A self-calibrating method for heavy tailed data modeling : Application in neuroscience and finance

Abstract : One of the main issues in the statistical literature of extremes concerns the tail index estimation, closely linked to the determination of a threshold above which a Generalized Pareto Distribution (GPD) can be tted. Approaches to this estimation may be classi ed into two classes, one using standard Peak Over Threshold (POT) methods, in which the threshold to estimate the tail is chosen graphically according to the problem, the other suggesting self-calibrating methods, where the threshold is algorithmically determined. Our approach belongs to this second class proposing a hybrid distribution for heavy tailed data modeling, which links a normal (or lognormal) distribution to a GPD via an exponential distribution that bridges the gap between mean and asymptotic behaviors. A new unsupervised algorithm is then developed for estimating the parameters of this model. The eff ectiveness of our self-calibrating method is studied in terms of goodness-of-fi t on simulated data. Then, it is applied to real data from neuroscience and fi nance, respectively. A comparison with other more standard extreme approaches follows.
Type de document :
Pré-publication, Document de travail
ESSEC Working paper. Document de Recherche ESSEC / Centre de recherche de l’ESSEC. ISSN : 1291-9616. WP 1619. 2016
Liste complète des métadonnées

Littérature citée [54 références]  Voir  Masquer  Télécharger

https://hal-essec.archives-ouvertes.fr/hal-01424298
Contributeur : Michel Demoura <>
Soumis le : vendredi 6 janvier 2017 - 15:00:27
Dernière modification le : lundi 12 février 2018 - 15:36:01
Document(s) archivé(s) le : vendredi 7 avril 2017 - 12:04:52

Fichier

WP1619.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01424298, version 1

Collections

Citation

Nehla Debbabi, Marie Kratz, Mamadou Mboup. A self-calibrating method for heavy tailed data modeling : Application in neuroscience and finance. ESSEC Working paper. Document de Recherche ESSEC / Centre de recherche de l’ESSEC. ISSN : 1291-9616. WP 1619. 2016. 〈hal-01424298〉

Partager

Métriques

Consultations de la notice

5980

Téléchargements de fichiers

695