x ∈ ℵ. Thus uniform convergence also holds. Conditions (6.5) and (6.6) can also be checked
in the exact same way.

Step 4: Now, since the conditions are satisfied, applying Proposition 2.1 gives us:

S2 = X1 +X2 ∈ 2RV−α,−1(b2, A2)

with b2(t) = (ν(Γ2))1/αb(t) and A2(t) = A((ν(Γ2))−1/α t). Using Definition 1.2 of 2RV with (2.1),
we may then conclude that

tP[S2/b2(t) > x]− x−α

A2(b2(t))
→
t→∞

H2(x) = c2 x
−α(1− x−1)

where c2 = 2α+1H2(2) = 2α+1χ(2(ν(Γ2))1/αΓ2).

Step 5: The result on risk concentration follows by applying Theorem 3.2 (see (3.4)). For any
x > 0,

lim
γ↓0

D1−γx(X)−K2

A2(b2(1/γ))
=

1

α
(c1 − c2)K2(x1/α − 1), (4.8)
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A2 and b2 being defined in Step 4. We have seen in Step 1 that c1 = α. The quantities K2 =

1
2

(
ν(Γ2)
ν(Γ1)

)1/α
and c2 can be computed with varying degrees of effort depending on the values of α

and θ. We show this in the next step.

Step 6(a): αθ = 1 First compute ν(Γ2), using (4.7), as

ν(Γ2) =

∫
Γ2

λ(x1, x2) dx1 dx2 = α(α+ 1)

∫
Γ2

(x1 + x2)−(α+2) dx1 dx2 = α+ 1 .

Differentiating H given in (4.3) w.r.t. the 2 variables, we obtain the density h given by

h(x1, x2) := α2(α+ 1)(x1 + x2)−(α+2) − α(α+ 1)(α+ 2)(x1 + x2)−(α+3), (4.9)

and can compute χ(·), setting k = 2 (ν(Γ2))1/α = 2(1 + α)1/α, as

χ (kΓ2) =

∫
x1+x2>k

h(x1, x2) dx1dx2 = α2−α
[
1− α+ 2

2(α+ 1)1+1/α

]
.

We deduce that c2 = α
(

2− (α+ 2) (α+ 1)−(1+ 1
α

)
)

. Moreover we have K2 =
1

2

(
ν(Γ2)

ν(Γ1)

)1/α

=

1

2
(1 + α)1/α, hence (4.8) becomes, for any x > 0,

lim
γ↓0

D1−γx(X)−K2

A2(b2(1/γ))
=

1

2

[
α+ 2

α+ 1
− (α+ 1)1/α

]
(x1/α − 1).

Now noting that A2(b2(1/γ)) = −γ1/α, we have via (3.4),

lim
γ↓0

1

γ1/α

[
VaR1−γx(S2)

VaR1−γx(X1)
− (1 + α)1/α

]
=

[
(α+ 1)1/α − α+ 2

α+ 1

]
(x1/α − 1).

Step 6(b): αθ 6= 1 First we compute ν(Γ2) using (4.6):

ν(Γ2) =

∫
Γ2

λ(x1, x2) dx1 dx2 = α2(1 + θ)

∫
Γ2

xαθ−1
1 xαθ−1

2

(
xαθ1 + xαθ2

)− 1
θ
−2

dx1 dx2.

This quantity can be easily numerically evaluated for specific values of α and θ, for instance using
Mathematica. Next we compute χ (kΓ2) from which we can deduce c2 = 2α+1χ(2(ν(Γ2))1/αΓ2).
For instance, considering the case αθ < 1 in (4.3), and differentiating H w.r.t. the 2 variables, we
obtain the density h given by

h(x1, x2) := α2(θ + 1)(2 + 1/θ) x−2αθ−1−α
1 xαθ−1

2

(
1 + (x2/x1)αθ

)−3−1/θ
, (4.10)

from which we deduce, with the change of variables (u, v) = (x1, x2/x1), and denoting k =
2 (ν(Γ2))1/α,



17

χ (kΓ2) =

∫
x1+x2>k

h(x1, x2) dx1dx2

= α2(θ + 1)(2 + 1/θ)

∫ ∞
0

∫ ∞
0

1(u(1+v)>k) u
−α(θ+1)−1vαθ−1(1 + vαθ)−3−1/θ dv du.

This quantity can also similarly be numerically evaluated. Hence we are able to compute c2,K2, A2

and b2, and impute them into (4.8) to obtain an exact result.

Example 4.2 (Pareto-Type 1 marginal distribution with survival Clayton copula).

Here we consider the same structure of dependence as in Example 4.1, i.e. a survival Clayton copula
with parameter θ > 0, but assume that the marginal distributions are Pareto-Type 1 marginal
distributions with parameter α > 1, such that F 1(x) = F 2(x) = x−α for x > 1, to illustrate
the situation where the Xi’s are not 2RV. For computational simplicity let θ = 1/α, so that, for
x1 > 0, x2 > 0,

P[X1 > x1, X2 > x2] = (x1 + x2 − 1)−α. (4.11)

Step 1: First we verify that X is 2MRV and identify the right parameters and functions. Choos-
ing b(t) = (1/F 1)←(t) = t1/α and using (4.11), we observe that, for x1 > 0, x2 > 0, and for t large
enough such that xi t

1/α > 1 (i = 1, 2),

tP
(

X

b(t)
∈ ([0, x1]× [0, x2])c

)
= x−α1 + x−α2 −

(
x1 + x2 − t−1/α

)−α
→
t→∞

x−α1 + x−α2 − (x1 + x2)−α =: ν (([0, x1]× [0, x2])c) .(4.12)

We can also find the density function for the measure ν at x1 > 0, x2 > 0, namely

λ(x1, x2) =

∣∣∣∣∣ ∂2

∂x1∂x2
ν (([0, x1]× [0, x2])c)

∣∣∣∣∣ = α(α+ 1)(x1 + x2)−(α+2),

from which we deduce, for any k > 0,

ν(kΓ1) = ν (([0, k]× [0,∞))c) = k−α and ν(kΓ2) =

∫∫
x1+x2>k

λ(x1, x2) dx1dx2 = (α+ 1)k−α.

(4.13)
To check that X is 2MRV, choosing A(t) = −t−1, we observe that for x1 > 0, x2 > 0,

lim
t→∞

tP
(

X
b(t) ∈ ([0, x1]× [0, x2])c

)
− ν (([0, x1]× [0, x2])c)

A(b(t))
= α(x1 + x2)−(α+1) =: H(x1, x2).

(4.14)

Thus we have X ∈ 2MRV−α,−1(b, A, ν,H) where b(t) = t1/α, A(t) = −t−1 and ν,H are as defined
in (4.12) and (4.14) respectively. We write χ(([0, x1]×[0, x2])c) = H(x1, x2), which can be considered
as a signed measure with density given by

h(x1, x2) = α(α+ 1)(α+ 2)(x1 + x2)−(α+3), x1 > 0, x2 > 0.
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Then we can compute χ(kΓ2) as

χ(kΓ2) =

∫∫
x1+x2>k

h(x1, x2) dx1dx2 = α(α+ 2)k−(α+1). (4.15)

Step 2: We check that Assumption 1 holds, so that we can use Theorem 3.2. This boils down to
verifying conditions (6.4)-(6.6). Observe that the distribution function F has a density function f
defined, for x1 > 0, x2 > 0, by

f(x1, x2) = α(α+ 1)(x1 + x2 − 1)−(α+2). (4.16)

Therefore, for any x ∈ E, we obtain

f(tx)

t−2F 1(t)
− λ(x) = α(α+ 1)(x1 + x2)−(α+2)

([
1− 1

t(x1 + x2)

]−(α+2)

− 1

)
= α(α+ 1)(α+ 2)(x1 + x2)−(α+3)t−1 + o(t−1) →

t→∞
0.

Hence (6.4) holds and from the form of f(tx)

t−2F 1(t)
−λ(x), clearly it is bounded if λ(x) is; which is true

for x ∈ ℵ}. Thus uniform convergence also holds. Conditions (6.5) and (6.6) can also be checked in
the exact same way.

Step 3: Applying Proposition 2.1 provides

S2 = X1 +X2 ∈ 2RV−α,−1(b2, A2)

where b2(t) = (ν(Γ2))1/αb(t) = (α+ 1)1/αt1/α and A2(t) = A((ν(Γ2))−1/α t) = −(α+ 1)1/αt−1. We
also have from (2.1),

lim
t→∞

tP[S2/b2(t) > x]− x−α

A2(b2(t))
= c2x

−α(1− x−1) =: H2(x), (4.17)

where, via (4.13) and (4.15), c2 = 2α+1χ(2(ν(Γ2))1/αΓ2) =
α(α+ 2)

(α+ 1)1+1/α
.

Step 4: The result on risk concentration follows by applying Theorem 3.2. For any x > 0,

lim
γ↓0

D1−γx(X)−K2

A2(b2(1/γ))
= c2

K2

−α
(x1/α − 1),

where A2, b2, c2 are as defined in the previous Step 3, and K2 = 1
2

(
ν(Γ2)
ν(Γ1)

)1/α
= 1

2(1 + α)1/α.

Therefore we can rewrite (using the definitions of A2, b2, c2,K2), and noting that A2(b2(1/γ)) =
−γ1/α,

lim
γ↓0

1

γ1/α

[
VaR1−γx(S2)

VaR1−γx(X1)
− (1 + α)1/α

]
=
α+ 2

α+ 1
(x1/α − 1).



19

Example 4.3 (Example with Hidden Regular Variation).

We consider a simple example of a mixture model possessing hidden regular variation (Das and
Resnick, 2015, Section 3.1); many similar examples can be easily constructed. Let X = (X1, X2)
be defined as

X = B1Y + (1−B1)(V, V ), with Y = B2(ξ1, 0) + (1−B2)(0, ξ2) (4.18)

where B1, B2, ξ1, ξ2, V are independent, B1, B2 are Bernoulli variables with P[Bi = 1] = P[Bi =
0] = 1/2, i = 1, 2; ξ1, ξ2 are identical Pareto (Type-1) variables with parameter α > 0, whereas V
is a Pareto (Type-1) variable with parameter 2α. Here Y concentrates on the axes and provides
the top level regular variation, whereas (V, V ) is the source of hidden regular variation (and also
second order regular variation) for X. Note that for z1 > 1, z2 > 1,

P (X ∈ ([0, x1]× [0, x2])c) =
1

4

(
x−α1 + x−α2

)
+

1

2
(min(x1, x2))−2α.

Moreover, X1, X2 ∼ F and, for x > 1, F (x) =
1

4
x−α +

1

2
x−2α.

This is an example exhibiting asymptotic independence, hence we need to verify that Assumption
2 holds to apply Theorem 3.2.

Step 1: For large t, with b(t) = F
←

(1/t) = 41/α(
√

1 + 32/t−1)−1/α =
(
t
4

)1/α (
1− 8

t + o(1/t)
)−1/α

,

t P
(

X

b(t)
∈ ([0, x1]× [0, x2])c

)
=

(
1− 8

t
+ o(1/t)

)
x−α1 +

(
1− 8

t
+ o(1/t)

)
x−α2 +

8

t

(
1− 16

t
+ o(1/t)

)
(min(x1, x2))−2α

→
t→∞

x−α1 + x−α2 =: ν(([0, x1]× [0, x2])c).

Hence the first condition in Assumption 2 is satisfied. This also means that ν does not have a
density and the measure concentrates on the two axes, hence we can write

ν(Γ2) = ν((x1, x2) ∈ [0,∞)2 : x1 + x2 > 1) = 1−α + 1−α = 2.

Step 2: Marginally we observe that

tP(X1 > b(t)x) =

(
1− 8

t
+ o(1/t)

)
x−α+

8

t

(
1− 16

t
+ o(1/t)

)
x−2α = x−α+

8

t
x−α

(
x−α − 1

)
+o(1/t).

Choosing A(t) = 2t−α, we obtain

lim
t→∞

tP(X1/b(t) > x)− x−α

A(b(t))
= x−α(x−α − 1) = c1x

−αx
ρ − 1

ρ
,

where ρ = −α and c1 = −α. Both margins are identical, therefore the second condition in Assump-
tion 2 also holds and we can infer convergence of signed measures for 2MRV.
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Step 3: Now, for the same choice of functions b and A, we can write, for x1 > 0, x2 > 0,

lim
t→∞

tP
(

X
b(t) ∈ ([0, x1]× [0, x2])c

)
− ν (([0, x1]× [0, x2])c)

A(b(t))
= H(x1, x2).

where

H(x1, x2) = −(x−α1 + x−α2 ) + min(x−2α
1 , x−2α

2 ) =: −χ<([0, x1]× [0, x2])c) + χ>([0, x1]× [0, x2])c).
(4.19)

Step 4: Since ν(Γ2) = 2 (Step 1), with χ = χ>−χ< as defined in Theorem 6.3 in the Appendix,
and using (4.19), we can compute for any k > 0,

χ(kΓ2) = −(k−α + k−α) + (k/2)−2α = −2k−α(1− 22α−1k−α).

Applying Proposition 2.1, we have S2 = X1 +X2 ∈ 2RV−α,−α(b2, A2) where

b2(t) = (ν(Γ2))1/αb(t) = 81/α(
√

1 + 32/t−1)−1/α ∼
(
t

2

)1/α

and A2(t) = A((ν(Γ2))−1/α t) = A(2−1/αt) = 4t−α.

We also have from (2.1),

lim
t→∞

tP[S2/b2(t) > x]− x−α

A2(b2(t))
= −c2

α
x−α(x−α − 1) =: H2(x), (4.20)

where

c2 =
−α2α

2−α − 1
χ(2(ν(Γ2))1/αΓ2) =

α22α

2α − 1
χ(21+1/αΓ2) = α2α

2α−2 − 1

2α − 1
.

Step 5: Finally we obtain the result on risk concentration by applying Theorem 3.2. For any
x > 0,

lim
γ↓0

D1−γx(X)−K2

A2(b2(1/γ))
= (c2 − c1)× K2

(−α2)
(x− 1) = −21/α−1 22(α−1) − 1

α(2α − 1)
(x− 1),

where we have A2, b2, c2 are as defined in Step 4 above and K2 = 1
2

(
ν(Γ2)
ν(Γ1)

)1/α
= 21/α−1. Therefore

we can rewrite, using the definitions of A2, b2, c2,K2 and noticing that A2(b2(1/γ)) ∼ 8γ,

lim
γ↓0

1

γ

[
VaR1−γx(S2)

VaR1−γx(X1)
− 21/α

]
= 21/α+3 22(α−1) − 1

α(2α − 1)
(1− x).

5. Conclusion

Our goal in this paper was to exhibit the strength of the assumption of second order multivariate
regular variation for understanding diversification benefits in a portfolio of risk factors. We have
seen that 2MRV encompasses a broad variety of dependence structures where we could compute
the diversification index and observe penultimate behavior of portfolio of risk factors with respect
to the risk measure VaR. Explicit computations of the constants in many examples seem tedious,
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although numerical tools can be often used here. A few questions still remain open. For instance,
a characterization of multivariate second order regular variation in terms of linear combination of
its marginals akin to a Cramér-Wold Theorem is yet to be discovered. We are also interested in
finding the effects of the related concept of hidden regular variation on diversification.
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6. Appendix

We discuss results and assumptions from (Resnick, 2002, Section 4.2) that are used in this paper
for the sake of completeness. The following results provide conditions under which the second order
regular variation condition of Definition 1.5 can be represented as vague convergence of measures.
Assumption 1 gives the appropriate conditions when the limit measure ν(·) as obtained in Defnition
1.4 has a density with respect to the Lebesgue measure; hence X is not asymptotically independent.
On the other hand, Assumption 2 gives appropriate conditions when ν(·) does not have a density;
it means that asymptotic independence holds for the tail distribution of X.
Suppose X is a d-dimensional non-negative random vector with distribution function F and iden-
tical one-dimensional marginals F1.

Assumption 1. We assume the following on F .

1. Let F have a density F ′ such that for b(t)→∞,

lim
t→∞
|b(t)dtF ′(b(t)x)− λ(x)| = 0,x ∈ E, (6.1)

where λ(·) 6= 0 is bounded on ℵ and moreover

lim
t→∞

sup
a∈ℵ
|b(t)dtF ′(b(t)a)− λ(a)| = 0,x ∈ E. (6.2)

The limit function λ(x) necessarily satisfies λ(tx) = t−α−dλ(x). This implies from (Resnick,
2008) that there exists V ∈ RV−α such that

lim
t→∞

1− F (b(t)x)

V (b(t))
=

∫
[0,x]c

λ(u)du = ν([0,x]c), x > 0. (6.3)

Thus conditions (6.1) and (6.2) imply multivariate regular variation. Instead of conditions
(6.1) and (6.2) it is sufficient to assume F 1 ∈ RV−α and

lim
t→∞

∣∣∣∣∣ F
′
(tx)

t−dF 1(t)
− λ(x)

∣∣∣∣∣ = 0,x ∈ E, and lim
t→∞

sup
a∈ℵ

∣∣∣∣∣ F
′
(ta)

t−dF 1(t)
− λ(a)

∣∣∣∣∣ = 0, (6.4)

and we can take V = F 1.
2. Assume that the second order condition given in (1.2) holds for F 1 so that F 1 ∈ RV−α and

A ∈ RVρ, ρ ≤ 0, A→ 0 and for x ∈ E,

lim
t→∞

∣∣∣∣∣∣∣
F
′
(tx)

t−dF 1(t)
− λ(x)

A(t)
− χ′(x)

∣∣∣∣∣∣∣ = 0, (6.5)

where χ
′ 6= 0 is integrable on sets bounded away from 0. We also assume uniform convergence

on ℵ:

lim
t→∞

sup
a∈ℵ

∣∣∣∣∣∣∣
F
′
(ta)

t−dF 1(t)
− λ(a)

A(t)
− χ′(a)

∣∣∣∣∣∣∣ = 0, (6.6)

Also assume that χ
′

is finite and bounded on ℵ.
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Remark 6.1. For X ∼ F with identical marginals F1, assuming conditions (6.4)-(6.6) is suffi-
cient for (6.1)-(6.3) to hold with V = F 1.

Using ν as defined in (6.3), we define the signed measure

µt([0,x]c) :=
tP
[

X
b(t) ∈ [0,x]c

]
− ν([0,x]c)

A(b(t))
, (6.7)

which has a density given by

µ
′
t([0,x]c) :=

tb(t)dF
′
(b(t)x)− λ(x)

A(b(t))
, x ∈ [0,∞)d. (6.8)

Theorem 6.2 (Proposition 5, Resnick (2002)). If X ∈ [0,∞)d with distribution function F and
identical marginals F1 satisfies Assumption 1 then

µ±t
v→ χ±, on E,

where for t > 0, µ+
t , µ

−
t , χ

+, χ− are positive Radon measures with µt = µ+
t − µ

−
t and χ = χ+ − χ−.

If X ∈ F with F ∈MRV−α(b) but possesses asymptotic independence then the limit measure ν(·)
as obtained in (1.4) does not have a density with respect to Lebesgue measure. Hence Assumption
1 does not hold. In this case we require a different set of assumptions which are given below.

Assumption 2. We assume the following on F .

1. Suppose (1.5) holds with ν([0,x]c) = κ
∑d

i=1 x
−α
i , where κ is some constant.

2. Moreover the one dimensional marginals are identical and satisfy the second order condition
as in Definition 1.2 such that we also have

µ±t1 :=

 tP
[
X1
b(t) ∈ ·

]
− να(·)

A(b(t))

± v→ χ±1 , (6.9)

on (0,∞] where χ1(x,∞] = cx−α x
ρ−1
ρ .

Theorem 6.3 (Theorem 2, Resnick (2002)). If X ∈ [0,∞)d with distribution function F and
Assumption 2 holds, then with µt as defined in (6.7) and H as in (1.5), there exist non-negative
Radon measures µ>t , µ

<
t , χ

>, χ< such that

µ>t
v→ χ>, µ<t

v→ χ<

where µt = µ>t − µ<t and H(x) = χ>([0,x]c)− χ<([0,x]c). For our purposes we take for any set A
in [0,∞)d, χ(A) := χ>(A)− χ<(A).
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