T. W. Anderson and H. Rubin, Estimation of the Parameters of a Single Equation in a Complete System of Stochastic Equations, The Annals of Mathematical Statistics, vol.20, issue.1, pp.46-63, 1949.
DOI : 10.1214/aoms/1177730090

D. W. Andrews and X. Cheng, Estimation and inference with weak, semistrong , and strong identification, Econometrica, vol.80, issue.5, pp.2153-2211, 2012.
DOI : 10.2139/ssrn.1688963

D. W. Andrews, X. Cheng, and P. Guggenberger, Generic Results for Establishing the Asymptotic Size of Confidence Sets and Tests. Cowles Foundation Discussion Papers 1813, 2011.

S. Beveridge and C. R. Nelson, A new approach to decomposition of economic time series into permanent and transitory components with particular attention to measurement of the ???business cycle???, Journal of Monetary Economics, vol.7, issue.2, pp.151-174, 1981.
DOI : 10.1016/0304-3932(81)90040-4

O. J. Blanchard and D. Quah, The dynamic effects of aggregate demand and supply disturbances, American Economic Review, vol.79, issue.4, pp.655-73, 1989.
DOI : 10.3386/w2737

J. Chaudourne, P. , and A. Guay, Understanding the effect of technology shocks in SVARs with long-run restrictions, Journal of Economic Dynamics and Control, vol.41, pp.154-172, 2014.
DOI : 10.1016/j.jedc.2014.01.012

L. J. Christiano, M. Eichenbaum, and R. Vigfusson, What happens after a technology shock? International Finance Discussion Papers 768, Board of Governors of the Federal Reserve System (U.S.), 2003.
DOI : 10.3386/w9819

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

L. J. Christiano, M. Eichenbaum, and R. Vigfusson, Assessing structural VARs, NBER Macroeconomics Annual, pp.1-106, 2006.
DOI : 10.2139/ssrn.941989

J. Dufour, Some Impossibility Theorems in Econometrics With Applications to Structural and Dynamic Models, Econometrica, vol.65, issue.6, pp.1365-1387, 1997.
DOI : 10.2307/2171740

M. Dupaigne, P. , and J. Matheron, Some analytics on bias in DSVARs, Economics Letters, vol.97, issue.1, pp.32-38, 2007.
DOI : 10.1016/j.econlet.2007.02.010

F. `-eve, P. , and A. Guay, The response of hours to a technology shock: A two-step structural var approach, Journal of Money, Credit and Banking, vol.41, issue.5, pp.987-1013, 2009.

F. `-eve, P. , and A. Guay, Identification of technology shocks in structural vars, The Economic Journal, vol.120, issue.549, pp.1284-1318, 2010.

N. Francis and V. A. Ramey, Is the technology-driven real business cycle hypothesis dead? Shocks and aggregate fluctuations revisited, Journal of Monetary Economics, vol.52, issue.8, pp.1379-1399, 2005.
DOI : 10.1016/j.jmoneco.2004.08.009

N. Francis and V. A. Ramey, Measures of per Capita Hours and Their Implications for the Technology-Hours Debate, Journal of Money, Credit and Banking, vol.1, issue.2, pp.1071-1097, 2009.
DOI : 10.1111/j.1538-4616.2009.00247.x

M. Fukac and A. Pagan, Issues in adopting DSGE models for use in the policy process. CAMA Working Papers 2006-10, 2006.

J. Galí, Technology, Employment, and the Business Cycle: Do Technology Shocks Explain Aggregate Fluctuations?, American Economic Review, vol.89, issue.1, pp.249-271, 1999.
DOI : 10.1257/aer.89.1.249

N. Gospodinov, Inference in Nearly Nonstationary SVAR Models With Long-Run Identifying Restrictions, Journal of Business & Economic Statistics, vol.28, issue.1, pp.1-11, 2010.
DOI : 10.1198/jbes.2009.08116

N. Gospodinov, A. Maynard, and E. Pesavento, Sensitivity of Impulse Responses to Small Low-Frequency Comovements: Reconciling the Evidence on the Effects of Technology Shocks, Journal of Business & Economic Statistics, vol.29, issue.4, pp.455-467, 2011.
DOI : 10.1198/jbes.2011.10042

L. Kilian, Small-sample Confidence Intervals for Impulse Response Functions, Review of Economics and Statistics, vol.83, issue.2, pp.218-230, 1998.
DOI : 10.1093/biomet/70.2.389

A. Kostakis, T. Magdalinos, and M. P. Stamatogiannis, Robust Econometric Inference for Stock Return Predictability, Review of Financial Studies, vol.28, issue.5, pp.1506-1553, 2015.
DOI : 10.1093/rfs/hhu139

A. Magdalinos and P. C. Phillips, Econometric inference in the vicinity of unity. Working paper, 2009.

A. Mccloskey, Bonferroni-Based Size-Correction for Nonstandard Testing Problems, SSRN Electronic Journal, 2012.
DOI : 10.2139/ssrn.2171912

S. Mittnik and P. A. Zadrozny, Asymptotic Distributions of Impulse Responses, Step Responses, and Variance Decompositions of Estimated Linear Dynamic Models, Econometrica, vol.61, issue.4, pp.857-870, 1993.
DOI : 10.2307/2951765

A. R. Pagan and M. H. Pesaran, Econometric analysis of structural systems with permanent and transitory shocks, Journal of Economic Dynamics and Control, vol.32, issue.10, pp.3376-3395, 2008.
DOI : 10.1016/j.jedc.2008.01.006

A. R. Pagan and J. C. Robertson, Structural Models of the Liquidity Effect, Review of Economics and Statistics, vol.70, issue.2, pp.202-217, 1998.
DOI : 10.1016/0014-2921(92)90041-T

E. Pesavento and B. Rossi, DO TECHNOLOGY SHOCKS DRIVE HOURS UP OR DOWN? A LITTLE EVIDENCE FROM AN AGNOSTIC PROCEDURE, Macroeconomic Dynamics, vol.85, issue.04, pp.478-488, 2005.
DOI : 10.2307/2938280

P. C. Phillips, J. Y. Park, and Y. Chang, Nonlinear instrumental variable estimation of an autoregression, Journal of Econometrics, vol.118, issue.1-2, pp.219-246, 2004.
DOI : 10.1016/S0304-4076(03)00141-6

P. C. Phillips, On Confidence Intervals for Autoregressive Roots and Predictive Regression, SSRN Electronic Journal, vol.82, issue.3, pp.1177-1195, 2014.
DOI : 10.2139/ssrn.2150172

V. A. Ramey, Macroeconomic shocks and their propagation, National Bureau of Economic Research, 2016.
DOI : 10.3386/w21978

C. A. Sims, Macroeconomics and Reality, Econometrica, vol.48, issue.1, pp.1-48, 1980.
DOI : 10.2307/1912017

D. Staiger and J. H. Stock, Instrumental variables regression with weak instruments, Econometrica, vol.65, issue.3, pp.557-586, 1997.
DOI : 10.3386/t0151

J. H. Stock, J. H. Wright, and M. Yogo, A Survey of Weak Instruments and Weak Identification in Generalized Method of Moments, Journal of Business & Economic Statistics, vol.20, issue.4, pp.518-529, 2002.
DOI : 10.1198/073500102288618658