
HAL Id: hal-01459344
https://essec.hal.science/hal-01459344

Preprint submitted on 7 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Robust inference in structural VARs with long-run
restrictions

Guillaume Chevillon, Sophocles Mavroeidis, Zhaoguo Zhan

To cite this version:
Guillaume Chevillon, Sophocles Mavroeidis, Zhaoguo Zhan. Robust inference in structural VARs with
long-run restrictions. 2016. �hal-01459344�

https://essec.hal.science/hal-01459344
https://hal.archives-ouvertes.fr


 

   

 

   

ROBUST INFERENCE IN STRUCTURAL 
VARS WITH LONG-RUN RESTRICTIONS 

RESEARCH CENTER 

GUILLAUME CHEVILLON, SOPHOCLES MAVROEIDIS, 
ZHAOGUO ZHAN 

 
ESSEC WORKING PAPER 1702 

                                        JANUARY 2017



Robust inference in structural VARs with long-run

restrictions∗

Guillaume Chevillon†

ESSEC Business School and CREST

Sophocles Mavroeidis‡

University of Oxford

Zhaoguo Zhan§

Kennesaw State University

November 22, 2016

Abstract

Long-run restrictions are a very popular method for identifying structural

vector autoregressions, but they suffer from weak identification when the data is

very persistent, i.e., when the highest autoregressive roots are near unity. Near

unit roots introduce additional nuisance parameters and make standard weak-

instrument-robust methods of inference inapplicable. We develop a method of

inference that is robust to both weak identification and strong persistence. The

method is based on a combination of the Anderson-Rubin test with instruments
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derived by filtering potentially non-stationary variables to make them near sta-

tionary. We apply our method to obtain robust confidence bands on impulse

responses in two leading applications in the literature.

Keywords : SVARs, identification, weak instruments, near unit roots, IVX.

JEL: C12, C32, E32

“It is better to be vaguely right than exactly wrong.” Carveth Read

1 Introduction

Since the seminal paper of Sims (1980), structural vector autoregressions (SVARs)

have become a very popular method for analysing dynamic causal effects in macroe-

conomics. SVARs can be used to decompose economic fluctuations into interpretable

shocks, such as technology, demand, policy shocks, and trace the dynamic response of

macroeconomic variables to such shocks, known as impulse response functions (IRFs).

The success of the SVARs relies on (i) their ability to recover the true underlying

structural shocks (invertibility); (ii) the validity of the identification scheme; and (iii)

the informativeness of the identifying restrictions. Because a SVAR is a system of

linear simultaneous equations, the third condition can be expressed as the availability

of informative instruments.

In the words of Christiano et al. (2007), “to be useful in practice, VAR-based

procedures should accurately characterize [and] uncover the information in the data

about the effects of a shock to the economy”. In other words, confidence intervals on the

model’s parameters, e.g., the IRFs to an identified shock, need to have the property that

they are (i) as small as possible when instruments are strong (efficiency); and (ii) large

when instruments are weak/irrelevant (robustness), see Dufour (1997). Conventional

methods based on standard strong-instrument and stationarity assumptions achieve

the first objective but fail the second and therefore lead to unreliable inference.

This paper focuses on the identification scheme known as long-run restrictions, pro-

posed by Blanchard and Quah (1989). This assumes that certain shocks (e.g., demand

shocks) have no permanent effect on certain economic variables (e.g., output). Long-

run restrictions are a popular identification scheme for SVARs, because they seem to be

less contentious than short-run identifying restrictions, see e.g., Christiano et al. (2007)

and the associated comments and discussion. However, it is well-known that long-run
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restrictions can lead to weak identification, see e.g., Pagan and Robertson (1998), and

there is presently no method of inference that is fully robust to this problem. The main

difficulty is that in this context weak identification arises when instruments are highly

persistent, or nearly non-stationary. Therefore, all the available weak identification

robust methods of inference, such as the Anderson and Rubin (1949) test, see Staiger

and Stock (1997), are inapplicable because they rely on stationary asymptotics. This

applies to common pretests of weak identification, too, see Mark Watson’s comment

on Christiano et al. (2007).

In this paper, we develop a method of inference that is robust to weak instruments

as well as near non-stationarity. The method is based on combining recent advances in

econometrics on inference with highly persistent data by Magdalinos and Phillips (2009)

and Kostakis et al. (2015), see also Phillips (2014), with well-established methods

of inference that are robust to weak instruments. The former methods have been

developed for predictive regressions or cointegration, and their use in the context of

structural inference in simultaneous equations models is new. Our new method of

inference controls asymptotic size under a wide range of data generating processes,

including standard local-to-unity asymptotics; it has good size in finite samples; it is

asymptotically efficient under strong identification and has good power under weak

identification; and it is very simple to implement. For illustration, we revisit the

empirical evidence in two classic applications of SVARs with long-run restrictions: the

original application in Blanchard and Quah (1989) and the hours debate of Gaĺı (1999)

and Christiano et al. (2003). In the case of Blanchard and Quah (1989), we find

that long-run restrictions yield very weak identification. On the hours debate, we find

that the difference specification of Gaĺı (1999) is very well identified, while the level

specification of Christiano et al. (2003) is weakly identified.

Long-run restrictions are by now a very common approach to the identification of

SVARs. At the time of writing, Blanchard and Quah (1989) had 4821 Google scholar

citations, and we found that long-run restrictions appeared in about half of all the

articles that used SVARs published between 2005 and 2014 in the top general interest

and macro journals in economics.1 Therefore, the scope of the present paper extends

well beyond the two applications that we discuss here.

The paper is structured as follows. Section 2 introduces the model and the long-

1American Economic Review, Econometrica, Quarterly Journal of Economics, Journal of Political
Economy, Review of Economic Studies, Journal of Monetary Economics, AEJ Macro and Journal of
Money, Credit and Banking.
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run identification scheme. Section 3 discusses existing methods of inference, highlights

the problem and presents our proposed solution. Section 4 gives simulations on the

finite-sample size and asymptotic power of our new method. Section 5 presents the

two empirical applications and finally, Section 6 concludes. Proofs are given in the

Appendix at the end, as well as in a Supplementary Appendix available online, which

also contains additional numerical and empirical results.

2 Model

A general SVAR with m lags can be written as

B (L)Yt = ΦDt + εt, B (L) =
m∑
j=0

BjL
j (1)

where L is the lag operator, Yt is a n × 1 vector of endogenous random variables,

Bj are n × n nonstochastic matrices of parameters, Φ is a matrix of coefficients on

deterministic terms Dt, and E (εt|Yt−1, Yt−2, . . .) = 0. The diagonal elements of B0 are

normalized to 1, and var (εt) is a diagonal matrix.

Partition the vector of structural shocks as εt =
(
ε1t
ε2t

)
, where ε1t is scalar and ε2t is

(n− 1)× 1. We are interested in identifying ε1t, and the IRF

gj
n×1

=
∂Yt+j
∂ε1t

, j = 0, 1, . . .

The long-run identifying restriction is that ε2t has no long-run effect on Y1t. In the

literature this is expressed as a zero restriction on elements of the spectral density ma-

trix of Yt at frequency zero – a Choleski factorization of the long-run variance of Yt. We

work with the (equivalent) instrumental variables (IV) representation of the long-run

restrictions in Pagan and Robertson (1998). According to this representation, under

the assumption that ε1t has a permanent effect on Y1t, and the long-run restriction

that ε2t has no permanent effect on Y1t, the system (1) can be written as:

∆Y1t = b′12∆Y2t + δ′1X1t + ε1t (2)

∆Y2t = α2Y2,t−1 + δ′2X2t + d21ε1t + v2t︸ ︷︷ ︸
u2t

, (3)
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where X1t, X2t denote vectors containing lags of ∆Yt and deterministic terms Dt, δ1, δ2

denote the coefficients on those exogenous and predetermined variables, and u2t is the

reduced-form error in Y2t.
2 It is evident that the variables Y2,t−1 are excluded from (2),

and hence they can be used as instruments for the endogenous regressors ∆Y2t. This

suffices to identify ε1t and hence trace out the entire IRF with respect to ε1t. Note that

v2t is the residual of the projection of the reduced-form error u2t on ε1t.

Note that the representation (2)-(3) with α2 < 0 assumes that no shock has a

permanent effect on Y2t, meaning that Y2t is stationary. In the literature on hours (Gaĺı

(1999), Christiano et al. (2003)) this is referred to as the levels specification, which is

contrasted with the differences specification that assumes Y2t to be non-stationary. The

differences specification can be written exactly in the form (2)-(3) if we replace Y2t by

∆Y2t, see Appendix A for details. Since the representation (2)-(3) can accommodate

both specifications, we do not need to analyze them separately in the methodological

part of the paper – we study their empirical implications in Section 5.

The objective of this paper is to develop tests of general hypotheses on the identified

structural parameters θ

H0 : r (θ) = 0 against H1 : r (θ) 6= 0, (4)

where r : Θ → <q, q ≤ dim θ. This includes e.g., the IRF and forecast error variance

decomposition.

Example: bivariate SVAR(1) A bivariate SVAR(1) without deterministic terms

is given by

∆Y1t = b12∆Y2t + ε1t, (5)

∆Y2t = α2Y2,t−1 + d21ε1t + v2t. (6)

The structural parameters θ = (b12, σε1 , α2, d21)
′ , where σε1 is the standard deviation of

ε1t. This is the simplest possible model that suffices to characterize the inference prob-

lem and describe our methodology, so we will use this as a running example throughout

the paper. The parameter α2 plays a crucial role both for the persistence of the data

and the identification of the structural parameters. Specifically, when α2 is close to

2This specification is somewhat more general than (1) in that X1t and X2t need not be the same
and need not include all m lagged differences of the variables.
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zero, Y2,t−1 has a near unit root and becomes a weak instrument for ∆Y2t, see Pagan

and Robertson (1998) and Gospodinov (2010). An example of a simple hypothesis of

interest is r (θ) = d21− d021 in (4). Inverting an η-level test of this hypothesis produces

a (1− η)-level confidence band for d21, which is the impact response of Y2t to a unit

impulse on ε1t.

3 Econometric Methods

The conventional approach is to use Gaussian maximum likelihood (ML) estimation

with conditional homoskedasticity. The ML estimator is trivial to obtain in this case.

It can be computed in two steps as follows: (i) estimate equation (2) by IV (2SLS)

with instrument Y2,t−1 for ∆Y2t, and save the residual ε̂1t = ∆Y1t − b̂′12∆Y2t − δ̂′1X1t;

(ii) substitute ε̂1t for ε1t in the remaining equations (3) and estimate them by OLS.

Under strong-instrument stationary asymptotics, i.e., α2 < 0 and fixed, the asymp-

totic distribution of Wald statistics for testing general hypotheses (4) is χ2 and er-

ror bands for any smooth function of the parameters can be derived using the delta

method, e.g. Mittnik and Zadrozny (1993), or by bootstrapping, e.g., Kilian (1998).

When α2 is small, e.g., α2 = O (T−a) , a > 0, conventional asymptotic approximations

break down and the distributions of Wald statistics depend on a nuisance parameter

that measures the proximity of α2 to zero, see Gospodinov (2010) for the case a = 1.

Thus, conventional confidence bands on SVAR coefficients and IRFs do not have cor-

rect asymptotic coverage. In this section, which contains the main contribution of the

paper, we introduce a method that does.

3.1 Anderson-Rubin test with filtered instruments

Our approach to solving the problems of weak identification and near non-stationarity

consists of two components: (i) a weak-identification robust method – the Anderson

and Rubin (1949) (henceforth AR) test, since the model is typically just-identified

and (ii) filtered instruments – the so-called IVX approach of Magdalinos and Phillips

(2009), to deal with near unit roots.

We start by looking at the special case of testing the hypothesis

H0 : b12 = b012 against H1 : b12 6= b012. (7)
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This hypothesis is special because it turns out that there exists a test that is both

robust to weak identification/near unit roots, and asymptotically efficient under strong

identification.

Because of the structure of the problem, the hypothesis (7) can be tested using

just the first equation of the model (2). Given some instruments Z1t = (X ′1t, z
′
t)
′ , the

AR statistic, AR (b012) , is the Wald statistic for testing H∗0 : δz = 0 in the auxiliary

regression:

∆Y1t − b0′12∆Y2t = δ′1X1t + δ′zzt + ε01t. (8)

When n = 2, i.e., when b12 is a scalar, this AR statistic can be written analytically

as

AR (b12) =
(∆Y1 −∆Y2b12)

′ PMX1
z (∆Y1 −∆Y2b12)

(∆Y1 −∆Y2b12)
′MZ1 (∆Y1 −∆Y2b12) / (T − col (Z1))

, (9)

where P· denotes the projection matrix, M· = I − P· Z1 = (X1, z) , and we follow

standard notation that for any column vector Xt, X denotes the matrix of T stacked

rows X ′t, t = 1, . . . , T .

If we set zt = Y2,t−1, the AR statistic corresponds to the likelihood ratio test for

(7). Under stationarity/strong identification (α2 < 0 and fixed), AR (b12) is asymptot-

ically distributed as χ2 under H0. Moreover, the likelihood ratio test is asymptotically

efficient under stationarity/strong identification. However, when α2 is local to zero,

the χ2 asymptotic approximation breaks down, and the asymptotic distribution, if it

exists, depends on the proximity of Tα2 to zero. So, AR (b12) is not asymptotically

pivotal, and tests based on χ2 critical values will not control asymptotic size. This is

straightforward to see using local-to-unity asymptotics as in Gospodinov (2010).

Our solution to the above problem is to use an instrument that relates to Y2,t−1 but

is constructed in such a way that it is less persistent than Y2,t−1 whenever the latter

has a near unit root. This is an application of the IVX method of Magdalinos and

Phillips (2009) to this problem.

Magdalinos and Phillips (2009) obtained nuisance-parameter-free asymptotic dis-

tribution theory for Wald tests in situations where the order of integration of the

regressors is unknown, such as predictive regressions or cointegrating regressions when

the right hand side variables are nearly integrated. They did so by introducing an

instrument which is filtered from the original data in such a way that it is at most

moderately integrated, and correlates sufficiently with the variable it is instrumenting.
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In the SVAR model, the filtered instrument is given by

zt =
t−1∑
j=1

ρt−jTz ∆Y2,j, ρTz = 1 +
cz
T b
, b ∈ (1/2, 1) , cz < 0. (10)

In the empirical implementation, we follow Magdalinos and Phillips (2009) and Kostakis

et al. (2015) in setting cz = −1 and b = 0.95.

To obtain asymptotic results, we make the following assumption on εt, where ‖ · ‖
denotes the spectral norm.

Assumption A. (εt)t∈Z is a sequence of identically and independently distributed random

vectors with E (εt|Yt−1, Yt−2, . . .) = 0, E (εtε
′
t|Yt−1, Yt−2, . . .) = Σε and diagonal with

Σε > 0, and the moment condition E ‖εt‖4 <∞.

This assumption is similar to the one used in Magdalinos and Phillips (2009),

except for the addition of conditional homoskedasticity, which is typically used in

the literature (e.g., the results in Gaĺı (1999) assume conditional homoskedasticity).

Heteroskedasticity robust versions of the proposed tests can be obtained using GMM,

see the Appendix.

Our proposed AR test is based on the following result.

Theorem 1. Consider the model (2) and (3), where Xt consists of lags of ∆Yt, Y2t

is a scalar, εt satisfies Assumption A and either Tα2 → −∞ or Tα2 → C ≤ 0. Let

AR (b12) be as in (9) with instrument zt defined by (10). Then under H0 : b12 = b012,

AR (b012)
d→ χ2

1.

Remarks 1. The asymptotic size of the η-level AR test that rejects H0 when AR (b012)

exceeds the 1 − η quantile of χ2
1 is equal to η. This can be shown using arguments

analogous to those used in the proof of Andrews et al. (2011) (Corollary 2.1 and Lemma

4.1), see the Supplement for further details.

2. The case Tα2 → −∞ corresponds to (near) stationarity and strong identification.

In this case, the statistic AR in (9) is asymptotically equivalent to the AR statistic

AR∗ that is obtained by replacing the filtered instrument zt with Y2,t−1. Because

the model is just-identified, AR∗ is the standard LR statistic which is asymptotically

efficient under stationary and strong-instrument asymptotics. It is also asymptotically

equivalent to the standard Wald test of H0. Thus, the use of the filtered instrument
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entails no loss of power in the case of strong identification, and so the AR test with

filtered instruments weakly dominates the Wald and standard LR tests.

3. The results of the theorem, as well as the above two remarks, also apply in a

model with more endogenous variables, Y3t, that are subject to long-run restrictions,

under the assumption that their coefficients, b13, can be estimated consistently using

Y3,t−1 as instruments, and the resulting estimator b̂13 is asymptotically Gaussian. A

sufficient condition for this is that Y3t is stationary.

4. Theorem 1 can be extended to cover the case when Y2t is a vector along the lines

of Magdalinos and Phillips (2009) (Theorem 3.8), or Kostakis et al. (2015) (Theorem

1), under the assumption that C is a diagonal matrix. In that case, AR (b012)
d→ χ2

dim b12
.

3.2 Tests of general hypotheses

Testing general hypotheses (4) is complicated by the fact that r (θ) contains the poten-

tially weakly identified parameter b12. Let ψ denote the rest of the unknown parameters

in θ other than b12. Note that when b12 is known, the parameters ψ are identified as

regression coefficients and variances. So, inference on smooth functions of ψ, given b12,

would be straightforward, except for the complication that arises when there is a near

unit root in Y2t. We address this issue using IVX in equation (3) with instrument zt

given by (10) for Y2,t−1.

General hypotheses (4) can be tested using Bonferroni or projection methods for

valid inference. The Bonferroni method is as follows: (i) obtain a (1− η1)-level confi-

dence set for b12, Cb12,η1 , by inverting the AR test introduced in the previous subsection;

(ii) for each value b012 ∈ Cb12,η1 , perform an η2-level IVX Wald test of r (b012, ψ) = 0;

(iii) reject H0 : r (θ) = 0 if all tests in (ii) reject. By the Bonferoni inequality, this test

has level at most η1 + η2. In theory, this can be refined along the lines of McCloskey

(2012), but this may be computationally impractical in realistic settings, due to the

large number of parameters.

The projection method is as follows: perform a test of the joint null hypothesis

H∗0 : r (θ) = 0, b12 = b012, and project out b12, i.e., reject H0 : r (θ) = 0 if there is

no value of b012 for which H∗0 is accepted. This approach requires a test of the joint

hypothesis H∗0 . Our proposed test for H∗0 is based on a novel idea that combines the

AR (b12) statistic developed above with the Wald statistic for testing the restrictions

on the remaining parameters ψ (this idea applies more generally, see Section B.2 and

Theorem 3 in the Appendix). We call the resulting test ARW, and derive its asymptotic
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properties under the null in Theorem 2 below.

We now turn to the derivation of the ARW test. Let ψ̂ (b12) be the restricted GMM

estimator of ψ given b12 and let V̂ψ̂ (b12) denote an estimate of the asymptotic variance

matrix of ψ̂ (b12). Provided R (θ) = ∂r (θ) /∂ψ′ exists and is of full rank q, define

W (b12) = r
(
b12, ψ̂ (b12)

)′
V̂r̂ (b12)

−1 r
(
b12, ψ̂ (b12)

)
, (11)

where V̂r̂ (b12) = R
(
b12, ψ̂ (b12)

)
V̂ψ̂ (b12)R

(
b12, ψ̂ (b12)

)′
,

and consider the combined statistic

ARW
(
b012
)

= AR
(
b012
)

+W
(
b012
)
. (12)

The asymptotic distribution of ARW (b012) under the null H∗0 is given by the following

result.

Theorem 2. Under the conditions of Theorem 1, if the null hypothesis H∗0 : r (θ) =

0, b12 = b012 holds, then:

W
(
b012
) d→ χ2

q,

W (b012) is asymptotically independent of AR (b012) , and

ARW
(
b012
)

= AR
(
b012
)

+W
(
b012
) d→ χ2

1+q.

Remarks 1. The ARW test rejects H∗0 : r (θ) = 0, b12 = b012 at the η level of

significance if ARW (b012) is greater than cη where cη is the 1 − η quantile of χ2
1+q. A

projection test of H0 : r (θ) = 0 rejects H0 when minb12 ARW (b12) > cη.

2. The asymptotic size of a (1− η)-level confidence set obtained by inverting an

η-level ARW test, defined as the minimum coverage probability of the confidence set,

is equal to 1− η uniformly in α2. This result is analogous to Remark 1 to Theorem 1,

see the Supplement for details.

3. Remarks 3 and 4 to Theorem 1 also apply to Theorem 2.

4. For a Bonferroni test of H0 : r (θ) = 0, we use the Wald test that rejects when

W (b012) exceeds the 1− η2 quantile of χ2
q in the second step.

5. Confidence intervals for any scalar function of the parameters g (b12, ψ) that

is smooth in ψ, such as an impulse response, can be obtained easily and quickly by

numerical optimization methods. An algorithm for this is given in the Supplementary
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Appendix.

Example: bivariate SVAR(1) Suppose we are interested in testingH0 : ∂Y2t/∂ε1t =

d21 = d021 against H1 : d21 6= d021. This can be expressed as the linear restriction

r (b12, ψ) = d21−d021. Our proposed η-level ARW test rejectsH0 if minb12 (AR (b12) +W (b12))

is greater than cη, the 1 − η quantile of χ2
2. Let d̂21 (b12) and σ̂d̂21 (b12) denote the re-

stricted point estimate of d21 and its standard error, respectively. An ARW projection

(1− η)-level confidence interval for d21 is given by{
min
b12

[
d̂21 (b12)− σ̂d̂21 (b12)

√
cη − AR (b12)

]
,max
b12

[
d̂21 (b12) + σ̂d̂21 (b12)

√
cη − AR (b12)

]}
.

A Bonferroni confidence interval based on an η1-level AR test with critical value c1 and

η2-level W test with critical value c2, where ci is the 1− ηi quantile of χ2
1, is given by{

min
b12:AR(b12)≤c1

[
d̂21 (b12)− σ̂d̂21 (b12)

√
c2

]
, max
b12:AR(b12)≤c1

[
d̂21 (b12) + σ̂d̂21 (b12)

√
c2

]}
.

3.3 Deterministic terms

Theorems 1 and 2 apply when model (2)-(3) does not include any deterministic terms in

X1t and X2t, but it can be shown using the same arguments as in Kostakis et al. (2015)

Theorem A that they continue to hold if an intercept is included in X1t, X2t. However,

in that case the asymptotic approximations may deteriorate in finite samples, as was

found by Kostakis et al. (2015) for predictive regression. To address this possibility,

we derive a finite sample correction proposed by Kostakis et al. (2015), adapting it to

the ARW statistic as follows. The finite sample correction in Kostakis et al. (2015),

applied to the AR in (9) consists in modifying PMX1
z in the numerator. When the

model contains an intercept, the finite sample correction involves replacing the term

PMX1
z = MX1z (z′MX1z)−1 z′MX1 with

P̃MX1
z = MX1z

(
z′MX̃1

z − T
(
1− ρ̂ε1,u2

)
z′z
)−1

z′MX1

where X̃1 denotes the elements in X1 excluding the intercept, ρ̂ε1,u2 is the estimated

long-run correlation between ε1t and u2t in equations (2)-(3). The correction of the

Wald statistic W (b12) is analogous. It depends on the specific form of H∗0 but only

affects the variance related to the estimator of α2 in V̂ψ̂ (b12) . We provide an expression
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for it in the Supplementary Appendix. In the empirical applications we consider in

this paper, ρ̂ε1,u2 is low enough so the finite sample correction does not make material

difference to the results.

In some applications, Y2t denotes the deviation of some observed variable (e.g., log

hours, or log real GDP) from a linear deterministic trend where the observed data Y obs
2t

is given by Y obs
2t = Y2t + τx + γxt. We then replace Y2t with Ŷ2t = Y obs

2t − τ̂x − γ̂xt in

the computation of the IVX instrument zt. Whether or not Y2t is stationary affects

inference on γx. If γ̂x is computed using the full sample, then Ŷ2t is a function of

future values and this may affect the validity of the exclusion restrictions used in the

estimation.

To avoid this issue, we follow Phillips et al. (2004) and use a recursive detrending

formula to ensure that Ŷ2t is not computed using future values:

Ŷ2t = Y obs
2t − τ̂x − γ̂xt = Y obs

2t +
2

t

t∑
j=1

Y obs
2j −

6

t (t+ 1)

t∑
j=1

jY obs
2j

This formula preserves the martingale difference sequences which are needed in the

asymptotic theory, so moment conditions hold under H0. Hence, the asymptotic results

presented above continue to hold.

4 Numerical Results

In this section we investigate the finite-sample properties of our proposed test and

compare them with the existing non-robust alternative.

The data generating process is the bivariate SVAR(1) example introduced earlier,

with α2 = cT−1. In reduced-form, the model is:

∆Y1t =
c

T
b12Y2,t−1 + u1t, 1 ≤ t ≤ T

∆Y2t =
c

T
Y2,t−1 + u2t

with (
u1t

u2t

)
∼ NID

((
0

0

)
,

(
ω2
1 ρω1

ρω1 1

))
and Y10 = Y20 = 0. We normalize ω2 = 1 because the statistics are invariant to scaling

of the variance matrix. The AR statistic is also invariant to ω1, so in simulations in-
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volving only AR (b12) , we will also normalize ω1 = 1. The estimated model is SVAR(1),

with and without deterministic terms.3

4.1 Size

We conduct two sets of simulation experiments to obtain the rejection frequency of

tests of the following two null hypotheses: (i) H0 : b12 = 0 against H1 : b12 6= 0, using

the AR test with filtered instruments, and (ii) H0 : d21 = d021 against H1 : d21 6= d021

using the ARW test, for d21 ∈ [−1, 1] .4

In case (i), we report rejection frequencies over a few different parameterizations.

We consider the parameter sets ρ ∈ {0.20, 0.95} and c ∈ {0,−1,−10,−30,−100} and

the sample size is set to T = 200. We compute the null rejection frequencies of our AR

test with the filtered instrument zt in (9) and the conventional t test with instrument

Y2,t−1 at the 5% and 10% levels of significance. The estimated model is SVAR(1) with

an intercept, and the computation of the AR statistic uses the finite sample correction

introduced in Section 3.3. The number of Monte Carlo replications is 20000.

The rejection frequencies are reported in Table 1. We notice that the rejection

frequency of the t test can deviate sharply from its asymptotic level, with considerable

overrejection in the cases ρ = 0.95 and c close to zero. In contrast, the rejection

frequency of our proposed AR test is close to its asymptotic level in all cases. Similar

results obtain for SVAR models with more lags as well as for models with deterministic

terms (further results can be found in the Supplementary Appendix).

In case (ii), we conduct experiments for a very large number of parameter combi-

nations over a 4-dimensional grid in d21, ρ, ω1 and c, where we exploit an invariance

property of the ARW statistic that enables us to normalize ω2 = 1 and fix b12 as a

function of the other parameters, see the supplementary appendix for details. Figure

1 reports the maximal rejection frequency of the test at three different levels of signifi-

cance (10%, 5% and 1%) over ρ, ω1 and c for each value of d21 under the null, denoted

d̄21 in the figure. The estimated model coincides with the DGP, i.e., a SVAR(1) without

deterministics, and the number of Monte Carlo replications is 20000.

We notice that the size of the projection ARW test is well below the nominal level

across all values of d21. In the supplement we verify that the same result holds also

3Results for higher-order SVARs are very similar and can be found in the Supplementary Appendix.
4It can be shown that d21 is bounded between ±ω2, the reduced-form error standard deviation in

the second equation, which is normalized to 1 here.
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At 5% At 10%
ρ = 0.20 0.95 0.20 0.95
AR t AR t AR t AR t

c = 0 0.052 0.005 0.071 0.774 0.103 0.025 0.133 0.807

−1 0.052 0.007 0.064 0.680 0.100 0.029 0.125 0.717

−10 0.050 0.019 0.047 0.257 0.102 0.053 0.092 0.307

−30 0.051 0.034 0.044 0.135 0.100 0.081 0.089 0.181

−100 0.053 0.050 0.045 0.069 0.102 0.100 0.093 0.115

Table 1: Null rejection frequencies of AR (with filtered instruments) and conventional
t tests of the hypothesis H0 : b12 = 0 in a bivariate SVAR(1) with long-run restrictions.
ρ is the correlation between the reduced-form VAR errors. The sample size is 200.
Number of MC replications: 20000.

in a large sample with T = 2000. This indicates that there is some projection bias

that could in principle be reduced by using lower critical values. However, it is not

possible to reduce the critical value all the way to χ2
1, as would be warranted under

strong identification, because the resulting test would be oversized (see the results in

the Supplementary Appendix). An ARW test with χ2
1 critical values will only yield

correct asymptotic size when α2 < κ for some fixed κ < 0. This is because in that case,

a test that rejects when minb12 ARW (b12) is greater than the 1− η quantile of the χ2
1

distribution is asymptotically equivalent to a standard Wald test of the restriction on

the parameter d21. However, it does not seem possible to use the lower critical values

under weak identification, so the use of the projection critical values based on χ2
2 entail

some loss of power for robustness in the case of strong identification.

It is possible to design a data-based identification category selection rule along the

lines of Andrews and Cheng (2012), based on comparing the proximity of α̂2 to some

cutoff that diverges with T, but this will come at the cost of introducing additional

tuning parameters, and so may be unappealing in applied work.

4.2 Power

We compute (large-sample) power of tests of AR, t, projection ARW and Bonferroni

tests in the working SVAR(1) example. We set T = 2000, use 10000 Monte Carlo

14
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Figure 1: Size of the projection ARW test of the hypothesis H0 : d21 = d̄21, in a
SVAR(1) model with T=200 at three different significance levels. The number of
Monte Carlo replications is 20000.
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replications.

4.2.1 Power of AR test

We compare the power of AR and t tests of H0 : b12 = 0 against H1 : b12 6= 0 at the 10%

level of significance. The remaining parameters are ρ ∈ {0.2, 0.95} , ω1 = 1, and c =

{−10,−100,−500}. In this model, the strength of identification is driven by c. To relate

the results to well-known cases of weak, moderate and strong identification in linear

IV, we compute an approximate measure of the strength of instruments known as the

concentration parameter (denoted λ) in linear IV.5 The chosen values of c correspond

to approximate values of λ of 1.3, 13, and 72 respectively, i.e., weak, moderate and

strong identification. The range of b12 under H1 is λ−1/2 (−3 : 3) .

Figure 2 reports the resulting power curves in each case. The figure shows that

the AR test has good power even for c close to zero. This is not the case for the

t test, which is both size distorted and even biased in some cases. Moreover, when

identification is strong (c = −500), the power of the AR test is very similar to that of

the t test, which is asymptotically efficient in this case. Since the DGP in this case is

approximately stationary, this is a consequence of the fact that the AR and t tests are

asymptotically equivalent in the case of stationarity, see comment 2 to Theorem 1.

4.2.2 Power of ARW test

We compare the power of projection and Bonferroni tests of H0 : d21 = 0 against

H1 : d21 6= 0 at significance level 10%. We consider three different combinations of

significance levels η1 + η2 for the Bonferroni tests, where η1 denotes the significance

level for the first-step AR confidence set for b12 and η2 = 10% − η1 denotes the level

of the Wald test given b12 in the second step. We set b12 = 0, ω1 = 1 and c = −100

(moderately strong identification). We note that with these parameter values ρ = d21.

The results are reported in Figure 3. The power of the projection test is close to that

of the Bonferroni tests that put sufficiently high weight on the first-step AR confidence

set for b12, i.e., η1 ≥ η/2. This suggests that there is little to choose from between

Bonferroni and projection in this case on the basis of power. Since projection turns

out to be slightly faster to compute (it requires solving an unconstrained optimization

5In linear IV with fixed instruments, the concentration parameter is equal to k [E (F )− 1] , where
F is the infeasible version of the first-stage F statistic for excluding the instrument, computed when
the variance of the reduced form error variance is known, see Stock et al. (2002). The present context
does not fit into that canonical IV framework, so we use a large sample approximation of λ.

16



0.0

0.5

1.0

-2 -1 0 1 2

c=-10, ρ=0.20

b12

re
j. 

fr
eq

.

0.0

0.5

1.0

-2 -1 0 1 2
re

j. 
fr

eq
.

c=-10, ρ=0.95

b12

0.0

0.5

1.0

-0.75 -0.50 -0.25 0.00 0.25 0.50 0.75

c=-100, ρ=0.20

b12

re
j. 

fr
eq

.

0.0

0.5

1.0

-0.75 -0.50 -0.25 0.00 0.25 0.50 0.75

c=-100, ρ=0.95

b12

re
j. 

fr
eq

.

0.0

0.5

1.0

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

c=-500, ρ=0.20

b12

re
j. 

fr
eq

.

0.0

0.5

1.0

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

c=-500, ρ=0.95

b12

re
j. 

fr
eq

.

Figure 2: Large-sample power of AR with filtered instrument (solid line) and t (dashed
line) tests of the hypothesis H0 : b12 = 0 against H1 : b12 6= 0 in the SVAR(1)
model with long run restrictions. T = 2000, 10000 MC replications, ρ is correlation of
reduced-form errors.
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Figure 3: Power of Projection ARW (red solid) and three different Bonferroni AR/W
tests of the hypothesis H0 : d21 = 0 against H1 : d21 6= 0 in a bivariate SVAR(1) at
the 10% level of significance. η1 denotes the level of the (first-step) AR test in the
Bonferroni procedure and η2 = 10% − η1 is the level of the second step Wald test.
T = 2000 and the number of Monte Carlo replications is 10000.

problem, as opposed to a constrained optimization with an inequality constraint for the

Bonferroni method), we are using the projection method in our empirical applications

below.

5 Empirical Results

5.1 Blanchard and Quah (1989)

We first revisit the application of Blanchard and Quah (1989) (BQ), where Y1t is log real

GNP, and Y2t is the unemployment rate in deviation from a linear trend. We use the

original BQ dataset, which is quarterly and covers the period 1948q1 to 1987q4. More

details about the data and transformations are given in the Supplementary Appendix.

The specification in BQ is a SVAR(9). Figure 4 reports the estimated IRFs to-
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Figure 4: IRFs to supply shock from a bivariate SVAR in real output growth and the
unemployment rate by Blanchard and Quah (1989). The solid line is the ML estimator.
The dotted lines are 90% Wald confidence intervals, and the dashed lines are the 90%
projection ARW confidence intervals. The data is from Blanchard and Quah (1989)
over the period 1948q1 to 1987q4.

gether with robust 90% confidence bands based on our proposed ARW method and

the corresponding non-robust Wald confidence bands. We see that the robust confi-

dence bands are so large that the original conclusion of BQ is not borne out. In other

words, long-run restrictions produce very weak identification in this application using

the original data. This corroborates the criticism of Pagan and Robertson (1998).

The results in Figure 4 used full-sample detrending, which is problematic when the

data is persistent, as we saw in our numerical analysis in the previous section. This

can be addressed using recursive detrending. Results based on recursive detrending

of the unemployment rate are given in Figure 5. We see that the results are very

sensitive to the detrending method. With recursive detrending, which is more reliable

than full-sample detrending, the effect of the supply shock on output becomes clearly

positive but the effect on unemployment remains ambivalent.

We should emphasize that weak identification is an empirical matter, so identifi-
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Figure 5: Estimates and confidence bands of the IRFs in Blanchard and Quah (1989)
with recursive detrending, using their original data. The solid line is the ML estimator.
The dotted lines are 90% Wald confidence intervals, and the dashed lines are the 90%
projection ARW confidence intervals.
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Figure 6: Estimates and confidence bands of the IRFs with extended Blanchard and
Quah (1989) data and recursive detrending. The solid line is the ML estimator. The
dotted lines are 90% Wald confidence intervals, and the dashed lines are the 90%
projection ARW confidence intervals.

cation of the model may become stronger over a different sample. Figure 6 reports

estimates of the IRFs based on the same specification as in Figure 5, but estimated

over an extended sample that runs up to 2014q4. We notice that the point estimates

are very similar, but error bands become significantly tigher, and identification appears

to be strong.

5.2 The hours debate

Next, we turn to the debate on the short-run effect of a technology shock on hours

initiated by the seminal papers of Gaĺı (1999) and Christiano et al. (2003) (CEV). The

analysis in those papers is based on a SVAR where Y1t denotes log productivity and

Y2t denotes log hours.

The original paper by Gaĺı (1999) estimated a negative short-run effect of a tech-

nology shock on hours, where Y2t was the growth rate in hours, i.e., total log hours in
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first difference. Gaĺı (1999) argued that this finding was inconsistent with real business

cycle theory, but could be explained by sticky-price models. CEV criticized Gaĺı’s data

and specification. Specifically, they argued for using log hours per capita as opposed to

total hours and that Y2t should be hours in levels as opposed to growth rates because

the level specification encompasses the difference one. Reestimating using per capita

hours in levels, they found a positive short-run effect of technology shock on hours,

contradicting Gaĺı’s conclusions.

There has been a large subsequent literature attempting to explain the above con-

flicting findings, see, for example, Chaudourne et al. (2014), Dupaigne et al. (2007),

Fève and Guay (2009, 2010), Francis and Ramey (2005, 2009), Gospodinov et al. (2011),

Pesavento and Rossi (2005), and Ramey (2016) (Section 5) for a recent review. Many

of those papers emphasized possible misspecification due to omission of relevant vari-

ables and shocks from the SVAR, which could be addressed by adding more variables

to the SVAR. Others emphasized the sensitivity of the estimates to assumptions about

the number of permanent shocks and the effect of near unit roots. Our analysis below

complements the literature by providing confidence bands on the impulse responses in

question that are fully robust to weak identification. We focus our empirical analysis

only on the baseline specifications in the two seminal papers in the literature, Gaĺı

(1999) and CEV, but we note that our methods are applicable to the more general

SVAR specifications used in the literature.

We use the same data as Gaĺı and CEV,6 so the point estimates and conventional

confidence bands reported below are the same as in those papers. Gaĺı uses total hours

linearly detrended over the sample 1948q1 to 1994q4. CEV use per capita hours and

their sample is 1948q1 to 2001q4.

Figure 7 presents point estimates and 90% confidence bands from the difference

specification in Gaĺı (1999) with total hours. We see that the projection ARW con-

fidence bands are not much wider than the non-robust ones reported by Gaĺı (1999),

indicating that this specification does not suffer from weak identification. This conclu-

sion is robust to using the growth in per capita hours instead of total hours.7

However, the results on the difference specification are subject to the valid critique

by CEV regarding possible misspecification if hours do not have a unit root.8 Figure 8

6A plot of the data can be found in the Supplementary Appendix.
7The estimates of the difference specification with CEV data on per capita hours are reported in

the Supplementary Appendix.
8This is spelt out in Section A.2 of the Appendix.
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Figure 7: IRFs to technology shock for the difference specification of Gaĺı (1999). The
model is a bivariate SVAR in the first differences of log productivity and log total
hours. The solid line is the ML estimator. The dotted lines are 90% Wald confidence
intervals, and the dashed lines are the 90% projection ARW confidence intervals. The
data is from Gaĺı (1999) over the period 1948q1 to 1994q4.
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Figure 8: IRFs to technology shock for the level specification of Christiano et al.
(2003). The model is a bivariate SVAR in the growth of productivity and the level of
log per capita hours. The solid line is the ML estimator. The dotted lines are 90%
Wald confidence intervals, and the dashed lines are the 90% projection ARW confidence
intervals. The data is from Christiano et al. (2003) over the period 1948q1 to 2001q4.

presents the CEV estimates and confidence intervals based on the levels specification,

together with the robust projection ARW confidence bands. Unlike the Wald bands,

the robust confidence bands are so wide that the response of hours to a technology

shock is no longer significant. The information in the long-run restriction is so small

that the data is consistent both with a positive as well as a negative response of hours

to a technology shock. Therefore, the original conclusions of CEV are not robust to

weak identification.

In the Supplementary Appendix we report further results that indicate that the

above conclusion on the weak identification of the level specification is robust to de-

trending of hours and to extensions of the estimation sample. All in all, we see that

long-run restrictions are not very informative in this application, unless one is willing

to impose the arguably strong assumption that hours have a unit root.
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6 Conclusions

We proposed a method of inference on the parameters of SVARs identified using long-

run restrictions that is robust to both weak instruments and near unit roots in the

data. The method uses instruments obtained by filtering the potentially non-stationary

variables to make them near stationary. We propose to test hypotheses on the pa-

rameters that are potentially weakly identified using the Anderson-Rubin test with

filtered instruments. Tests of general parametric restrictions, and confidence intervals

for differentiable functions of the parameters, such as IRFs or forecast error variance

decompositions, are obtained using a combined AR and Wald test. The robust test

and associated confidence bands are easy to compute, and offer informative and reliable

inference in two high-profile applications.

A Level versus difference specification

A.1 Representation in terms of (2)-(3)

Fukac and Pagan (2006) show that the long-run restrictions depend on the number of

permanent shocks in the system. We assume throughout that there are no I(2) trends.

It is typically assumed (e.g., by Gaĺı (1999)) that long-run identification requires at

least one permanent shock, so the cointegrating rank can be 0 (two permanent shocks)

or 1 (one permanent shock). Let Ỹt denote the original data in levels. We will show

how both the level and the difference specifications can both be written in the form

(2)-(3) by defining Yt appropriately. We drop the deterministic terms and focus on the

bivariate case of the general model (1), which suffices for this discussion.

Case of one permanent shock This is a cointegrated VAR, or vector error correc-

tion model (VECM), which can be written as

Γ (L) ∆Ỹt = α
2×1

β′︸︷︷︸
1×2

Ỹt−1 +B−10 εt, (13)
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with Γ (L) =
∑m−1

j=0 ΓjL
j, Γ0 = I, Γj = −B−10

∑m
i=j+1Bi, and αβ′ = −B−10 B (1) . Its

Granger representation is:

Ỹt = C

t∑
s=1

εs + C̃ (L) εt, C = β⊥ (α′⊥Γ (1) β⊥)
−1
α′⊥B

−1
0 ,

where α′⊥α = 0, α =
(
α1

α2

)
, α⊥ =

(
α2

−α1

)
and similarly for β. The long-run restriction

that only ε1t has a permanent effect on Ỹ1t can be written as a zero restriction on the

top right element of the matrix C,

C =

(
C11 C12

C21 C22

)
=

(
∗ 0

∗ ∗

)
.

(Note that since cointegration implies rank(C) = 1, C22 = 0 must hold too: only ε1t

drives the stochastic trend.) This implies that α′⊥B
−1
0

(
0
1

)
= 0, or if we define

B0 =

(
1 −b12
−b21 1

)
,

b12 =
α1

α2

.

Alternatively, let Γ (L) =

(
γ11 (L) −γ12 (L)

−γ21 (L) γ22 (L)

)
and write the VECM as:

γ11 (L) ∆Ỹ1t = α1β
′Ỹt−1 + γ12 (L) ∆Ỹ2t + u1t

γ22 (L) ∆Ỹ2t = α2β
′Ỹt−1 + γ21 (L) ∆Ỹ1t + u2t,

where ut = B−10 εt are the reduced form errors. Imposing the long-run restriction yields

(Pagan and Pesaran, 2008):

γ̃11 (L) ∆Ỹ1t = b12∆Ỹ2t + γ̃12 (L) ∆Ỹ2t + ε1t, (14)

where γ̃11 (L) = γ11 (L) + b12γ21 (L) and γ̃12 (L) = γ12 (L) + b12 [γ22 (L)− 1]. Observe

that the error correction (ecm) term β′Ỹt−1 is missing from (14), so we can use this

to instrument for the endogenous regressor ∆Ỹ2t. In our applications, β = (0, 1)′ , so

that β′Ỹt = Ỹ2t. So, the model can be written in the form (2)-(3) with Yt = Ỹt.
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Case of two permanent shocks In this case there is no cointegration, so the model

is a VAR in first differences:

Γ (L) ∆Ỹt = B−10 εt.

The long-run restriction that permanent shocks to Ỹ2t have no impact on Ỹ1t is

C = Γ (1)−1B−10 =

(
∗ 0

∗ ∗

)
.

(Note that in this case C22 does not need to be 0). The long-run restriction then

implies:

b12 = −γ12 (1)

γ22 (1)
.

As before, this can also be expressed as an exclusion restriction. First, from the

Beveridge and Nelson (1981) (henceforth BN) decomposition we have

b12 + γ̃12 (L) = b12 + γ̃12 (1) + γ̃∗12 (L) ∆. (15)

Substituting in the SVAR, using the long-run restriction b12 + γ̃12 (1) = 0 we have

γ̃11 (L) ∆Ỹ1t = γ̃∗12 (L) ∆2Ỹ2t + ε1t, (16)

Similarly, using the BN decomposition of γ22 (L) = γ22 (1)L + γ∗22 (L) ∆, the equation

for Ỹ2t can be written as

γ∗22 (L) ∆2Ỹ2t = γ22 (1) ∆Ỹ2,t−1 + γ21 (L) ∆Ỹ1t + u2t.

Thus, we are using ∆Ỹ2,t−1 as an instrument for the endogenous regressor ∆2Ỹ2t in (16).

This specification can be written in the form (2)-(3) with Y1t = Ỹ1t and Y2t = ∆Ỹ2t.

A.2 Misspecification of difference specification

Using (15) to substitute for γ̃12 (L) in (14) yields

γ̃11 (L) ∆Ỹ1t = γ̃∗12 (L) ∆2Ỹ2t + [b12 + γ̃12 (1)] ∆Ỹ2t + ε1t. (17)

Similarly, the reduced form equation for the level specification imposes no extra re-

striction, and uses Ỹ2,t−1 as an instrument in (17). The difference specification imposes
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b12 + γ̃12 (1) = α2 = 0, which enables us to use ∆Y2,t−1 as an instrument in (17). The

difference specification will be misspecified if b12 + γ̃12 (1) 6= 0. In principle, this mis-

specification is detectable by a suitable diagnostic test. However, the power of such

a test depends on the value of α2 6= 0. Only when α2 is far from zero can we reject

α2 = 0 with high probability. Otherwise, if we do not reject α2 = 0 and impose it

incorrectly, the bias that will result depends on the true value of b12 + γ̃12 (1) and can

be arbitrarily large. This discussion corroborates formally CEV’s critique.

B Proofs

The following Lemma is used in the proofs of the theorems. Parameter ω is a positive

constant that relates to model parameters and the long run variance of the reduced

form errors. W is a standard Brownian motion and Jc (s) =
∫ s
0
ec(s−r)dW (r) is the

associated Ornstein-Uhlenbeck process with parameter c, and N is a standard normal

random vector independent of W .

Lemma P. Consider the model (2) and (3), where Xt consists of lags of ∆Yt, Y2t is a

scalar, εt satisfies Assumption A and zt is given by (10). Let κT =
−(cz+T bα2)

T 1+b . Then,

as T →∞,
(i) κT

∑T
t=m z

2
t

p→ ω;

(ii) κT
∑T

t=m ztY2,t−1 =⇒ 2ω
(∫ 1

0
JcdJc + 1

)
if there exists c ≤ 0 such that Tα2 → c;

or κT
∑T

t=m ztY2,t−1
p→ ω if Tα2 → −∞;

(iii)
√
κT
∑T

t=m zt
(
ε1t
v2t

) L→
(
σε1
0

0
σv2

)√
ωN ;

(iv)
∑T

t=m zt∆Yt−i = Op (T ) , i = 1, . . .m− 1;

(v)
∑T

t=m Y2,t−1∆Yt−i = Op (T ) , i = 1, . . .m− 1;

(vi)
√

κT
T

∑T
t=m Y2,t−1ε1t = op (1) .

(i) to (iii) also apply jointly.

B.1 Proof of Theorem 1

We first consider the case m = 1 (SVAR(1)), so the numerator of the AR statistic in

equation (9), simplifies to

(∆Y1 −∆Y2b12)
′ Pz (∆Y1 −∆Y2b12) =

T∑
t=1

ε1tzt

(
T∑
t=1

z2t

)−1 T∑
t=1

ztε1t.
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When Tα2 → c ≤ 0, Lemma P(i) , (iii) implies that (
∑

t z
2
t )
−1/2∑

t ztε1t
L→ N

(
0, σ2

ε1

)
.

Hence,

σ−2ε1

∑
t

ε1tzt

(∑
t

z2t

)−1∑
t

ztε1t =⇒ χ2
1. (18)

Now the denominator is (∆Y1 −∆Y2b12)
′Mz (∆Y1 −∆Y2b12) =

∑T
t=1 ε

2
1t−
∑T

t=1 ε1tzt(∑T
t=1 z

2
t

)−1∑T
t=1 ztε1t. Since E [ztε1t] = 0, the second element on the RHS of the pre-

vious expression is Op (1), so T−1 (∆Y1 −∆Y2b12)
′Mz (∆Y1 −∆Y2b12)

p→ σ2
ε1

. This

completes the proof when m = 1.

We now extend the above result tom > 1, which involvesX1t =
(
∆Y ′t−1, . . . ,∆Y

′
t−m+1

)′
.

The numerator of the AR statistic, (∆Y1 −∆Y2b12)
′ PMX1

z (∆Y1 −∆Y2b12) , writes T∑
t=m

ε1tzt −
T∑
t=m

ε1tX
′
1t

(
T∑
t=m

X1tX
′
1t

)−1 T∑
t=m

X1tzt


×,

 T∑
t=m

z2t −
T∑
t=m

ztX
′
1t

(
T∑
t=m

X1tX
′
1t

)−1 T∑
t=m

X1tzt

−1 (19)

×

 T∑
t=m

ztε1t −
T∑
t=m

ztX
′
1t

(
T∑
t=m

X1tX
′
1t

)−1 T∑
t=m

X1tε1t


From Lemma P(iv) we have

∑T
t=1X1tzt = Op (T ) . Moreover,

∑T
t=1X1tε1t = Op

(
T 1/2

)
because X ′1tε1t constitutes a martingale difference sequence with bounded variance,

and
∑T

t=1X1tX
′
1t = Op (T ) , because X1t is weakly dependent with bounded variance.

Hence if α2 → 0 as T →∞, (19) behaves like (18) since the correction for the lags

is of lower magnitude. When α2 is constant, Kostakis et al. (2015) Lemma A.2 shows

that expression (19) is asymptotically equivalent to ε′1MX1Y2 (Y ′2MX1Y2)
−1 Y ′2MX1ε1,

where Y2 denotes the stacked (Y2,t−1). Since E [ε1tY2,t−1] = 0 and Y2,t−1 is weakly

stationary, it follows that σ−2ε1 ε
′
1MX1Y2 (Y ′2MX1Y2)

−1 Y ′2MX1ε1
d→ χ2

1. In both cases, the

denominator satisfies T−1 (∆Y1 −∆Y2b12)
′M(X1,z) (∆Y1 −∆Y2b12)

p→ σ2
ε1
.

B.2 General ARW test

Here we give high-level conditions to derive the properties of the combined ARW test

in a general GMM setting, which we use to prove Theorem 2 in the next subsection.

Let θ ∈ Θ denote a p-dimensional vector of parameters partitioned into θ = (ϑ′, ψ′)′
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of dimensions pϑ and pψ, respectively. Let FT (θ) = T−1
∑T

t=1 ft (θ) denote the sample

moments, where ft (θ) is a k-dimensional vector-valued function of data and parameters

with k ≥ p and E (ft (θ)) = 0 at the true value of θ. Let r (θ) be a known function

of the parameters, r : Θ → <q, q ≤ pψ. Suppose ft (ϑ, ·) and r (ϑ, ·) are continuously

differentiable wrt ψ, and let JT (θ) = ∂FT (θ) /∂ψ′ and R (θ) = ∂r (θ) /∂ψ′. Let V̂f (θ)

denote a k × k matrix that is positive definite almost surely, and define the GMM

objective function

ST (ϑ, ψ) = FT (ϑ, ψ)′ V̂f

(
ϑ, ψ̃

)−1
FT (ϑ, ψ) ,

where ψ̃ could be equal to some one-step GMM estimator (for 2-step GMM) or to ψ

(for continuously updated GMM). Suppose the constrained GMM estimator of ψ given

ϑ exists:

ψ̂ (ϑ) = arg min
ψ
FT (ϑ, ψ)′ V̂f

(
ϑ, ψ̃

)−1
FT (ϑ, ψ) .

To simplify notation, let ψ̂ ≡ ψ̂ (ϑ) , r̂ (ϑ) = r
(
ϑ, ψ̂

)
, R̂ (ϑ) = R

(
ϑ, ψ̂

)
, Ṽf (ϑ) =

V̂f

(
ϑ, ψ̃

)
, F̂T (ϑ) = FT

(
ϑ, ψ̂

)
and ĴT (ϑ) = JT

(
ϑ, ψ̂

)
. Also, let Ĉ (ϑ) be an almost

surely full-rank k× (k − pψ) matrix that spans the null-space of Ṽf (ϑ)−1/2 ĴT (ϑ) , i.e.,

Ĉ (ϑ) Ĉ (ϑ)′ = MṼf (ϑ)
−1/2ĴT (ϑ)

, where MX = I − PX , PX = X (X ′X)−1X ′.

Consider the statistic

ARW (ϑ) = ŜT (ϑ) +Wr (ϑ)

where

ŜT (ϑ) = ST

(
ϑ, ψ̂

)
= F̂T (ϑ)′ Ṽf (ϑ)−1 F̂T (ϑ) ,

Wr (ϑ) = r̂ (ϑ)′
[
R̂ (ϑ) V̂ψ̂ (ϑ) R̂ (ϑ)′

]−1
r̂ (ϑ) , and (20)

V̂ψ̂ (ϑ) =
[
ĴT (ϑ)′ Ṽf (ϑ)−1 ĴT (ϑ)

]−1
.

Let Ĉψ̂ be a square matrix such that Ĉψ̂Ĉ
′
ψ̂

= V̂ψ̂ (ϑ)−1. The following result gives high-

level conditions under which the asymptotic distribution of ARW (ϑ) is χ2
pϑ+q

when ϑ

is the true value of that parameter and r (θ) = 0. It can then be used to form a test of

H∗0 : ϑ = ϑ0, r (θ) = 0 against H∗1 : ϑ 6= ϑ0 and/or r (θ) 6= 0.
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Theorem 3. Suppose that at the true value of the parameters θ =
(
ϑ
ψ

)
,

(i) r (θ) = 0, (ii) ψ̃
p→ ψ, ψ̂

p→ ψ,

(iii)

(
ξ̂1

ξ̂2

)
≡

(
Ĉ (ϑ)′ Ṽf (ϑ)−1/2 F̂T (ϑ)

Ĉ ′
ψ̂

(
ψ̂ − ψ

) )
=⇒

(
ξ1

ξ2

)
∼ N (0, Ik) ,

(iv) there exist a non-stochastic pψ×pψ symmetric matrix BT → 0 such that BT Ĉψ̂ =⇒
Ψ full-rank a.s., and (v) any stochastic elements in Ψ are independent of ξ = (ξ′1, ξ

′
2)
′.

Then, ARW (ϑ)
L→ χ2

k−pψ+q.

Proof By assumption (ii) and Slutsky’s theorem we have R̂ (ϑ) = R (θ) + op (1) . By

the singular value decomposition, R (θ)BT = QTΛTU
′
T , where QT is an orthonormal

q× q matrix, ΛT → 0 is a diagonal matrix holding the singular values of R (θ)BT , and

UT is a pψ × q matrix such that U ′TUT = Iq. So,

Λ−1T Q′T R̂ (ϑ)BT = Λ−1T Q′TR (θ)BT + op (1) = U ′T + op (1) .

Assumption (iv) implies that

B−1T V̂ψ̂ (ϑ)B−1T =
(
BT Ĉψ̂Ĉ

′
ψ̂
BT

)−1
=⇒ Ψ−1′Ψ−1.

So,

Λ−1T Q′T R̂ (ϑ) V̂ψ̂ (ϑ) R̂ (ϑ)′QTΛ−1T = Λ−1T Q′T R̂ (ϑ)BTB
−1
T V̂ψ̂ (ϑ)B−1′T B′T R̂ (ϑ)′QTΛ−1T

= U ′TΨ−1′Ψ−1UT + op (1) .

Assumption (iii) then implies

B−1T

(
ψ̂ − ψ

)
= B−1T Ĉ ′−1

ψ̂
Ĉ ′
ψ̂

(
ψ̂ − ψ

)
= Ψ−1′ξ2 + op (1) .

Assumption (ii) and a Taylor expansion of r̂ (ϑ) yield, under H∗0 ,

r̂ (ϑ) = R (θ)
(
ψ̂ − ψ

)
+ op

(∥∥∥ψ̂ − ψ∥∥∥)
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and Λ−1T Q′T r̂ (ϑ) = U ′TB
−1
T

(
ψ̂ − ψ

)
+ op (1) which for BT symmetric yields

Λ−1T Q′T r̂ (ϑ) = U ′TΨ−1′ξ2 + op (1) .

Moreover,

r̂ (ϑ)′
[
R̂ (ϑ) V̂ψ̂ (ϑ) R̂ (ϑ)′

]−1
r̂ (ϑ)

= r̂ (ϑ)′QTΛ−1T

[
Λ−1T Q′T R̂ (ϑ) V̂ψ̂ (ϑ) R̂ (ϑ)′QTΛ−1T

]−1
Λ−1T Q′T r̂ (ϑ)

= ξ′2Ψ
−1′UT

[
U ′TΨ−1′Ψ−1UT

]−1
U ′TΨ−1′ξ2 + op (1) .

Combining these results we have

ARW (ϑ) =

(
ξ1

ηT

)′(
ξ1

ηT

)
+ op (1) ,

where ηT = [U ′TΨ−1′Ψ−1UT ]
−1/2

U ′TΨ−1′ξ2, and the conclusion of the theorem follows

from Assumptions (v) and (iii) , which imply that
(
ξ1
ηT

) d→ N
(
0, Ik−pψ+q

)
, and the

continuous mapping theorem.

B.3 Proof of Theorem 2

The proof involves verifying the conditions of Theorem 3. Intermediate results will be

given as propositions whose proof can be found in the Supplementary Appendix.

The specification in Theorem 2 is a special case of that in Theorem 3, where ϑ = b12

and ψ contains all remaining elements θ. It is convenient to partition ψ into ψ1 and

ψ2, where ψ1 are the parameters that appear in equation (2) other than b12, namely δ1

and σ2
ε1

, and ψ2 are the parameters that appear only in (3), i.e., α2, δ2 and d21. Because

we can make V̂f block diagonal by imposing the orthogonality of the errors ε1t and

v2t that appear in f1t and f2t, respectively, estimation of ψ1 and ψ2 can be performed

sequentially.

We start by obtaining expressions for ξ̂ in Theorem 3, which forms the basis of the

ARW statistic.
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Proposition 4. The estimator ψ̂ is given by

ψ̂1 =

(
(X ′1X1)

−1X ′1 (∆Y1 −∆Y2b12)

T−1ε̂′1ε̂1

)
, (21)

ψ̂2 =
(
Ẑ ′2X̂2

)−1
Ẑ ′2∆Y2,

where ε̂1 = MX1 (∆Y1 −∆Y2b12) , X̂2 =

(
Y2

...X2
...ε̂1

)
, and Ẑ2 =

(
z
...X2

...ε̂1

)
. The

estimator of the variance of ψ̂ is given by

V̂ψ̂=

 Vψ̂,11 0 Vψ̂,13
0 $̂

T
0

V ′
ψ̂,13

0 Vψ̂,33

 , (22)

where

V̂ψ̂,11 = (X ′1X1)
−1
σ̂2
ε1

,

V̂ψ̂,13 = (X ′1X1)
−1
X ′1Ẑ2

(
X̂ ′2Ẑ2

)−1
σ̂2
ε1
d21,

V̂ψ̂,33 =
(
Ẑ ′2X̂2

)−1 (
Ẑ ′2Ẑ2σ̂

2
v2

+ Ẑ ′2PX1Ẑ2σ̂
2
ε1
d221

)(
X̂ ′2Ẑ2

)−1
, (23)

σ̂2
ε1

= T−1ε̂′1ε̂1, $̂
p→ var

(
σ̂2
ε1

)
, σ̂2

v2
= T−1v̂′2v̂2

p→ E (v22t) and v̂2 = ∆Y2 − X̂2ψ̂2. It

satisfies V̂ψ̂ (ϑ)−1 = Ĉψ̂Ĉ
′
ψ̂
, with

Ĉψ̂ =


(X ′1X1)

1/2 σ̂−1ε1 0 −d21X ′1Ẑ2C
′−1
Ẑ′2Ẑ2

σ̂−1v2

0 T 1/2$̂−1/2 0

0 0 X̂ ′2Ẑ2C
′−1
Ẑ′2Ẑ2

σ̂−1v2

 , (24)

where CẐ′2Ẑ2
C ′
Ẑ′2Ẑ2

= Ẑ ′2Ẑ2. The standardized random vector ξ̂ defined in Theorem 3 is

given by

ξ̂1 = (z′MX1z)
−1/2

σ̂−1ε1 z
′MX1ε1, and (25)

ξ̂2 =


(X ′1X1)

−1/2X ′1ε1σ̂
−1
ε1

$̂−1/2
(
σ̂2
ε1
− σ2

ε1

)
C−1
Ẑ′2Ẑ2

Ẑ ′2v2σ̂
−1
v2

 . (26)
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Let

DT =

(√
κT 0

0 T−1/2Ipψ2−1

)
, κT =

−
(
cz + T bα2

)
T 1+b

, (27)

and

BT =

(
T−1/2Ipψ1 0

0 DT

)
(28)

The following result verifies Assumptions (ii) of Theorem 3.

Proposition 5. (i) ψ̃ = ψ̂, and (ii) ψ̂
p→ ψ.

Finally, we verify Assumptions (iii)-(v) of Theorem 3. By Proposition 5(ii), ξ̂ =

ξ̂∗ + op (1) , where

ξ̂∗ =


(κT z

′MX1z)−1/2
√
κT z

′MX1ε1σ
−1
ε1
,

(T−1X ′1X1)
−1/2

T−1/2X ′1ε1σ
−1
ε1

$−1/2T 1/2
(
σ̂2
ε1
− σ2

ε1

)(
DTCZ′2Z2

)−1
DTZ

′
2v2σ

−1
v2


where $ = var

(
σ̂2
ε1

)
and Z2 ≡ (zt, X

′
2t, ε1t)

′ . Define the array

ζTt =


√
κT zt

(
ε1t
v2t

)
T−1/2X1tε1t

T−1/2 (ε21t − σ2
ε)

T−1/2
(
X2t

ε1t

)
v2t

 ,

which is a martingale difference with respect to the filtration FTt = σ (Y0, ε1t, v2t,ε1,t−1, v2,t−1...) .

Proposition 6.
∑T

t=1 ζTt ⇒ N (0, Vζ) , where Vζ is nonstochastic and positive definite,

and there exist a k×dim ζ matrix GT such that ξ̂∗ = GT

∑T
t=1 ζTt, where GTVζG

′
T

p→ Ik.

Combining the above results verifies Assumption (iii) of Theorem 3, i.e.,

ξ̂ ⇒ ξ ∼ N (0, Ik) .

Finally, it remains to derive the asymptotic behavior of BT Ĉψ̂. This is done in the

following Proposition.

Proposition 7. BT defined in (28) and Ĉψ̂ defined in (24) satisfy Assumptions (iv)-(v)

of Theorem 3.
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The theorem then follows from Theorem 3.
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