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A self-calibrating method for heavy tailed data modeling.
Application in neuroscience and nance
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Abstract

One of the main issues in the statistical literature of extremes concerns the tail index estimation,
closely linked to the determination of a threshold above which a Generalized Pareto Distribution
(GPD) can be tted. Approaches to this estimation may be classi ed into two classes, one using
standard Peak Over Threshold (POT) methods, in which the threshold to estimate the tail
is chosen graphically according to the problem, the other suggesting self-calibrating methods,
where the threshold is algorithmically determined. Our approach belongs to this second class
proposing a hybrid distribution for heavy tailed data modeling, which links a normal (or lognor-
mal) distribution to a GPD via an exponential distribution that bridges the gap between mean
and asymptotic behaviors. A new unsupervised algorithm is then developed for estimating the
parameters of this model. The e ectiveness of our self-calibrating method is studied in terms
of goodness-of-t on simulated data. Then, it is applied to real data from neuroscience and
nance, respectively. A comparison with other more standard extreme approaches follows.

Keywords: Algorithm; Extreme Value Theory; Gaussian distribution; Generalized Pareto Dis-
tribution; Heavy tailed data; Hybrid model; Least squares optimization; Levenberg Marquardt
algorithm; Neural data; S&P 500 index

2010 AMS classi cation: 60G70; 62E20; 62F35; 62P05; 62P10; 65D15; 68W40
JEL classi cation: CO02

1 Introduction

Modeling non-homogeneous and multi-component data is a problem that challenges scienti c re-
searchers in several elds, as e.g. in climatology, nance & insurance, meteorology, neuroscience,
... (see e.g. [10,26,31,32,46,49,51]). In general, it is not possible to nd a simple and closed
form probabilistic model to describe such data. That is why one often resorts to non-parametric
approaches, such as e.g. kernel density estimation ones (see e.g. [23, 40, 54]) or non-parametric
Bayesian methods (see e.g. [2,39,53]), just to name a few. However, when the multiple components
are separable, parametric modeling becomes again tractable. Several hybrid models have been
proposed in such context, combining two or more densities (see e.g. [5, 25, 27,31, 32]).
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In this study, we tackle the general problem in a specic case, when data exhibit heavy tails.
Extreme behaviors that are described by heavy tail modeling, can be observed for a large number of
phenomena, natural (from the big Dutch oods of 1952 to the recent earthquake in Italy), nancial
(e.g. the sub-prime crisis in North America or the Sovereign debt crisis in Europe), medical (e.g. the
avian in uenza), technological (e.g. Fukushima) or others. One mathematical eld, Extreme Value
Theory (EVT), which started with Tippett and Fisher (1928), is totally devoted to the analysis

and modeling of the extremes (see [1,8,15,20,29,47,48] for general references). Studies on extremes
were developed in many elds, as, for instance, in nancial markets and actuarial mathematics (see
e.g. [16,18,35] ), in epidemiology (see e.g. [19] for the rst introduction of EVT in epidemiologic
methods), in signal processing (see e.g. [4,17] when considering the general problem of false-alarms
probability determination, or [14] for the spike detection in neural signals in biomedicine, or [36]

for the detection of a binary signal in additive noise in telecommunication, or [56] for the damage
detection in machine diagnostics).

Introducing EVT helps managing the many catastrophes that our society is facing with, unfortu-
nately, an observed increasing trend of occurrence of extreme events since the beginning of the 20th
century (see [6]), but also helps improving the standard data processing by taking into account the
tail information.

Whereas EVT focuses on how to study and model extremes using the information in the tail of the
distribution only (which is the strength of this theory, even if sometimes also its weakness in practice
as tail data are scarce by de nition), it is also very useful to combine it with standard statistics
developed for the main information given in the data. To extract the important information given by
extremes and to highlight as well the information contained in the entire underlying distribution,
it is natural to take into account the dissymmetry of the data weights above a high threshold
(tail) and below it (around the mean). Dierent methods have been proposed so far to do it (see
e.g. [5,25,27,31,32,37]).

The main goal of this paper is to develop a self-calibrating method to model heavy tailed data,
the choice of this class of unsupervised procedures being clearly to ease practical implementations
(in particular when complexity burden and/or delay processing are critical) and to enlarge its
applicability. Indeed, the di culty faced when applying standard methods of EVT as the Peaks
Over Threshold (POT) approach (rst introduced by Davison and Smith in the 90's; see [7]),
the Hill method (see [21]), or the QQ-estimator one (see [28]), is that they are graphical ad hoc
approaches.

This self-calibrating method may be seen as two-folds: when (i) looking for a full modeling for non-
homogeneous, multi-component and heavy tailed data, (ii) focusing on the tail and evaluating in an
unsupervised way the high threshold over which the tail will be modeled; it might then constitute
an alternative EVT method to standard ones as e.g. the POT approach.

In this paper, we introduce a hybrid model with several components including a Generalized Pareto
Distribution (GPD), to take into account the heavy tail present in the data. Without loss of
generality, we assume continuous and asymmetric right heavy tailed data, a similar treatment being
possible on the left tail (see [10]). How many components of the hybrid model to consider and how to
choose them? Since we are interested in tting the whole distribution underlying asymmetric heavy
tailed data, the idea is to consider both the mean and tail behaviors, and to use limit theorems for
each one (as suggested and developed analytically in [27]), in order to make the model as general



as possible. Therefore, we introduce a Gaussian distribution for the mean behavior, justi ed by
the Central Limit Theorem (CLT), and a GPD for the tail, since the Pickands theorem (see [41])
tells us that the tail of the distribution may be evaluated through a GPD above a high threshold.
To bridge the gap between mean and asymptotic behaviors, we use an exponential distribution.
A di erent weight has been assigned to each component in order to have a better handling of the
extremes. The resulting three-components hybrid model is called G-E-GPD model. Note that
the GPD is the xed component of this heavy tailed model, but the two other components could
be chosen di erently, depending on the data, and even reduced to one component (as developed
earlier in [11,12]). Indeed, speci c treatment could be done to t the exact distribution of the mean
behavior for which we have much data, if we would like to avoid the use of the limiting normal
distribution. For instance, when having skewed distribution near the mean, which is typical for
insurance claims data, the normal distribution should be replaced by a lognormal without loss of
generality (see e.g. [25]). It would not change the idea of the self-calibrating method. Concerning
the number of components, we point out that the model needs at least two-components, including
the GPD, for the method to be workable. Indeed, the threshold over which the GPD is tted
(that we call the tail threshold), is determined in the algorithm as the junction point between the
GPD and another distribution. Contrary to standard EVT approaches, it means that we need
some information before the tail threshold to benet from this self-calibrating method (further
investigation will be made to adapt the method when partial information is available before the
tail threshold).

Moreover, the intermediate distribution (here an exponential) is used as a leverage to give full
meaning of tail threshold to the last junction point between the GPD and its neighbour (the
intermediate distribution). The distance between two successive junction points will automatically
tend to 0 when introducing unuseful components.

An iterative unsupervised algorithm is developed for estimating the parameters of the three-
components hybrid model. It starts by enforcing the continuity and the di erentiability of the
three components at the two junction points, then proceeds in an iterative way to determine suc-
cessive thresholds and parameters of the involved distributions. It provides a judicious weighting
of the three distributions as well as a good location for the junction points or thresholds, espe-
cially for the tail threshold that points out the presence of extremes. This algorithm is based, for
each iteration, on the resolution of numerical optimisation problems in least squares sense, using
the Levenberg Marquardt (LM) method (e.g. [30, 33]). We study its convergence analytically and
numerically.

The performance of this self-calibrating method is studied in terms of goodness-of- t on simulated
data from G-E-GPD Monte-carlo simulations. Given the very good performance, we apply the
method on real data, considering neural data and theS&P500 log-returns. A comparison with
other existing graphical approaches is also given.

The paper is organized as follows. In section 2 we introduce our hybrid model. The method and

its unsupervised iterative algorithm are developed in Section 3. Simulation results are presented in

Section 4, and applications of the method on real data in Section 5. Results are discussed, in both
sections, accompanied with a comparison of those obtained via standard methods. Conclusions
follow in the last section.



2 Hybrid three-components model

We consider a piecewise model where each component represents a di erent behavior of the data,
which might be heterogeneous or not. We assume that the data admit a continuous (non-degenerate)
distribution, and accordingly, we introduce a general hybrid probability density function (pdf),
with some smoothness constraints. Without any loss of generality, we consider a three-components
model. More precisely, the hybrid model we propose, links three di erent distributions to each other
at two junction points, denoted by u; and u,: a Gaussian distribution to model the mean behavior
of the data, a GPD to represent the tail and an exponential distribution to bridge the gap between
these two behaviors. This model, denoted by G-E-GPD (Gaussian-Exponential-Generalized Pareto
Distribution), is characterized by its pdf h expressed as:

< 1f(x;; ) if X ug;
h(x; )= 2e(x; ) if ur x  uy;

©ooeg(x uz ;) if x ug;
The di erent parameters are gathered in the vector denoted by and are described hereafter. To
begin, i, i =1;2;3 stand for the weights associated to each component. The parameters 2 R,
and 2 R, = R nfOgrepresent, respectively, the mean and the standard deviation of the Gaussian

. 1 )2

pdf f given by: f(x;; )= 49?6 22, 8x 2 R: The parameters 2 R and 2 R, denote,

respectively, the tail index and the shape parameter of the GPD pdfg, de ned by:

8 1 1
2 1+ x= )1 if 60
9(x; ; )=.> 1« o ; 8x2D(; )
where _
o= B
Finally, 2 R, indicates the intensity parameter of the exponential pdf e dened by

ex; )=e X; 8x> 0

In the sequel, we consider that the transitions from one behavior to another are smooth. As a
consequence, we constraint the resulting hybrid pdh to be Cl-regular. Note that by combining
this constraint and the assumption of heavy tailed data, the number of free parameters and hence
the size of will be reduced. Let us present these assumptions.

Assumptions of the model

The rst two assumptions are part of the construction of the G-E-GPD model.
(i) First we assume, by constructign, that the data distribution admits a pdf h. This means that

h is non-negative and satises h(x; )dx =1, i.e.
R

1F(ui;; )+ 2e Yt e Y2 + 5=1; (2.1)



where F denotes the cumulative distribution function (cdf) of the Gaussian distribution.

(i) We focus on heavy tailed data. This implies that h belongs to the Fechet maximum domain
of attraction ( > 0) and therefore = u, (seee.g.[15], p. 159).

The main constraint is to require a smooth pdf and to further reduce the number of free-parameters,
that is why we have imposedh to be of classC!;

(iii) h is continuous and di erentiable at the two junctions points u; and us.
Assumptions (i)-(iii) give rise to six equations relating all model parameters:

8
_ . _ e(uy; ) .
2 = Uz 1T 2 ) i
3 = 1L, 2 = ( 1)e Uz ¢ 1+ If:((LlJJi-;;;; )) e U1 : (22)
Tur= o+ 2% 3= e(uy )

Consequently, the parameter vector retains only the free parameters and we set =[ ; ;u 2; ].
It is then straightforward to deduce from h the expression of the cdf and quantile function associated
with the G-E-GPD model. The G-E-GPD cdf, denoted H, is given by:

8
> 1F(x;; ) if x ug
H(x; )= N 1iF(uy; ;s )+ 2 e “11 e * if up x uy (2.3)
1 31+ -(x up if X up;

and the corresponding quantile function by:

8

% F ! %;; if p pi:i= aF(ui; )
H !p; *log o p+22e 0 if pp p p2:= 3

% - 1 PP 1 +up if p pyy

3

where the notation 1 denotes the inverse function of the function .

A classical problem that arises when dealing with parametric models concerns how to estimate the
model parameters. To answer this problem, we develop an iterative algorithm for estimating the
parameters vector . This algorithm is an extension of the one built in [9,11,13]. For each iteration,

it is based on the numerical resolution of optimization problems in least squares sense, using the
Levenberg Marquardt (LM) method (see [30,33]). We describe it and study its convergence in the
next session.

3 Iterative algorithm for hybrid model parameters estimation

Here we describe the iterative algorithm suggested to estimate the G-E-GPD model parameters,
which self-calibrates the model, in particular the threshold above which a Fechet distribution ts
the extremes. This algorithm follows the same logic as the one developed for two-components
in [9,11,13]. We will recall it in the appendix when studying its convergence. For each iteration, it
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breaks down the problem of the parameters vector estimation into two nested subproblems; the
parametersp=[; ;u 2] and are estimated alternatively. Indeed, for each iteration, we estimate
the parameters vectorp by minimizing the Squared Error (SE) between the empirical cdf and the
estimated one, when considering the estimate of of the previous iteration. Thereafter, will be
estimated again, as well, by minimizing the SE between the empirical cdf and the estimated one,
using, this time, the estimated p vector. Evidently, this procedure starts by xing initial parameters
and ends when a stop condition is satis ed. Small modi cations on the parameters vector, the data
scale, and the stop condition, are provided when going from the two- to the three-components
algorithm, and will be detailed later on. These modi cations have no in uence on the functional
principle of the algorithm, neither on how to study its convergence. In this convergence study, given
in the appendix, we prove analytically the existence of a stationary point, then show numerically
that the stationary point is attractive and unique. This last part is still an open analytical question.

Let us describe this iterative algorithm. First, we consider an n-sampleX = (X;)1 ; n with a
G-E-GPD parent distribution. We denote by x = (Xj)1 i n an associated given realization. For
the rest of this work, a© and a®) denote the initialization and the estimate of the parameter a at
the k' iteration, respectively.

To start its iterative process, the three-components algorithm needs the knowledge of®, the
initialization of . However, the only information we have about is that it is positive, which
makes its initialization di cult. For that reason, we start initializing @ = [e©@;e©@:aQ]. To
do so, we chosee© as the mode of the data, according to the fact that about 16% of Gaussian
observations are bellow , we tooke©@ = e@ +q_ , whereq,, represents the quantile of order
16% associated toH , and £,© as a guantile of order su ciently high (above 80%, for this work).
Then we use this initialization p® to determine &9, minimizing the SE between the hybrid cdf
given p= p© (xed), and the empirical cdf H, associated to the sampleX = (Xi)1 i n, de ned,

1 . L
forall t 2 R, by Hyp(t) = o 1x; 1. To do so, we do not evaluate this SE on the realizations
i=1
Xj only (as there might be only a few observations in the tail), but on a generated sequence of
synthetic increasing datay = (y;)1 ; m, of sizem (m can be di erent from n), with a logarithmic
step, in order to increase the number of points abovel,. More precisely, forany 1 j m,y; is
expressed as:

yi =min(x;) +(max(x;j) min(xj))log;y 1+ % 1)

(3.1)
1in 1in 1in 1

Notice that the introduction of new points between the observations of X has an impact onH by
evaluating it on more points, but not on the step function H,.

Hence®? is now determined by solving the following minimization problem using the LM algorithm
(see [30,33)):

2
&) argmin H(y; jp?) Ha(y) ;
>0

where | p© represents for p= .

Note that this initialization step is the rst modi cation we have introduced, compared with the
two-components algorithm.

Once €9 js determined, we can, thereafter, proceed iteratively. For allk 1, the k! jteration is

6



splitted into two main minimization problems, which are solved alternatively, as described hereafter.
Step 1: Determination of p® = [e®); e®:a{’] minimizing the SE between the hybrid cdf given

&k 1) and the empirical one, as follows:

- - 2
p argmin @ H(y; jEK D) Hu(y)
(i )2R R, 2
u22R+

where j €k 1) denotes for = &k 1 (xed).
This minimization problem is as well numerically resolved using the LM algorithm.

Step 2: Determination of &k minimizing the SE between the hybrid cdf given ), and the
empirical one,i.e. by solving the following minimization problem via the LM algorithm:

2
& argmin H(y; jp)  Ha(y) ¥
>0

where j g, represents for p= pK) (xed).
Stop condition:  The algorithm iterates until it satis es the following stop condition:
0 1

%d Hy; ®)Hny) < and d H(yg; ®)iHn(yq) < § or K= rbmax
| b ) | {z } Condition C3

Condition C1 Condition C2

whered(a; b) denotes the distance betweera and b, chosen in this study as the Mean Squared Error
(MSE), 2 [0;1], andyq represents the observations above the quantilgl of order associated
with H.

The second modi cation with respect to the two-components algorithm initially developed, lies at
the stop condition. Indeed, to ensure a reliable t of data not only for the main behavior but also
for the tail, we force the algorithm to stop only when the MSE between the hybrid cdf and the
empirical one is small enough (= 10 12, for this work), using on one hand all data (Condition
C1), on the other hand only extreme order statistics above a desired (Condition C»). Otherwise,
the algorithm stops when a xed number kmax Of iterations (Kmax = 103, for this work) is reached
(Condition C3).

Remark 3.1 Note that this algorithm can be adapted to di erent hybrid models according to the
nature and the number of its components (if larger than 2), without any in uence on the convergence
study of the adapted algorithm. We point out that in this method, it is important to have at least
two-components, among which a GPD to describe the extremes behavior, to be able to determine in
an automatic way the threshold above which the GPD is tted. For simplicity, we focus on the right
tail, but it is straightforward to repeat the same procedure to consider the left tail too. The algorithm
has been extended in an example of this type, when considering both tails (see [10]). We just follow
the same logic: breaking down the problem of parameters estimation into two subproblems and then
resolving them alternatively.

To summarize, let us provide a pseudo-code of our algorithm.
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Algorithm 1  lterative and unsupervised algorithm for the G-E-GPD parameters estimation

1: Initialization of @, , > 0, and kmax, then initialization of €9
2
€ argmin H(y; jp?) Hay)

>0

where Hy, is the empirical cdf of X. We note that this distance is computed on the points
Yy=(Yj)1 j m denedin (3.1).
2: Iterative process:
k 1
Step 1 - Estimation of pk):

2
Y argmin  H(y; j&*Y) Ha(y)
(i )2R R, 2
U22R+
Step 2 - Estimation of &K):
2
& argmin H(y; je™)  Haly) )
>0

k k+1
until  d(H(y; “);Hn(y)) < and d(H(yq ; ®);Hn(yq ) < or K= Kmax .

3: Return &) = e(k);e(k);e(zk);e(k) :

4 Simulation results and discussion

To study the performance of the algorithm to self-calibrate the G-E-GPD model, we build on
Monte-Carlo simulations. To do so, we proceed in 4 steps:

Step 1: We consider N training sets fx% = (xJ)1 p n01 q n, Of length n and N test sets
fy?=(y)1 p 101 q n, Of length |, with a G-E-GPD parent distribution admitting a xed
parameters vector .

Step 2: On each training setx9, 1 g N, we estimate , say ® = [e% ed; ti,%; €], using the
algorithm given in the previous section. We denote byaY the estimation of the parameter a
relative to the g training set.

Step 3: We compute the empirical mean and variance of estimates of each parameter over tie
training sets. For any parameter a, we denote bya-and S, its empirical mean and variance,

. 1 . 1 X
respectively, de ned as: a= N al and Sy = N 1 (@% @)2. We can check the
=1 =1
relevance ofa-using two criterions:
1 X
1. The MSE expressed for any parametern as: MSE, = N (& a)?: A small value of
=1



MSE highlights the reliability of parameters estimation using the presented algorithm.
Ho : ea=a

H, : a6 a’

For N > 30, we can use a normal test (instead of d-test) of size , with a rejection
region ofjs—lo at level described by [Tgj > la ) , where the statistics Ty is given

2. Test on the mean (with unknown variance) :

by Te = ; (a a);and (1 ) is the quantile of order 1 of the standard
N

normal distribution.

Step 4. We compare the hybrid pdfh given with the pdf 8 estimated on each test sety9, given €.
To do so, we compute the average of the log-likelihood ratid of h(y9; €) by h(y9%; ), over
the N simulations:
|
XX q. y

I g=1 p=1 ﬁ(yg’ aﬁ])

It is obvious that the smallest the value of D is, the most trustworthy is the algorithm.

We present in Table 1 the results obtained when taking =[2;1;5;0:5],N =100, = nand = 5%.

Di erent values of n have been considered to study its impact on the parameters estimation. The
reliability of the three-components algorithm, in terms of goodness-of-t, is pointed out through
the two criterions described above, as well asia the average of the log-likelihood ratio. First, for
each estimated parameter, we notice a small MSE whenever the data size is large enough, with
a variance of order En (except for uz, where it is much larger). This order being larger than
standard ones (En?, as e.g. for the the Hill and QQ estimators), we resort to a statistical test
as an additional criterion. For the N training sets, we compute the test statistics denotedTg.n
and the correspondingp-value pr,, =2(1  ( jTan]j)), with respect to the parameter a. For any

n 2 f 10%;10%; 10°g and for any parametera2f ; ;u »; g, we obtainjTanj <  1(0:95) = 1:6448,
and pr,, > 5= 2:5% (it even remains greater than 50%), which reveals a high acceptance (95%

level) of Hy (& = a) i.e. a very high level of similarity between the values obtained via the algorithm
and the xed ones (even for = 1%). Finally, the accuracy of the parameters estimation is also
highlighted via the average log-likelihood ratio. For the three di erent values of n, this average is
lower than 10 2, involving a good self-calibration of the G-E-GPD hybrid model.

A remaining question, which might be the object of another paper, is the study of the convergence
rate of this algorithm. Here, to have an idea of how fast it works, we indicate in Table 1 the average
execution time and the average iterations number (the oor function) over the N simulations. As
shown in this table, they both increase with the data size, as expected. We notice that the average
execution time is still small, even forn = 10°, indicating a fast convergence of the algorithm. It
could be even reduced by converting our programs from the R programming language to the C++
one.

Besides the reliable estimation of the parameters, we show in Table 2jia the MSE, that our
algorithm enhances the GPD parameters estimation when compared with the Maximum Likelihood
(ML) method and the Probability Weighted Moments (PWM) (see [22]). We mention that the
threshold we select for the comparison is the one obtained by the algorithm.
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Table 1: Monte-Carlo simulations results for
| = n2f10°%10% 10°g .

=[2;1,5;0:5], N =100,

= 5%, and

n=103 n =104 n =10°
e 1:9981 1:9994 1:9994
Sy 6:8722 10 ° | 8:9157 104 | 7:6821 10°°
MSE 6:8071 10° | 8:8295 104 | 7:6143 10°
Ten 0:2285 0:1829 0:3434
n PT 0:8192 0:8548 0:7312
S e 1:0013 1:0007 0:9999
£ Sy 473910 ° | 4:8821 10 | 5:231 10 °
T MSE 4:6934 103 | 4:.8386 10% | 5:1791 10°
o Ten 0:1926 0:3307 0:083
PTen 0:8472 0:7408 0:9338
fi 4:9904 4:9896 4:9964
S 5:4904 10 1 | 4:9062 102 | 3:4532 103
MSE,, 5:4364 10 T | 4:8678 107 | 3:4311 103
TN 0:1288 0:4669 0:5996
PTs, 0:8975 0:6405 0:5487
e 0:4975 0:5005 5:0018
Sy 1:6698 103 | 1:14635 104 | 1:113 10 °
MSE 1:6594 103 | 1:45210% | 1:105310°
Tey 0:6102 0:4592 0:5478
PTo, 0:5416 0:646 0:5837
Average execution time (seconds) 3:831 13:2048 2456802
Average iterations number 45 48 50
D 2:9858 10 ° | 2:6957 10 % | 2:9898 10 °

Table 2: GPD parameters estimation, using Algorithm 1, for the same example (=[2; 1;5;0:5], N = 100,

and =2:5) and for n =10° : comparison with the ML and the PWM methods.
Algorithm 1 ML PWM
e 5:0018 0:5003 0:5025
=05 | MSE | 1:1053 105 | 1:7312 10“ | 5:0868 10 *
—og e 2:499 2:5003 2:4968
MSE | 4:.0818 104 | 1:3788 103 | 2:3523 103
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5 Application of the self-calibrating method on real data

Once the performance of the algorithm is validated on generated data, we apply it on real data,
considering two di erent domains: neuroscience and nance. Those data are essentially symmetric
around the mean. However, in the case of skewed data, as in insurance claims, the normal com-
ponent would be replaced by a lognormal one, to account for this skewness (as e.g. in [25]). To
underline the unsupervised aspect of the self-calibrating method, for each application we compare,
in terms of goodness-of- t of extremes, the results obtained with this method to those provided by
three standard EVT approaches: the graphical Mean Excess Plot (MEP) (see [15]), Hill (see [21])
and QQ (see [28]) methods.

5.1 Neuroscience: neural data

Here we consider the data corresponding to twenty seconds, equivalent to = 3 10° observations,

of real extracellular recording of neurons activities, available in [42] and measured on the antennal
lobe of an adult locust (see [43]). We represent one second of the considered data in Figure 1.
The information to be extracted from these data (spikes or action potentials; see [34]) lies on the
extreme behaviors (left and right) of the data.

10
!

Amplitude

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Time in second

Figure 1. One second of neural data, extracellularly recorded.

Since the neural data can be considered as symmetric, it is su cient to evaluate the right side of
the distribution with respect to its mode. We compare in the following the obtained results of
neural data tting (only the right side of the data) using our self-calibrating method, the MEP, the
Hill and the QQ ones.

Application of our self-calibrating method

Applying the algorithm of this method on the neural data set to model its right side, we
obtain the following estimate of : € =[ 0:0681 0:6297 0:5398 1:0301]. In Figure 2 (1st
row), we can see well, on a log-scale, the good t of the estimated hybrid cdf compared to
the empirical one (see plot (a)), but also that of the right tail distribution (see plot (b)). We
observe here that the exponential distribution is not needed for a good modeling of the data.
Indeed, the two junction points overlap: 81 and B,, the estimates ofu; and u,, respectively,
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are very close to each other (with a distance equal to 8268 10 °) (see plot (a)). It is what
has already been observed in [12].

Application of the MEP method

We draw the Mean Excess Plot (MEP) (see plot (d)) to manually determine the threshold
above which data are GPD distributed (that we refer as the GPD threshold). We look from
which threshold (high enough to match the theory, but not too high to have enough obser-
vations) the MEP behaves linearly. Then, we estimate the corresponding GPD parameters
using, for instance, the PMW method (see [22]). Several values of the threshold have been
selected. We choose the one o ering the smallest MSE between the empirical tail distribution
and the estimated GPD (see the zoomed part of plot (c), where the linear behavior of the
MEP is pointed out). The reliability of this graphical method, in terms of goodness-of- t of
extremes above the selected threshold, is illustrated in plot (d).

Application of the Hill method

In a similar way, we determine the GPD threshold graphically from the Hill plot (see plot
(e)), representing the Hill estimator of the GPD tail index as a function of the number of
the upper order statistics. After several tests, we select the number of upper order statistics
above which we observe a stability of the Hill plot (see plot (€)); the associated threshold
minimizes the MSE between the estimated and the empirical tail cdf. We note that once
the number of upper order statistics is selected, the associated threshold and tail index are
determined, and the scale parameter is estimated as the product of this threshold by the talil
index. We draw in plot (f) the empirical tail distribution and the estimated GPD.

Application of the QQ-method

We provide not only the Hill estimator but also the QQ one, as it is easier to detect the
threshold with the QQ method than with the Hill plot, which may sometimes present an

erratic behavior di cult to interpret, as can be observed in the corresponding zoomed plots.
As well as for the Hill method, we select graphically the number of upper oder statistics
above which the plot of the QQ-estimator of the tail index (see plot (g)) behaves this time
linearly. We then select the one such that the MSE between the empirical tail distribution

and the estimated GPD is minimum (see the zoomed part of plot (g)). As for the Hill method,

the scale parameter is estimated as the product of the threshold by the tail index. Plot (h)
illustrates the reliability of the obtained tail t.

Comparison of the results obtained via the various methods

In Table 3, we present the results we obtained with the self-calibrating method, the MEP,
Hill and QQ methods. Since the three graphical approaches t only the tail distribution,
the comparison of the methods will focus on the goodness-of- t of the GPD component. As
observed in this table, the MSE between the estimated cdf and the empirical one, using only
data above the selected threshold is small enough for the four methods to ensure a reliable
modeling of extremes. The GPD threshold and the estimated tail index are of the same order
of magnitude for all methods; it con rms that our algorithm works in the right direction.

We can also notice the good performance of these methods through Figure 3, where we plot
the empirical quantile function and the estimated ones using the self-calibrating method and
the various graphical ones. However, the advantage of our method is that it is unsupervised,
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Figure 2: Extremes modeling using di erent methods. For each plot, the blue continuous curve is empirical
(even for zoomed curves), while the red dashed curve and vertical line represent the estimated GPD and
threshold, respectively, using the associated methodl.3



i.e. it does not need the intervention of the user to select the threshold manually. Moreover
it provides a good t between the hybrid cdf estimated on the entire data sample and the
empirical cdf, with a MSE of order 10 °.

Table 3: Comparison between the self-calibrating method and the three graphical methods: MEP, Hill and
QQ ones. Ny, represents the number of observations abows,. The distance gives the MSE between the
empirical (tail or full respectively) distribution and the estimated one from a given model (GPD or hybrid
G-E-GPD respectively). The neural data sample size i1 = 3 10°.

Model tail index threshold Nu, distance distance
() (up) (tail distr.) | (full distr.)
GPD MEP (PWM): 0 :3326 1:0855 = q, ., | 19260 4:0663 10 °
GPD Hill-estimator: 0:599 1:0855 = q, ., | 19260| 2:0797 10°
GPD QQ-estimator: 0:5104 1:0671 =q,, ., | 19871 1:2685 10 °
G-E-GPD | Self-calibrating method: 05398 | 1:0301 =q,,,, | 21272] 7:7903 10° | 9:3168 10°

o |
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Figure 3: Neural data: Comparison between the empirical quantile function and the estimated ones, the
self-calibrating methods and the graphical methods.

5.2 Finance: S&P500 absolute log-returns

The second application considered in this work concerns the S&P500 absolute log-returns from
January 2, 1987 to February 29, 2016, corresponding tm = 7349 observations, available in the
tseries package (see [52]) of the R programming language (see [44]). We check whether these data,
represented in Figure 4, exhibit a heavy tail or not. Note that we could have looked at each tail of
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the log-returns (it is known that they have a slight di erent tail index from one to the other) but
decided instead to look at their absolute value.

Figure 4. S&P500 absolute daily log-returns from January 2, 1987 to February 29, 2016

As for the neural data, we apply our self-calibrating method, and the graphical ones (MEP and
QQ) for comparison. Note that we display only the plots associated with the QQ-method and not
the Hill one, since the QQ-threshold is easier to detect, as already %ommented. Nevertheless, we
provide the numerical results for both Hill and QQ methods, using the™ n upper order statistics to
compute the Hill estimator, since this selected threshold has been empirically shown to be relevant
for nancial data in [3].

The results are illustrated in Figure 5. In plot (a), we draw (on a log-scale) the empirical cdf
and the hybrid cdf obtained via our self-calibrating method, where the two vertical dashed lines
represent the two junction points of the hybrid model. The corresponding right tail t is given in
plot (b).

The MEP and the selected threshold are given in plot (c) (the zoomed part shows the MEP linear
behavior above the selected threshold), while the corresponding extremes t is given in plot (d).
The GPD parameters being estimated by the PWM method.

Finally, the QQ-estimator plot and the selected number of upper order statistics are represented in
plot (e), with a zoom illustrating the linear behavior of the QQ-estimator plot above the selected
number of upper order statistics. The corresponding extremes t is shown in plot (f).

Table 4: Comparison between the self-calibrating method and the three graphical methods: MEP, Hill and
QQ ones. The &P 500 absolute log-returns data sample size is= 7349.

Model tail index threshold Ny distance distance
() (uy) (tail distr.) (full distr.)
GPD MEP: 0:3025 0:0282=q,,,,, | 206| 1:7811 10’
GPD Hill-estimator: 0:3094 0:0382=q,.,, | 85 | 44953 10°
GPD QQ-estimator: 0:3288 0:0323=q,_,,, | 137] 6:0505 10°
G-E-GPD | Self-calibrating method: 0:3332| 0:0289 =q,,,,. | 184 | 1:9553 10 ’ | 1:0635 10>

The numerical results obtained for the threshold and tail index, as well as for the MSE between
the empirical tail distribution and the estimated GPD using the four methods respectively, are
reported in Table 4. We can notice that all methods o er a good t of the tail distribution, with

a slightly overestimation for the G-E-GDP and QQ methods compared with the MEP and Hill
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Figure 6: S&P 500 absolute log-returns data: Comparison between the empirical quantile function and the
estimated ones, the self-calibrating methods and the graphical methods.

In Table 4 and Figure 6, we observe once again similar results for the various methods. It con rms
the good performance of the self-calibrating method to estimate the tail distribution. As already
said, this latter method also provides a good modeling for the entire cdf.

Conclusion

In this paper, we propose a self-calibrating method to model heavy tailed data that may be non-
homogeneous and multi-components. We develop it introducing a general non-degenerate hybrid
C! distribution for heavy tailed data modeling, which links a normal distribution to a GPD via an
exponential distribution that bridges the gap between mean and asymptotic behaviors. The three
distributions are connected to each other at junction points estimated by an iterative algorithm,
as are the other parameters of the model. The convergence of the algorithm is studied analytically
for one part and numerically for the other. The performance of the method is studied on simulated
data. Based on those results, we observe that the proposed unsupervised algorithm o ers a judicious
t of the asymmetric right heavy tailed data with an accurate determination of the tail threshold
indicating the presence of extremes, as well as of the parameters of the GPD that ts the extremes
over this threshold. Several applications of the method have been done on real data, in particular
on insurance data. We give two of them on data coming from very di erent elds, neural data and
nancial ones (S&P500). A comparison follows with other existing methods.
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Note that this method has been developed when considering asymmetric right heavy tailed data;
it can of course be applied in the same way when having the asymmetry on the left side, or when
having a heavy tail on each side (without requiring a symmetry).

This method has many advantages and should become of great use in practice. The main advantage
is to be unsupervised, avoiding the somehow arbitrary resort, when tting the tail, to standard
graphical methods (e.g. MEP, Hill, QQ methods) in EVT. A second advantage is to t with the same
iterative algorithm the full distribution of observed heavy tailed data, of any type whenever smooth
enough (C-distribution), providing an accurate estimation of the parameters for the mean and
extreme behaviors. It certainly answers a big concern encountered by practitioners. Moreover the
method is quite general: besides the GPD needed when tting the heavy tail, the other components
might be chosen di erently, not using limit behavior (CLT) but distributions chosen speci cally for

the data that are worked out (as e.g. lognormal for insurance claims). It would not change at all
the structure of the algorithm.

It should be emphasized that determining in a unsupervised way the threshold over which we have
extremes, requires to have information before the threshold. We suggest here an approach that
avoids traditional graphical methods when tting the entire distribution. Further investigation will
follow in order to make this method also available as a pure EVT tool (i.e. to t the tail only). It
means to determine the minimum information required to determine the neighbor distribution of
the GPD to have a robust estimation for the tail threshold and the GPD parameters estimation.

Moreover, we plan also to tackle the analytical study of the convergence rate of the algorithm as a
function of sample size.

Finally, a R package should appear soon online. Meantime, the R codes are available upon request.
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APPENDIX: STUDY OF THE ALGORITHM CONVERGENCE

As already commented, the algorithm convergence does not depend on the number (2) of com-
ponents. Therefore, we develop its analysis when considering two-componentseg, u; = uz; no
exponential component), with a unique weight associated to each one. In the following, we denote
by u the junction point connecting the Gaussian distribution to the GPD. We mention that for this
two-components hybrid model, named G-GPD, the constraint = u can be relaxed. The parame-
ters vector of the G-GPD modelis =] ; ;u ]. The two-components algorithm (see [11]) estimates
the parametersp=[ ; ] and u alternatively. Let us give its pseudo-code for more clarity.

Algorithm 2 lterative and unsupervised algorithm for the G-GPD parameters estimation

1: Initialization of 8@, > 0, and kmax .
2. Determination of the empirical cdf H,, associated with our samplex = (Xj)1 i n.
3: lterative process:
k 1
Step 1 - Estimation of p¢) = [e(); e(]:

2
X argmin H(x; je® V) H.(x) ;
p2Dp 2
where jak b represents for a xed u= ek Y, and D, is the domain of p for
the realization x.
Step 2 - Estimation of a*):

2
e® argmin H(x; jp*) Hn(x) ;
u2D y 2

where jpK) means for p= p®¥ (xed), and D, is the domain of u according to
X.
k k+1
until (je® a® Dj< )or (k= Kmax).
4: Return () = gk); ek): (k) -

The convergence study is in two main steps. The rst one gives the analytical proof of the existence
of stationary points. Indeed the algorithm, which consists of a sequence of minimization, does not
rely on the optimization of a cost function by seeking a trajectory to reach an extremum of an error
surface. As a consequence, the existence of a stationary point, even the convergence towards such
one, is not guaranteed, and has to be proved (see Appendix A). The second step consists in checking
that the algorithm converges to a unique stationary point. Itis done numerically, performing various
simulations changing each time the initialization (see Appendix B). We observe that, whatever the
initialization, the algorithm converges to the same stationary point. The analytical proof of this
second step is still an open problem.

A Existence of stationary points

We start this section by presenting the theoretical framework in which the existence of stationary
points has been proved. For a given realizatiorx = (Xj)1 i n and given parameters; 2 fp;ug
with 6 , we consider the function:
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"' :D I' D
70" (;x)=argmin S ( ;X);
2D

where for | denoting, as previously, for a given , S is de ned by:
S :D ! R

X 2
S (ix)= H(xi; ] ) Hn(x)

i=1

To check that ' is a map, it is enough to show that S admits a unique minimum, for any
2fp;ug, with p=[; ]2 R R, andu 2 R;. Since the expression of the hybrid cdiH with
respect to (w.r.t.) (see (A.l1)) is rather complicated, we proceedvia simulations. Fixing , for
instance = p (it would be the same for = u), we draw, for a given sample ki)1 i n, Sp as a
function of u (i.e. = u), observing if it admits a unique minimum. Take the example of a G-GPD
sample ;)1 i n with n =103, generated with =0, =1 and u=0:5221, and consider di erent
scenarios varying the value of the Gaussian parametep. In Figure 7, we present the di erent
curves of S, depending onp, which all exhibit a uniqgue minimum. Note that for p = [0; 1] which
corresponds to the parameter of the generated sample, the minimum d§, (see the green curve of
the right plot) coincides with the exact threshold u = 0:5221 of the data (represented by a vertical
red dashed line in both plots of Figure 7), as expected.
fluii )

NEeG; ) h 1+ Y QU ) (x ouw) E e

—_— 1 + 1 1 :
1+ F(u;; ) ~Txwue 1+F(u;; ) fx ug

H(x; )= (A1)

Figure 7: S, as a function of the thresholdu ( x, and are xed)

Using' y:Dp ! D yand' p,:Dy ! D o, the two steps of the rst iteration of the algorithm can
be given, for a xed e©, by the following relations:

Y = ;(8©@;x);
8® =" (V%) = " u( p(89;x); x):

More generally, for anyk 1, we can write

g® = (gk D:x): (A.2)
where the function is de ned from Dy to Dy by:  (u;x) =" y(" p(u;Xx); X).
Consequently, the algorithm can also be expressed as:
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Algorithm 3 lterative and unsupervised algorithm for the G-GPD parameters estimation
(version 2)

1: Initialization of 8@, > 0, and kmax .
2. Determination of the empirical cdf H,, according to x.
3: Iterative process:

k 1
k k+1
while je® ek Yj  and k <Kk max.

4: Return 8(®:

A way to prove the existence of stationary points of Algorithm 3 is to demonstrate the existence
of xed-points of the function . To do so, we build on the xed-point theorem. Several versions
of this theorem exist in the literature e.g. the version of Banach (see [57]), or of Markov-Kakutani
(ses [55]), or of Schauder (see [38]), or of Brouwer (see [24]). In this work, we consider the latter
one, as its hypotheses are, in our case, more straightforward to check. This theorem states that
every continuous function from a closed ball of a Euclidean space into itself has a xed pointlt
implies that the functional admits at least one xed point if the following two conditions, ( G)
and (G), are satis ed:

(G) : Dy is a closed ball of a Euclidean space.
(&) .  is continuous onDy.

The conditions (G) is clearly satis ed: for a realization x, D, = [0; max(x)] is a closed ball ofR
that is a Euclidian space.

Now, to verify (&), we prove that '  and ' , are both continuous on their domains (since is the
composite function: ="', ') using the Heine-Cantor theorem (see e.g. [50]) and the Ramsay
et al.'s one that we recall here.

Theorem ( [45])
Let X and Y be metric spaces withX closed and bounded. Let

g: X Y ! R
x ) ' oax )

be uniformly continuous in x and , such thatx( )= argmin g(x; ) is well de ned forall 2Y.
x2X

Then the function x( ) : Y ! X is continuous.

The proof of the continuity of the two functions ' , and '  being the same, let us consider for
instance the function ' ,. Using Ramsay's theorem, we need to check thaD, is a compact and
that S, is uniformly continuous on Dy, to conclude to the continuity of ' ,. The rst condition, Dy
is a compact of R?, is satis ed when noticing that we are working with a Gaussian density, with
nite mean and variance, hence which is bounded.

Now, as Dy is a compact, it is su cient to show that S, is continuous on D, to deduce, by the

X
Heine-Cantor theorem, its uniform continuity. Since Sy(p;x) = H(xi; ju) Hn(x) 2, we
i=1
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just need to study the continuity of H w.r.t. p to deduce the continuity of S, w.r.t. p. We recall
here that, by construction, H is continuous w.r.t. x and not to its parameters. Hence, its continuity
according to p remains to be proved. SinceH is composed of two functions (see (2.3) fou; = uy),
the Gaussian cdf and the GPD, we will study the continuity of each one w.r.t. p. The continuity
of the Gaussian cdfF as a function of p is immediate since it means to look at the continuity of

its likelihood w.rt. p=1[; ]. Now, for the GPD G, its parameters and are expressed as

and (p) = u >— (p) 1, and are both continuous inp. HenceG

fonctions of p:  (p) =

fwp
is continuous in p as the composition of continuous functions w.r.t. p.

Finally, we can deduce the continuity of the function S, on D, as a composition, sum and products,
of continuous functions onDp, from which we conclude to the continuity of ' ; on Dy,.

Conclusion: We can conclude that the functional is continuous onD, as a composition of two
continuous functions: ' , and ' . Hence the existence of at least one xed-point according to the
Brouwer xed-point theorem. Consequently, the algorithm admits at least one stationary point.
Since the method does not follow a path on an error surface, it is free from local minima traps as
are the classical gradient search based methods. In the next section, we perform simulations to
check if the algorithm converges to a unique stationary point regardless to the initialization.

B Numerical study of the algorithm convergence

To study numerically the convergence of the algorithm to a unique attractive stationary point,

we consider the recurrent sequencée*) = (a())g.,\ , obtained when applying Algorithm 2

on a generated G-GPD distributed data with a xed parameter . Dierent initial values of this
sequence are considered and for each one we represent graphically the associated recurrent sequence.
To ensure the algorithm to be on the right track, all initial values are selected in the interval to
which u belongs, namelyl =[dq,,, ;0] (see [12]). For illustration, we report here two examples
among all those performed to test the convergence.

Figure 8: Study of the convergence of the recurrent sequenda®*) = (a(k)g,n regarding the initial
value 8@ . Example 1 for =1[0;1;0:4354]and u =0:4354y,, ,,,. -
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For =][0;1;0:4354] with =0:2 and = 2:7558, we present in Figure 8 the recurrent sequence
fak+) = (a®)gen , where the initial value 8@ 2 fa,, 10, .05 Qo s Dipicrs s Dusog s Do O AS
shown in this gure, regardless the choice ofe® in I, the algorithm converges to the xed value
of u =0:4354 (represented by a continuous horizontal line), denoted byi . We observe that:

1. If 8@ <u , the associated recurrent sequence is non decreasing, as for instance for the gray
cercles curve withe©® = g, and the red triangles (upwards oriented) one withe©® = q,__ ;

2. 1f e©@ >u | the associated recurrent sequence is non increasing.g. the blue diamonds curve
for 8@ = g, and the pink triangles (downwards oriented) curve fore©® = q__ .

5%

Consequently, based on Figure 8, regardless the choice @® 2 |, the recurrent sequence
fekd =  (ak)gon is monotone onD, and converges to a unique attractive stationary point
that corresponds tou .

Another example now for =[3;2;4:0443] with = 0:5and = 5:7454 is illustrated in Figure 9
and leads to the same observations.

Figure 9: Study of the convergence of the recurrent sequenda**) = (a®))g.,n regarding the initial
value 8® . Example2 for =[3;2;4:0443]landu =4:0443=q,

An additional remark concerns the number of iterations. We could observe in the simulation study
that the closest to u is 8®, the fastest is the convergence, as expected. It appears clearly on the
two reported examples (see the green '+ marks curve in both gures).

To conclude, let us comment that extending this convergence study to three-components is straight-
forward and follows the same logic as for two components. The estimation of is also broken down
into the estimation of p and alternately. The associated algorithm can be, as well as for the
two-components model, represented by a functional of . Hence, we can prove as previously that
this functional is continuous on a closed ball of a Euclidean space, according to the Brouwer the-
orem, to infer the existence of stationary points of Algorithm 1. The di erence between the two-
and three-components algorithms concerns only the data scale, the stop condition, and the con-
dition on  to be positive (Fechet distribution), so does not interfere in the convergence of the
three-components algorithm. These three conditions have only been introduced to enhance the
parameters estimation.
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