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ABSTRACT: in this study, we examine different 
quantitative methods to recover the risk neutral 
distribution function associated to the prices of option 
on bank shares. This is useful for a wide range of 
applications, such as determining the implicit State 
guarantee that systemic financial institutions benefit 
from the State, or looking if the market prices correctly 
the fat tails of financial returns. We assess the 
performance of these techniques in various ways, 
including comparing market option prices and 
historical Values-at-Risk to option prices and Value-at-
Risk implied by the estimated risk neutral distribution. 
We find that, contrary to what is expected for a market 
composed of risk averse investors, the latter is much 
smaller than the one obtained from real data. We 
discuss our results with respect to the theory of risk 
neutral valuation and investor risk preference. 
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I Ð Introduction  

I.1/ Background 

Since the seminal paper of Black, Scholes and Merton in 1973 [1], the theory of derivative 
pricing has become a rich and profuse field of finance. Its influence goes beyond the realm 
of academic research, as it has also had a profound and lasting impact in trading floors all 
over the globe: for example, nowadays traders quote option prices on an implied volatility 
basis, which can be calculated through the Black-Scholes formula. 

One of the fundamental notions of derivative pricing is risk neutrality. Risk neutrality implies 
that an agent is indifferent to risk. To illustrate this concept, suppose an economic agent is 
given the following choice: 

!  He can pocket immediately "5;  

!  He can toss a fair coin and get "10 if he gets heads and nothing if he gets tails. 

In both cases, the expected profit is equal to "5. If the agent prefers the first option, we say 
he is risk averse; if he would rather select the second option, he is said to be risk prone; 
finally, if he is indifferent to either option, the agent is neutral towards risk. 

Financial theorists have showed that, under the Absence of Arbitrage Opportunities (AOA) 
assumption Ð which postulates that an economic agent cannot generate a sure profit without 
taking any risk Ð the price of a contingent claim Ð or derivative Ð can be easily obtained by 
assuming that economic agents are neutral to risk. It is very important to understand that this 
assumption does not refer to the real world behavior of investors: it is a mathematical trick 
that allows generalizing and streamlining the pricing process. 

This property is extremely powerful and useful, as it enables to simplify the process of 
pricing derivatives. For example, financial theory has traditionally worked with discount 
factors that should reflect an assetÕs underlying risk: if two securities x1 and x2 generate 
payoffs p1 and p2 respectively, such that x1 is riskier than x2, then p1 should be discounted at 
a higher rate than p2. The issue of this approach is that estimating discount factors for p1 and 
p2 is not at all a trivial problem. However, by introducing the notion of risk neutrality, the 
theory allows to take the risk-free rate r as the discount rate applicable to every security. 
Determining a suitable risk-free rate r is a much more tractable problem that estimating a 
discount rate µx for each security. 

Moreover, from a mathematical perspective the notion of risk neutrality pertains to probability 
theory: the price of a contingent claim is given by its expected payoffs with respect to the risk 
neutral distribution discounted by the risk-free rate. As a consequence, the development of 
risk neutral (RN) pricing in the last 25 years has encouraged academics and practitioners to 
study and analyse the probabilistic information that can be extracted from financial securities 
prices. Some examples of this trend are the following: 

!  In the Fed Funds futures market, traders extract probabilities for Fed monetary policy 
decisions from the prices at which futures are quoted [13]; 

!  In the Credit Default Swap (CDS) market, it is possible to obtain probabilities of 
default for the company the CDS is written on [21].  

This report is in keeping with this philosophy.  
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Our original goal was to price the implicit protection from states that global financial 
institutions enjoy. During the 2008-2009 financial crisis, banking corporations which failure 
could have triggered a collapse of financial markets were recapitalized by their respective 
governments Ð e.g. Citigroup in the US or UBS in Switzerland. As a response to the threat 
big global financial institutions pose to financial markets, the Financial Stability Board (FSB) 
and the Basel Committee on Banking Supervision (BCBS) have since introduced the 
concept of Systematically Important Financial Institutions (SIFI) and tailored specific capital 
and regulatory requirements targeted to them [12]. 

However, by formally identifying the institutions that policy makers think can short-circuit the 
normal functioning of markets in the event of a crisis, regulators might actually have 
reinforced the implicit protection these institutions benefit from: by being forced to 
recapitalize ailing SIFIs if they want to maintain financial stability, as they have done 
extensively during the crisis, governments implicitly insure SIFIs stockholders and 
bondholders against bankruptcy, therefore reducing the SIFIÕs cost of capital. As of today, 
SIFIs do not have to pay for this implicit protection. 

By modelling this guarantee as a put option written on the bankÕs assets, as suggested by M. 
Dacorogna [3,4], it is possible to leverage the risk neutral valuation theory to price SIFIs 
implicit insurance against bankruptcy and its impact on capital cost. This can be done by 
extracting probabilistic information Ð more precisely, the RN cumulative distribution function 
and the RN density Ð from option prices written on banks stocks. 

However, during our research, we concluded that our technique might yield an inaccurate 
price. Indeed, by extracting and analysing the risk neutral distribution implicit in some banksÕ 
option prices, we have reached the conclusion that market participants fail to accurately 
price the likelihood of extreme events Ð e.g. a price crash on a bankÕs stock price. The 
estimation of the RN probability distribution allows us to assess the significance of this 
mispricing, to which we have tried to bring some explanations.  

 

I.2/ Extracting the stock price risk neutral distribution from option prices 

Let there be a public bank corporation which stock price at time T is equal to ST. Assume 
that there is a market for European call options written on the bankÕs stock and consider a 
call option of strike k and maturity T. 

As explained previously, assuming there are no arbitrage opportunities Ð or the milder 
condition No Free Lunch with Vanishing Risk (NFLVR), see Delbaen and Schachermayer [6] 
Ð the fair price of this European call is given by its expected discounted payoffs under the 
risk neutral measure: 

! ! ! ! ! !" ! ! ! ! ! ! ! ! ! ! ! !" ! ! ! ! ! ! !
!

!
 

! ! ! ! ! ! ! ! !" !" ! ! !
!

!
! ! ! ! ! !

!

!
 

! ! ! ! ! ! ! ! !" !" ! ! !
!

!
! ! ! ! ! ! !  



!
!

5 
!

!  is the risk neutral measure or distribution and ! !  its cumulative distribution function. We 

are assuming that ! !  exists. Moreover, r is the discount rate, which we will assume to be 

constant. 

Letting ! !  be the RN density, if we differentiate the above pricing integral ck with respect to k, 

we obtain: 

! ! !

!"
! ! ! !" ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !  

!
! ! !

!"
! ! ! !" ! ! ! ! ! ! 

Thus, we get an expression for the RN cumulative distribution function: 

 ! ! ! ! ! ! ! ! !" ! ! !

!" ! ! ! !

 ! ! !  

Note that, by definition: ! ! ! ! ! ! . 

By differentiating again with respect to strike, we obtain the RN density ! ! : 

 ! ! ! ! ! ! !" ! ! ! !

! ! !
! ! ! !

 ! ! !  

This expression, already noticed by Breeden and Litzenberger in 1978 [2], implies that the 
RN density associated to a price process ST can be obtained by differentiating twice the 
pricing formula for a European Call, written on ST, with respect to the strike k. 

This result simplifies our statistical problem. We now have to estimate an option price 
positive function g of the strike k with the following form: 

! ! ! ! ! ! 

The RN density will then be simply obtained by differentiating twice this function: 

! ! ! ! ! ! !" ! !

!" !
! ! ! !

! !  

 

I.3/ Report objective and structure 

The rest of this report deals with the statistical problem of estimating a RN distribution from 
option prices, assessing the accuracy of the estimation and interpreting the results obtained 
for a series of American banks, which have been designated as SIFIs.  

The structure is as follows: in Section II, we describe the data we have used and the 
preliminary treatment we have applied to it. In Section III, we describe the technical 
methodology of RN distribution estimation, illustrated throughout the presentation with the 
example of a particular financial institution, Citigroup. We also discuss the results obtained 
for this bank by implementing a series of evaluation metrics. In Section IV, we compare 
results across four different financial institutions and expound some concluding remarks. In 
the appendix, we present some additional graphs, tables and results pertaining to Citigroup, 
as well as computations and results for other banks. 



!
!

6 
!

 

II Ð Data 

II.1/ Data procedure 

As explained above, our problem is to estimate the risk neutral density associated to the 
bankÕs stock price from its traded optionsÕ prices. We thus need real data for option prices. 

It could be that, once we have at our disposal a sufficiently large sample of option prices, we 
could simply compute the RN density by calculating some numerical approximation of the 2nd 
derivative with respect to strike, for example using central or forward differences. However, 
two problems arise that make this approach unrealistic: 

!  First and foremost, there is simply not enough option prices. Strikes traded on the 
market are not separated by less than 1$, which is too large a step to do appropriate 
approximations of derivatives. We need to estimate a function which will enable us to 
generate further option prices, for strikes separated by 0.01$, 0.001$ or even 
0.0001$. 

!  Secondly, as noted in [11] or [22], the implied volatility space is more conducive to 
estimation and interpolation techniques, while applying these same techniques to the 
option prices space could result in a less smooth and continuous RND. This 
phenomenon is explained by the greater dispersion of option prices relatively to 
implied volatilities: if we take the example of Citigroup, we observe in Tables 1 and 2 
that the spread between the lower and the higher call mid-price retained for our 
analysis is 0.11$-17.70$, while this same spread for puts is 0.17$-6.35$; by contrast, 
as we will see later, implied volatilities are going to be comprised roughly in a 20%-
50% interval. 

To sum up, what we need is a sample of implied volatilities, to which we fit some function. 
This function will enable us to generate a vast range of implied volatilities. The last step will 
be to transform these implied volatilities into option prices that will then be used to estimate 
the RN density. 

 

II.2/ Data description 

The data we have used to establish the results of this report comes from OptionMetrics, a 
data company specialized in options market data from North America and the EU. We have 
been able to gather data for four different SIFI banks from the US: Citigroup, Bank of 
America Merrill Lynch (BAML), Goldman Sachs and Morgan Stanley.  

For each bank, we have a series of option prices for American type options, both calls and 
puts, for the week going from April 7th 2014 to April 11th 2014 as well as for April 1st 2014. 
The prices given for each option contract are the best bid and the best offer at market 
closing on a particular day. The mid-price of the option is calculated as the average between 
the best bid and the best offer.  

OptionMetrics also provides implied volatilities computed in-house. Their methodology is 
described more precisely in [16] but the main takeaway is that the implied volatility is 
determined for the option mid-price with a Cox-Ross-Rubinstein binomial tree and a 
continuous dividend yield.  
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OptionMetrics also provides traded volume information: for each option contract, we know 
the number of options that were traded across all exchanges.  

The maturities of these options go from a few days to up to two years. In this report, results 
are computed using options maturing in around 3 months Ð on July 19th 2014. 

As this point, some issues already arise. Indeed, the range of option mid-prices we can 
effectively use to estimate the RN density is relatively scarce: the RN distribution is an 
assessment about the marketÕs expectation on the future price of the stock, thus we should 
only retain prices that we think are indicative of the situation of the market and agentsÕ 
expectations. 

It is widely acknowledged that the more liquid an asset is, the better its price reflects the 
current information about that asset. This observation implies that, in our estimation 
procedure, we should privilege data from the most traded options. To measure liquidity, 
given that a traded volume criterion would have drastically reduced the amount of 
exploitable data, we have devised a bid-offer spread criterion: retaining options for which this 
spread is too wide might yield an inaccurate assessment of the marketÕs expectation, 
because it is generally assumed that the wider the spread is, the less liquid that particular 
option is.  

The bid-offer spread criterion is also useful to evaluate the relevance of the optionÕs mid-
price. One could reasonably question whether a mid-price for a very wide bid-offer spread 
conveys any pertinent information about the marketÕs expectation. 

However, we also want our RN distribution to capture, at least partially, the tail behavior of 
the stock price, in order to have an idea of how the market evaluates the likelihood of 
extreme scenarios, such as a price crash. To do so, we need to include deep out-of-the-
money (OTM) and deep in-the-money (ITM) options but, as we deviate further from the at-
the-money (ATM) point, liquidity become scarcer and spreads wider. We have therefore to 
allow some flexibility in our choice of price options and consider a maximum bid-offer spread 
that is not too narrow. 

We have to look at the bid-offer spreads of options and discard those for which this spread is 
too wide: to do so, we start by identifying the ATM strike; then both for ITM and OTM options 
we retain options until we reach the last option for which the bid-offer spread is narrower 
than 35% of the bid price, subject to the availability of an implied volatility figure. For 
illustrative purposes, in the two tables below we have inputted the data about CitigroupÕs 
options on April 7th 2014 that we have used to estimate its RN density, as well as traded 
volume data. Options that have been retained for estimating the RN density are highlighted. 
The closing price of Citigroup stock on that date was $46.55. 

Although data selection has been undertaken under the basis of option prices, what we are 
really looking for are implied volatilities. Once we have selected options that respect our 
criteria, we are going to look at their implied volatilities as computed by OptionMetrics. 
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Calls   Puts  

Strike Bid-offer 
spread Mid Volume Implied 

volatility  Strike Bid-offer 
spread Mid Volume Implied 

volatility 

25.0 16.5% 21.60 - 53.08%  25.0 - 0.03 -! - 

26.0 18.9% 20.58 -! -!  26.0 - 0.04 -! 48.49% 

27.0 19.0% 19.55 -! -!  27.0 - 0.04 -! 45.64% 

28.0 19.8% 18.58 -! -!  28.0 - 0.04 -! 42.88% 

29.0 13.3% 17.70 -! 50.08%  29.0 700.0% 0.05 -! 41.63% 

30.0 13.4% 16.70 -! 46.94%  30.0 700.0% 0.05 -! 38.97% 

31.0 14.3% 15.70 -! 43.89%  31.0 800.0% 0.05 -! 36.95% 

32.0 13.0% 14.75 -! 43.47%  32.0 400.0% 0.06 -! 35.37% 

33.0 15.2% 13.78 -! 41.53%  33.0 1000.0% 0.06 -! 32.83% 

34.0 17.4% 12.83 -! 40.40%  34.0 500.0% 0.07 -! 31.13% 

35.0 17.1% 11.73 -! 33.59%  35.0 175.0% 0.08 -! 29.00% 

36.0 20.4% 10.80 -! 33.57%  36.0 114.3% 0.11 -! 28.49% 

37.0 20.8% 9.83 -! 31.45%  37.0 20.0% 0.17 4 28.24% 

38.0 12.3% 9.08 -! 34.54%  38.0 31.6% 0.22 1 27.37% 

39.0 10.5% 8.05 -! 30.81%  39.0 10.7% 0.30 1 26.59% 

40.0 2.9% 7.05 -! 27.64%  40.0 7.9% 0.40 1 25.87% 

41.0 7.6% 6.13 -! 25.77%  41.0 3.8% 0.53 16 25.27% 

42.0 9.9% 5.30 -! 25.13%  42.0 4.3% 0.71 19 24.71% 

43.0 3.3% 4.58 -! 25.22%  43.0 3.3% 0.93 34 24.16% 

44.0 2.6% 3.85 -! 24.60%  44.0 1.7% 1.20 16 23.64% 

45.0 3.2% 3.20 82 24.19%  45.0 2.0% 1.55 73 23.25% 

46.0 1.5% 2.61 - 23.74%  46.0 1.5% 1.96 23 22.84% 

47.0 1.4% 2.10 44 23.38%  47.0 1.2% 2.45 92 22.54% 

48.0 1.8% 1.66 49 23.09%  48.0 2.0% 3.02 8 22.40% 

49.0 2.3% 1.30 90 22.95%  49.0 2.8% 3.65 38 22.11% 

50.0 3.1% 1.00 164 22.79%  50.0 2.3% 4.35 6 21.88% 

52.5 4.3% 0.48 22 22.47%  52.5 8.2% 6.35 -! 21.43% 

55.0 4.8% 0.22 81 22.35%  55.0 12.0% 8.38 -! -!
57.5 10.0% 0.11 16 22.97%  57.5 15.5% 10.78 -! -!

60.0 100.0% 0.08 1 25.08%  60.0 23.3% 13.18 -! -!
65.0 800.0% 0.05 - 29.52%  65.0 0.8% 18.43 -! -!

Tables 1 and 2 : Option prices data for Citigroup on April 7th, for a 103 days maturity (2014).  
The selected prices are indicated in bold. 

We notice here that we have retained for some strikes prices both call and put option 
<prices. This is done to avoid jumps in the implied volatility function: we have observed that 
the transition from callsÕ implied volatilities to puts implied volatilities might result in a jump, 
which is basically due to market imperfections but which nevertheless could distort our final 
results. Therefore, we have linearly interpolated OptionMetricsÕ implied volatilities for the 
range of strikes for which we have both call and put data. 

To put these prices in perspective, we have plotted a 21-day moving average of volatility of 
daily returns for the S&P 500 stock index, both for the full year 2014 and for the months of 
March, April and May, as well as a 5-day moving average only for March, April and May Ð on 
Graph 1, vertical lines indicate the monthÕs beginning. 
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Graph 1 : 21-day moving average of S&P 500 daily returnsÕ volatility (2014) 

 

 

Graph 2: 21-day moving average of S&P 500 daily returnsÕ volatility (March, April and May 2014) 

 

 

Graph 3: 5-day moving average of S&P 500 daily returnsÕ volatility (March, April and May 2014) 
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From our graphs, and recalling that our option prices are from April 7th, we conclude that 
there was a spike of volatility at the time our prices were quoted. There were 4 other similar 
volatility spikes in 2014 Ð in January/February, in July, in September/October and in 
December.  

Nevertheless, this spike remains moderate: if we look at Graph 1 and Graph 2, we observe 
the 21-day moving average was around 0.65% on April 7th; however this statistic fluctuated 
between 0.30% and 1.17% in 2014 hence the April 7th figure was on the middle of the range. 
Moreover, the spikes that occurred in January/February, September/October and December 
seem much sharper than our April spike. Finally, the 5-day average volatility was 0.85% on 
that day, against a minimum and a maximum of 0.06% and 1.82% respectively on 2014, so 
again the April 7th value is on the middle of the range.  

From the above graphs we conclude that our option price data is extracted from a period not 
subject to any particular market stress. These option prices should hence not incorporate 
any premium related to abnormal market volatility and their pricing should be rational.  

II.3/ Converting implied volatilities into option prices 

Once the first phase of the data procedure Ð obtaining implied volatilities Ð is completed, we 
need to fit a curve to these volatilities, generate new volatility data and then convert it back 
into option prices. We describe in detail the function fitting methodology in the next section. 
Here we briefly explain how we transform implied volatilities into option prices and present 
the additional data we need to do this. 

In order to implement this conversion, we use the Black-Scholes framework [1] Ð 
alternatively, another option pricing model can be used, such as the Heston model [18]. 
Indeed, this is necessary if we want to have at our disposal a computational tool to convert 
option prices into implied volatilities and the other way round. This trick does not imply that 
we are assuming the Black-Scholes framework: it is a mere tool used to ease computations 
and improve their accuracy Ð we have explained previously the advantages of going through 
the implied volatility space. 

To implement Black-Scholes, we need additional data. First, we need to input into the 
formula a risk free rate. We have chosen the quarterly US Dollar Libor, which traded on 
average at 0.227% during April 2014 (source: global-rates.com). 

Secondly, we also need a dividend yield to evaluate European option prices. The best 
choice would be to extract an implied dividend yield from market prices by exploiting call-put 
parity for European options, as we would obtain market consistent prices for European 
options. Letting c(k,s0,T) be the price of an European call with strike k and maturity T written 
on a stock which price today is s0 - p(k,s0,T) being the price for a put Ð f0 the price of a 
forward contract on this same stock with the same maturity and d the dividend yield, we 
have the following equalities: 

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !"  

! ! ! ! ! ! ! ! ! ! ! 

From these two equations we can derive a formula for the implied dividend yield: 

! ! ! ! !
!

!
!"

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !" ! !

! !
! 
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However, as we have pointed out, we do not have European option data, thus we cannot 
extract implied dividend yields.  

Instead, in this paper we have calculated dividend yields using historical data. Two 
approaches are possible: 

!  Annual dividend yield: dividends paid on year N are assumed to be linked to a 
companyÕs income from year N-1. As income for year N-1 is known at the beginning 
of year N, markets participants anticipate dividend payments during year N based on 
that figure and the stock price depreciates throughout year N at the dividend yield 
rate d. In this paper we have retained this interpretation.  
To compute d, we have recorded dividends paid by banks in 2014 Ð Div1,N, Div2,N, 
etc. Ð and divided their sum by the average stock price in 2013 Ð ! !"#$  Ð computed 
simply as the average between 2013Õs opening price and 2013Õs closing price. 

! !
!"# ! !!!

! ! ! !
 

!  Option lifetime dividend yield: the dividend yield d is based on dividend payments 
during the lifetime of the option Ð Div1,[t,T], Div2,[t,T], etc. Ð such that the depreciation of 
the stock price arising from these payments is distributed along the optionÕs lifetime Ð 
between the current date t and the expiration date of the option T. The rate can be 
annualized by dividing by T-t.  

! !
!

! ! !
!

!"# ! ! ! !!!

! ! !

 

Data can be found in Tables 3 and 4. 

Bank  Citigroup BAML Goldman Sachs Morgan Stanley 

Year 2013 opening price  $40.91 $12.05 $131.30 $20.16 

Year 2013 closing price  $52.11 $15.57 $177.26 $31.36 

2013 average yearly price  $46.51 $13.81 $154.28 $25.76 

April 1 st, 2014 (closing)  $47.80 $17.34 $165.92 $31.21 

April 7th, 2014 (closing)  $46.55 $16.38 $158.56 $29.52 

April 8 th, 2014 (closing) ! $46.60 $16.44 $156.56 $29.53 

April 9 th, 2014 (closing) ! $47.16 $16.62 $158.16 $30.22 

April 10 th, 2014 (closing) ! $46.23 $16.12 $155.98 $29.25 

April 11 th, 2014 (closing) ! $45.68 $15.77 $152.72 $28.47 

Table 3: Relevant stock prices for the four banking corporations (2013, 2014) 

Bank  Citigroup BAML Goldman Sachs Morgan Stanley 

2014 dividends  4 # $0.01 
2 # $0.01 
2 # $0.05 

3 # $0.55  
1 # $0.60 

1 # $0.05  
3 # $0.10 

Dividend paid during 
option lifetime  

1 # $0.01 
(May 1st) 

1 # $0.01 
(June 20th) 

1 # $0.55  
(May 28th) 

1 # $0.10 
(April 28th) 

Annual dividend yield  0.086% 0.869% 1.458% 1.359% 

Annualized option 
lifetime dividend yield  

0.076% 0.193% 1.110% 1.073% 

Table 4: Dividends and dividend yields for the four banking corporations (2014) 
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We observe that the difference between annual dividend yields and annualized option 
lifetime dividend yields is negligible, particularly considering the general weakness of these 
dividend rates. Choosing one or the other interpretation should not have any meaningful 
impact on our results. Furthermore, as pointed out in [16], the sensitivity of the theoretical 
option price to the dividend yield is small except in the case of long-dated options. Thus we 
conclude that our approach to the dividend yield is reasonable. 

Once we have gathered all the required data, we can convert implied volatilities into option 
prices. We use in R the `RQuantLib ` package to compute them.  

 

III Ð Risk Neutral Distribution  of stock price s: methodology and 
results  

Once we have rigorously delimited and constructed the data which we will use to estimate 
the RN distribution, we can begin to apply statistical interpolation and smoothing techniques 
to extract the RN density. 

The first step, as explained, is to construct a function that relates option strikes to implied 
volatilities. Given a series of strikes (ki), we are going to look at two different kinds of 
function: 

!  A deterministic modelling of the implied volatility function : 

! ! ! ! ! ! ! !  

!  A probabilistic modeling of implied volatility, by considering it as a random variable 
and modelling its expectation conditional on the strike K: 

! ! ! ! !! ! ! ! ! ! ! ! ! ! !! ! ! !! 

Once we have determined a suitable function, we need to convert implied volatilities back 
into option prices. Although our initial options were American, once we have estimated 
implied volatilities we can, assuming that for example the Black-Scholes model holds, obtain 
European option prices by inputting our parameters Ð dividend yield, risk free rate, etc. Ð and 
the estimated implied volatilities into the model. Indeed, this is necessary as the formula that 
allows us to get the RN density only holds for a contingent security with a single payoff date 
Ð therefore we need European option prices and not American option prices.  

In proceeding as described in the previous paragraph, we are assuming that American and 
European optionsÕ implied volatilities are equal. This assumption seems reasonable to us, as 
the implied volatility is a parameter than should pertain to the stock price and not the option 
price.  

We are therefore implicitly assuming that the difference between the price of an American 
call and a European call is fully explained by the peculiarity of the American option, which 
allows the holder to exercise it at any moment in time between the current date and the 
maturity, instead of being explained by differences in implied volatilities.  

The following step consists of estimating the RN density: given the option prices data we 
have determined on the previous section, if we have enough prices, we can then 
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approximate the RN density using 2nd order central differences of option prices. At this point, 
we might have to deal with some irregularities arising during the estimation procedure. 

Finally, we compute the resulting RN density by averaging all the estimated RN densities. 
We then fit it to a known parametric probability distribution, and test whether this 
approximation is valid.  

To illustrate the whole procedure, we show various results for Citigroup throughout the text. 

III.1/ Estimating the implied volatility function 

III.1.A/ Polynomial Interpolation 

The first method is polynomial interpolation. In [11], Figlewski argues that this highly 
tractable technique yields very satisfactory results. Its main advantage lies in its simplicity, 
as the implied volatility function is interpolated by a single polynomial. We choose a 4th 
degree polynomial, such that the implied volatility function is: 

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! 

For this technique, choosing 4th degree seems optimal. Indeed, as the implied volatility curve 
should not fluctuate, adding further degrees could result in overfitting, especially given that 
our dataset is limited in size. 

In Graph 4, we show the results of the polynomial fit. The circles represent real data. 

 
Graph 4: Polynomial Interpolation of Implied Volatility (Citigroup, April 7th 2014) 

The resulting interpolated curve seems to capture accurately the implied volatility structure, 
especially as we get closer to the ATM region. Square errors analysis is undertaken in page 
17. 

III.1.B/ Smoothing Splines 

The second technique consists in a sophistication of polynomial interpolation: smoothing 
polynomial splines. In such a model, the implied volatility function is modelled by a set of 
polynomials of the same degree, each one describing the curve on a particular interval 
delimited by knots: 
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There exists a rich literature on splines and various techniques are available. In this report, 
we have chosen smoothing splines, the same technique used by Lai in [22]. Smoothing 
splines are determined by resolving the following optimization function: 

!"#
!

! ! ! ! ! !
!

! ! ! !! ! ! !"
! !

! !
!

!

! ! !

 

The second term of the expression ensures that the function is sufficiently smooth, and the !  
parameter enables the user to determine the importance given to smoothing. In such a 
spline technique, knots are automatically selected to optimize smoothing Ð there exist other 
methodologies, such as interpolation splines, in which the user can chose where to place the 
knots; such an approach is used for instance by Figlewski in [11].  

As for polynomial interpolation, we choose 5th degree polynomials to fit the implied volatility 
function. To do so, in our implementation we use the R package `pspline `, which allows to 
choose the degree of the smoothing spline. This package also allows the user to choose an 
automatic selection criterion for the smoothing parameter alpha; in this case, we have 
retained the cross-validation criterion. The fitted curve can be found in Graph 5. 

 
Graph 5: Spline Smoothing of Implied Volatility (Citigroup, April 7th 2014) 

III.1.C/ Nadaraya-Watson Estimator 

The third technique used to estimate the RN density is kernel regression, through the 
Nadaraya-Watson estimator. In such a setting, the target function is the expectation of 
implied volatility conditional to the strike.  

From a probability viewpoint, the conditional expectation of a random variable Y, given that 
the value taken by a random variable X is x, is equal to: 



!
!

15 
!

! ! ! ! ! !
!

! ! ! ! !
! ! ! !! ! ! ! !" ! 

The function f refers either to the probability density of X or to that of the couple (X,Y).  

By estimating densities through a Parzen-Rozenblatt kernel f, an estimator of the 
expectation of implied volatility conditional to the strike is the Nadaraya-Watson estimator: 

! ! ! !! ! ! !
!

! ! ! !
! ! ! !

!
! ! !

!
! ! ! !

! !!
! ! !

 

In this report, we take the Gaussian kernel, which we deem sufficiently smooth for our 
purpose Ð other kernels collapse to 0 when k Ð ki > h, which might cause trouble given the 
sparsity of our data: 

! ! !
!

! !
! !

!
! !! !

 

The estimator can thus be rewritten as follows: 

! ! ! !! ! !
! !

!
!

! ! ! !
!

!

!
!

!
!

! ! ! !
!

!

!
! ! !

! !

!

! ! !

! ! ! ! ! !

!

! ! !

! 

The estimated implied volatility is equal to a weighted sum Ð alternatively, it can also be 
rewritten as a weighted average Ð of the observed implied volatilities, where the weights 
depend on the information Ð strike k.  

The main difficulty in Nadaraya-Watson regression is the optimal selection of the bandwidth 
parameter h, that arbitrages between the estimation bias and the variance. Given that we 
are using the Gaussian kernel, we have retained SilvermanÕs rule-of-thumb [28] to select h: 

! ! ! ! !!" ! !" ! ! ! ! !
! ! ! !!"  

However, we observed a posteriori some undesirable properties on the estimated RN 
density curve, therefore we decided to make a second estimation of the implied volatility 
function by setting the bandwidth h equal to 9, which will yield a smoother RN density. 

For implementation in R, we have used the `ksmooth ` function. The fitted curve is hereafter. 
 

 
Graph 6: Comparison of Nadaraya-Watson estimators for Implied Volatility (Citigroup, April 7th 2014) 
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As we consider that the RN density which results from using the Nadaraya-Watson optimal 
bandwidth estimator is not smooth enough Ð there were too many bumps in the curve Ð we 
have discarded this result and retained only the estimated function obtained by fixing the 
bandwidth equal to 9. 

III.1.D/ Comparing results 

After having estimated all four implied volatility functions, we have computed the sum of 
squared errors between our initial implied volatility data and the estimated implied volatility Ð 
only for strikes for which we have empirical data. Results can be found in Table 5. 

Method  
Polynomial 

interpolation 
Spline 

smoothing 
Nadaraya-Watson 
estimator: h = h* 

Nadaraya-Watson 
estimator: h = 9 

SSE for implied  
volatility estimation  

0.0031028 0.0031403 0.0032261 0.0093162 

Table 5: Sum of Squared Errors for all implied volatility estimation methods 

The first observation is that Nadaraya-Watson estimators perform worse than polynomial-
based estimators. However, recall that at the beginning of the section we stated that we 
were going to look at two different types of functions, one relating to the implied volatility 
value: 

! ! ! ! ! ! ! !  

the other one relating to the implied volatility conditional expectation: 

! ! ! ! !! ! ! ! ! ! ! ! ! ! !! ! ! !! 

The two polynomial-based estimators correspond to the first class, while the Nadaraya-
Watson estimator looks at conditional expectations. In that sense, it seems natural that the 
first two methods are more accurate than those derived from the Nadaraya-Watson 
procedure as the latter tries to model the average of a function, whereas the former 
represents in the function itself. 

Overall, the best performer is the polynomial interpolation, although the difference with 
respect to spline smoothing is negligible. The Nadaraya-Watson estimator with optimal 
bandwidth is also close to the polynomial-based methods, however as we stated above this 
is achieved at the cost of RN densityÕs smoothness. Finally, the Nadaraya-Watson estimator 
with discretionary bandwidth yields a SSE which is more than triple that the SSE of the 
polynomial interpolation. 

III.2/ From implied volatilities to option prices 

Once we have an estimation of implied volatilities, we need to get back to the option prices 
space. 

As it has already been explained, in this report we have retained the Black-Scholes option 
pricing model for conversion purposes. In this framework, the price of a European call option 
is given by: 

! ! ! ! ! !" ! ! ! ! ! ! ! ! ! ! ! ! !" ! ! ! ! ! ! ! !" ! ! !  

! ! !
!

! !
!"

! !

!
! ! ! ! !

!

!
! ! !  

! ! ! ! ! ! ! !  
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where !  denotes the standard normal cumulative distribution.  

As pointed out by Figlewski [11] and Lai [22], the use of the Black-Scholes model is simply a 
computational tool to shift between the implied volatility space and the option prices space. 
One immediate observation would be that, by using the Black-Scholes function as a 
transforming device between volatilities and prices, we are thereby setting the risk neutral 
measure to be a log-normal distribution. However, this is not accurate: indeed, the Black-
Scholes model assumes that volatility is constant, whereas our project by definition assumes 
that this is not the case Ð as it can be checked instantly by looking at the above graphics. 
Therefore, as highlighted by Figlewski, we do not get automatically a log-normal distribution 
when transforming back implied volatilities into option prices.  

We use again the `RQuantLib ` package to transform our estimated implied volatilities into 
option prices. We have done this both assuming our options are calls and puts. The results 
can be found in Graphs 7, 8 and 9, where the blue curve is evidently the call price curve, 
while the red one is the put curve. As we can observe, there is no evident difference 
between each one of the three methods. 

 
Graph  7: European option prices computed from implied volatilities  

obtained by polynomial interpolation (Citigroup, April 7th 2014) 

 
Graph  8: European option prices computed from implied volatilities  

obtained by spline smoothing (Citigroup, April 7th 2014) 
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Graph  9: European option prices computed from implied volatilities  

obtained by the Nadaraya-Watson estimator h = 9 (Citigroup, April 7th 2014) 

III.3/ Estimating the risk neutral probability 

III.3.A/ Estimation procedure and results 

Now that we have our set of estimated option prices, we can finally extract both the RN 
cumulative distribution function and the RN density. To do so, we proceed by discretization 
in ! ! !  as for instance in Fisglewski [11] with a 2-step approach. The cumulative distribution 
can be approached using 1st order central differences: as the cumulative distribution function 
is the 1st derivative of option price with respect to the strike, it can be approximated for a 
particular strike kn, given call option prices (ki), through the following formula: 

! ! ! ! ! ! !" !
! ! ! ! ! ! ! ! !

! ! !
! ! ! 

where ! !  denotes the difference between two consecutive strikes. 

In the case of put option prices (pi): 

! ! ! ! ! ! !" !
! ! ! ! ! ! ! ! !

! ! !
!! 

For approaching the RN density, we use 2nd order central differences; the formula is the 
same for both calls and puts, so given a set of option prices (oi): 

! ! ! ! ! ! !" !
! ! ! ! ! ! ! ! ! ! ! ! !

! ! ! !! 

We set the difference between consecutive strikes $k equal to 0.0001. In addition, in the 
case of Citigroup Ð on April 7th 2014 Ð after estimating the implied volatility function, we 
compute 285,001 different implied volatilities for strikes separated by $0.0001. Using the 
Black and Scholes formula, we obtain 285,001 option prices, which constitutes a sufficiently 
dense set of values to obtain satisfactory results. 

Figures for the cumulative distribution and the density function for polynomial interpolation 
and spline smoothing can be found in the appendix. In Graph 10 we show in the same plot 
both density functions. 

As the difference between these functions computed with call prices and put prices is 
negligible Ð which is reassuring, otherwise we would have different probability measures for 
calls and puts, a phenomenon that would not make much sense Ð we only display curves 
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computed with put option prices Ð we will explain later why we decided to keep the density 
estimated with put prices.  

 
Graph  10: Comparison of RN densities for the polynomial interpolation  

and the spline smoothing methods (Citigroup, April 7th 2014) 

When estimating the distribution and the density functions with the option prices obtained 
through the Nadaraya-Watson estimator we have encountered some technical issues. The 
first curves we get by implementing central differences methods are the following: 

 
Graph  11: Risk neutral distribution for Nadaraya-Watson estimator h = 9 (Citigroup, April 7th 2014) 

 
Graph 12: Risk Neutral Density for Nadaraya-Watson estimator h = 9 (Citigroup, April 7th 2014) 
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It seems that there is some periodic numerical instability related to our estimated data. We 
also encountered it when estimating the functions for the other banks. 

To solve it, we have redefined each point of the cumulative function and the density function 
as follows:  

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! 

When the difference between a point estimate and its predecessor is greater than ! , we 
change the value of point xi by the value of the previous point xi-1. To determine the value of 
! , we first compute difference between our points: 

! ! ! ! ! ! ! ! ! ! !  

We then sort these differences by ascending order and we compute jumps: 

!! ! ! ! ! ! ! ! ! ! ! ! 

!  is then simply equal to the maximal jump: ! ! !"# ! !! !! 

In our case we have chosen !  equal to 0.028 for the cumulative function and to 1 for the 
density. This method allows us to extract all aberrant values. Amended cumulative 
distribution and density functions can be found in Appendix A. We have finally plotted all 
three RN densities in a single graph for better comparison. 
 

 
Graph 13: Comparison of RN densities (Citigroup, April 7th 2014) 

 
Graph 14: Comparison of RN densities, logarithmic scale (Citigroup, April 7th 2014) 
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In Graph 14 we have plotted these same distributions, but using a logarithmic scale to 
emphasize the tail behavior.  

The reader can notice that the Nadaraya-Watson function does not suffer from numerical 
instability any longer, however by taking a logarithmic scale we observe a sharp variation on 
the left tail Ð we will discuss this below.  

Both the polynomial and the spline based methods seem to deliver similar results, which is 
consistent with the fact that both techniques use polynomials to approximate the function. As 
pointed out in [11], relatively simple techniques can yield results very close to those obtained 
with more sophisticated methods, which seems to be confirmed by the similarity between 
these two curves. 

III.3.B/ Results assessment 

In order to explore the accuracy of our estimations, we undertake the following test. Given 
that we are producing estimates of probability densities, if the estimate captured the whole 
behavior of stock price dynamics then the value of the integral of the density should be equal 
to 1: 

!! !
! ! ! ! !"

! !

! !
! !  

To estimate the integralÕs value, we use a rectangular method and construct the following 
estimator: 

!! !
! ! ! ! ! ! ! !

!

! ! !

! ! ! ! ! ! !

!

! ! !

 

! ! ! ! ! ! ! ! !!! ! ! ! ! ! ! ! ! ! ! 

! !  is our estimator of the RN density Ð either through polynomials, splines or the Nadaraya-

Watson method Ð ki are the strike series we generated to evaluate the density, "k  is equal to 
$0.0001 and N to 285,001 Ð see above. 

We would like to have at least an estimated value of this integral as close to 1 as possible, 
while being inferior to 1. Indeed, a way of interpreting results is to consider the obtained 
percentage Ðprobability Ð as an indication of the likely risk neutral future behavior of the 
stock price. We are using strikes from $29 to $57.5, while the stock price is $46.55, which 
implies respectively a -37.7% and +23.5% return over a 3-month period. It seems 
reasonable that the integral value between 29 and 57.5 should be rather close to one, while 
remaining lower than one to allow for more extreme events to happen. 

Results are showed in Table 6. 

Method  
Polynomial 

interpolation 
Spline 

smoothing 
Nadaraya-Watson 

estimator: h = 9 

Density integral 
estimate  95.42% 96.62% 94.64% 

Table 6 : Density integral estimates for polynomial, spline and Nadaraya-Watson methods 

Overall, results are satisfactory as all three integral estimates are very close to 1 while 
leaving around a 5% RN probability to extreme events. The Nadaraya-Watson method is the 
one that assigns the higher likelihood to tail events, which is expected seing the strange tail 
behavior it manifests. The difference between the three methods is nonetheless negligible. 
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III.4/ Fitting a known parametric probability distribution 

III.4.A/ Fitting procedure 

Now that we have multiple estimates of the true RN density of the stock price process, it is 
interesting to fit a parametric distribution to these estimates. Such an approach allows us to 
derive closed-form formulas for the VaR for instance.  

In Graph 14 above, we observe that the Nadaraya-Watson density has an undesirable 
feature in its left tail. This bump could distort results by giving that tail much more weight 
than plausible. 

Therefore, we have computed average risk neutral distribution and density using only the 
densities estimated by polynomial interpolation and spline smoothing. The resulting RN 
density is shown on Figure 15. 

 

 
Graph  15: Average RN density (Citigroup, April 7th 2014) 

It is worth highlighting again the negligible difference that we find between the distributions 
estimated with call or put prices. For example, for the average density, the sum of square 
errors between the average density computed with call prices and the one obtained through 
put prices is of the order of O(10-8). 

Then we have tried to fit a non-standardized Student distribution to the average estimated 
RN density. The advantage of the non-standardized Student distribution is that it has some 
of the nice characteristics of the Gaussian distribution, while allowing for fatter tails, a feature 
which is consistent with empirical observations on stock prices movements. The mentioned 
distribution is characterized by three parameters: its degrees of freedom #, a location 
parameter µ and a scale parameter $. Let tS be a random variable distributed according to a 
Student distribution with # degrees of freedom, then the random variable X below follows a 
non-standardized Student distribution with # degrees of freedom and with location and scale 
parameters µ and $ respectively: 

! ! ! ! ! ! !  

The density function of the non-standardized Student distribution is given by the following 
formula, where % stands for the Gamma function: 
 

! ! ! !
!

! ! !
!

!
!
! !" ! !

! !
!

!

! ! !

!

! !
! ! !

!
! 



!
!

23 
!

Given that we do not have a sample realization of a random variable but an estimated 
density function, instead of implementing a probabilistic technique such as maximum 
likelihood we have simply minimized the sum of squared errors between a set of 
parametrized non-standardized Student distributions and our averaged estimate of the RND. 
We set a constraint on the location parameter: we know that the expectation of the Student-
distributed variable tS is 0, thus: 

! ! ! ! ! !" ! ! ! ! ! 

Moreover, under the risk neutral distribution, the expected return!of a stock ! ! !is equal to the 
risk-free rate diminished of the dividend yield d: 

! ! ! ! ! ! ! ! ! ! ! !  

Therefore we set the following constraint: 

! ! ! ! ! ! ! ! ! ! 

As stock prices cannot take negative values, there is a limitation of choosing a model based 
on a distribution with support on " . Nevertheless, we can reasonably assume that any 
company has a non-zero probability of default, which could be read as hypothetical negative 
prices for the shares. That is why we introduce a non-standardized Student distribution to 
model the stock prices, such that the probability of default corresponds to the probability that 
the random variable associated with this Student distribution takes negative values. 

In CitigroupÕs case and given that we do not have a continuous rate, we obtain: 

! ! !" !!! ! ! ! ! !!"! ! ! !!!"# ! ! !!"#$  

! ! ! !" !!! ! ! ! ! !!"! ! ! !!"!# ! !"# !!"#! ! 

Our fitting procedure consists then of trying different values for scale parameters, setting the 
degrees of freedom equal to 2, 3, 4, 5, 6, 7 and 8 in order to have relatively fat tails.   

First, we have visually identified Student distributions that were close to our estimate. For 
example, in case # = 2, the value for the parameter is $ = 4.35. 

 
Graph  16: First approximation by a non-standardized Student distribution with 2 degrees of freedom 

(Citigroup, April 7th 2014) 

Then: 
!  We compute the sum of logs squared errors for 2501 non-standardized Student 

distributions, varying the scale parameter from 66.66% to 133.33% of the visual 
approximation value, i.e. $ = 4.35 above. Our objective function is the following: 
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!"# ! ! ! !"# ! !
! !

!
! 

Using logarithms allows us to give more relative weight to the tails of the distribution 
during the fitting procedure: given that the values of the estimated density Ð x!i Ð and 
the Student density Ð xi

tS Ð are below one, taking the logarithm increases sharply the 
value of the density at the tails. For example, if x = 0.1001 and y = 0.1000, the 
difference between x and y is 0.0001 and the difference between their logarithms is 
approximately 0.0010; however if x = 0.0011 and y = 0.0010, their difference is still 
equal to 0.0001 but the difference between their logarithms increases to 0.0953 Ð 
almost ten-fold; 

!  We pick the best fit from above; 

!  We compute the sum of logs squared errors for 2501 non-standardized Student 
distributions, varying the scale parameter from 6.66% to 103.33% of the above 
approximation value. 

We found the following optimized parameters for Citigroup on April 7th, 2014: 

Degrees of freedom  ! (visual approximation) !  (optimized fit) 

2 $4.35 $3.6681 

3 $3.90 $4.0148 

4 $4.35 $4.2669 

5 $4.50 $4.4547 

6 $4.65 $4.5990 

7 $4.70 $4.7134 

8 $4.75 $4.8058 

Table  7: Optimal scale parameters for fitted non-standardized Student distributions 

Graphs 17 & 18 represent the RN density estimate as well as the fitted Student distributions. 
On Graph 18, the scale is logarithmic. 
 

 
Graph  17: Comparison of average RN density and 

fitted non-standardized Student distribution (Citigroup, April 7th 2014) 
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Graph  18: Comparison of average RN density and fitted non-standardized  

Student distributions, logarithmic scale (Citigroup, April 7th 2014) 

We now zoom in the left tail of the distribution, showing only strikes between $29 and $39. 
We first show all distributions on a logarithmic scale; then on Graphs 20 and 21 we only 
show distributions with 4, 5, 6, and 7 degrees of freedom as these are the best fits in terms 
of sum of errors Ð as we will see just below Ð in normal and logarithmic scale respectively. 

 
Graph 19: Zoom in left tail of distributions, logarithmic scale (Citigroup, April 7th 2014) 

 
Graph 2 0: Zoom in left tail of distributions, logarithmic scale (Citigroup, April 7th 2014) 
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Graph 2 1: Zoom in left tail of distributions, logarithmic scale (Citigroup, April 7th 2014) 

III.4.B/ Results assessment 

Squared errors and squared log -errors  

We have started by computing errors between our estimated RN density and the calibrated 
Student distributions. In Table 8 we display the sum of squared errors and the sum of log 
squared errors for each distribution with respect to the average density. We observe that as 
we increase the degrees of freedom the SSE keeps decreasing up to 7 degrees. At 8 
degrees of freedom, the SSE is higher than the previous distribution. In that sense, a 
Student distribution with 7 degrees of freedom seems to be an accurate choice to model the 
RN density. 

Degrees of freedom  Sum of s quared errors  Sum of log squared errors  

2 11.8724 18,886.71 

3 5.6819 8,001.47 

4 2.7473 3,409.00 

5 1.4162 1,459.44 

6 0.8745 724.36 

7 0.7312 578.47 

8 0.7930 725.56 

Table  8: Errors for each fitted non-standardized Student distribution 

We observe that as we increase the degrees of freedom the SSE keeps decreasing up to 7 
degrees. At 8 degrees of freedom, the SSE is higher than the previous distribution. In that 
sense, a Student distribution with 7 degrees of freedom seems to be an accurate choice to 
model the RN density. 

However, these squared errors are only based on the section of the distribution we have 
been able to estimate, namely from $29 to $57.5, hence these errors do not reflect how well 
our calibrated Student distribution captures tail events. 

Option pricing  

To address this shortcoming and have a further assessment on how accurate our calibrated 
Student risk neutral distributions are, we have backed American option prices from the 
distributions.  

First, we are going to define more rigorously the RN distribution we have calibrated through 
the Student distribution, which means that we identify ST with a random variable Student 
distributed, that we denote by S. 
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The corresponding RN distribution, given that the company has a non-zero probability of 
default, satisfies: 

! ! ! ! ! ! ! ! ! ! ! ! 

i.e. the RN probability mass function is greater than 0 only at ST = 0 and the above 
probability is equal to the probability that a non-standardized Student distribution takes 
negative values: 

! ! ! ! ! ! !  

Note that:  

! ! ! ! !! !!!! ! ! ! ! ! ! ! ! ! !!!! ! ! ! ! ! ! !! !!!! ! ! ! ! ! ! ! ! ! ! !!!! ! ! ! 

Denoting by f! #be the density of the Student distribution, the risk-neutral distribution can thus 
be described as follows: 

! ! ! ! ! ! !

! !" !!! ! !
! ! ! !!" !! ! !

! ! ! ! ! ! ! !"
!

! !! !! ! !
   ! ! ! ! ! ! ! ! ! ! ! ! ! !"

!
! . 

We can check that: 

!"# ! ! ! ! ! ! ! ! ! ! ! , and 

!"#
! ! ! !

! ! ! ! ! ! ! ! ! !"#
! ! ! !

! ! ! !"
!

!
! ! ! ! ! ! ! ! ! ! ! 

Secondly, we must check that we can correctly derive American option prices from our risk 
neutral distributions.  

Indeed, recall that our data refers to American option prices; if we want to use the pricing 
integral displayed in the introduction of the paper, which allows evaluating European options, 
we need to identify options which American price should be equal to the European price. We 
could also use an approximation technique that uses European option prices to estimate 
American option prices. We detail the choices available hereafter. 

The price difference between European and American call options comes from dividend 
payments Ð see e.g. [27] Ð : if a stock does not distribute dividends, then the price of an 
American call option and a European call option are equal.  

More generally, let us assume the underlying stock pays a dividend D on date tD Ð in our 
Citigroup example, the value of the dividend is $0.01 and the payment date May 1st, 2014 Ð 
and that both are known at valuation date t = 0. Then it is optimal to hold an American call 
option with strike k until its maturity date T if: 

! ! ! ! ! ! ! ! ! ! ! !  

(see e.g. [19]). Therefore, if the above condition is met, the price of the American call is 
equal to its European counterpart.  

In case this dividend condition is not met, it is still possible to easily approximate the 
American call price using BlackÕs approximation. Letting c(k,s0,T) be the price of a European 
call written on a stock which current price is s0, with strike k and maturity date T, BlackÕs 
approximation to the price of an American call cA is the following: 

! ! ! ! ! ! ! ! ! !"# ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! 

BlackÕs approximation has been showed to work well most of the times. Its advantage over 
more sophisticated numerical methods Ð such as Barone-Adesi-Whaley or Roll-Geske-
Whaley Ð is that it allows us to easily use our risk neutral distributions. 
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In our Citigroup dataset, the lowest strike call option has a strike equal to $25. We use the 
quarterly dollar Libor rate rL to approximate the bound on the dividend amount: 

! ! !
!

! ! ! ! ! ! ! !
! !" ! ! !

!

! ! ! !!!"# ! ! !!"#
! ! !!"#$  

Given that the dividend paid out by Citigroup on May 1st, 2014, was 1 cent, and that the 
condition is met for the lowest strike, we conclude that the dividend condition is fulfilled for all 
strikes, thus we can price American calls with the European call pricing integral. 

Unfortunately, the above results do not hold for put options.  

Now, recall that the model-free price of a vanilla European call option is given by the 
formula: 

! ! ! ! ! !" ! ! ! ! ! ! ! ! 

Given our modelling of the risk neutral distribution and assuming k > 0, our pricing integral 
becomes: 

! ! ! ! ! !" ! ! ! ! ! ! ! ! !"
!

!
! 

!  represents the stock price, which goes up to infinity in the above integral. Therefore the 
price of the call option reflects tail events, in this case strong increases in the stock price. We 
can conclude that the closer our estimated option prices are to the empirical option prices, 
the better our calibrated Student distribution captures the market expectation of extreme 
price swings. 

Given that we now have a series of estimated RN densities and using the quarterly Dollar 
Libor rate, we can approximate call prices for which we have empirical data with the 
following estimator: 

! ! !
!

! ! ! ! !
! ! ! ! ! ! ! ! ! ! ! ! !

! !

! ! !

! 

where rL is the Libor rate, T the time to maturity, k the strike and si a series of stock prices 
such that: 

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !  

! ! ! ! ! ! ! !!! ! ! ! ! !! ! ! 

! !  verifies the following condition: 
! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! !   

where: 
! ! !" ! ! ! 

The choice of 10-9 is motivated by computational considerations, as adding a further degree 
of accuracy Ð 10-10 Ð consumes much more time to complete the computations. It might be 
that ! !  is too low and therefore that we are not capturing tail events, however we have 
checked the values of si for which the estimator of the option price stops making 
computations and these goes from $147.15 Ð for the $57.5 strike and 8 degrees of freedom, 
equivalent to a stock return of 216.11% in 3 months; having a return higher than that has a 
RN probability of 2.3&10-8 under the 8 degree Student distribution Ð up to $11,654.83 Ð for 
the $29 strike with 2 degrees of freedom.  

We also make the following test:  



!
!

29 
!

!  We compute the integral for a Student distribution with 2 degrees of freedom and the 
$29 strike Ð this is the larger integral Ð for ! = 10 -9 and ! = 10-10; the first computation 
stops when si equals $11,654.83 while the second one stops at si = $36,736.15 Ð 
+215.20% Ð however the difference between the two approximations is just 0.00079 
for an integral value which is very close to $18 Ð approximately a 0.004% difference. 

!  We do the same for 8 degrees and $57.5 strike, which corresponds to the smaller 
integral. The first computation stops at $147.15 and the second one at $181.83, the 
difference being 1.3&10-6 for an integral value that is close to $0.083 Ð approximately 
a 0.002% difference. 

We set " s to be equal to $0.01; again this is motivated by computational efficiency. For 
example, consider the call option with strike price of $29; we have seen that the estimator 
includes stock prices up to $11,654.83. With a $0.01 step between stock prices, this 
amounts approximately to the following number of computations: 

!! !!"# !!" ! !"

! !!"
! ! !!"  million. 

Thus, if we used a much narrower step such as $0.0001 to increase accuracy, we would end 
up making around 117 million computations to calculate the $29 call price.  

Finally, the estimator of the option price can thus be rewritten as: 

! ! !
!

! ! ! ! !
! ! ! ! ! ! ! ! ! !! ! !

! !

! ! !

! 

We use the RN density estimated through put prices. This allows us to test the robustness of 
our procedure, as we are using a density estimated through put values to derive call values. 
Given the negligible difference we found between both densities, we would expect to obtain 
good results. 

We have displayed in Table 9 our estimated option prices for all seven Student distributions 
as well as the market price. In Table 10 estimated option prices are expressed as a 

percentage over the market price:   
! ! ! ! !

! !
. 

Strike !  Market ! !  
Estimated ! !  

!=2  !=3  !=4  !=5  !=6  !=7  !=8  

$29 17.700 17.9308 17.6629 17.6065 17.5864 17.5771 17.572 17.5689 

$30 16.700 16.953 16.6755 16.6153 16.5932 16.5827 16.5769 16.5733 

$31 15.700 15.9779 15.6902 15.6257 15.6016 15.5898 15.5832 15.5791 

$32 14.750 15.0057 14.7073 14.6385 14.612 14.599 14.5914 14.5867 

$33 13.775 14.0373 13.7277 13.6542 13.6253 13.6107 13.6023 13.5969 

$34 12.825 13.0732 12.752 12.6736 12.6422 12.6262 12.6168 12.6107 

$35 11.725 12.1145 11.7814 11.698 11.6641 11.6466 11.6363 11.6296 

$36 10.800 11.1624 10.8172 10.729 10.6925 10.6737 10.6626 10.6554 

$37 9.825 10.2187 9.8615 9.7685 9.7299 9.71 9.6984 9.6909 

$38 9.075 9.2854 8.9168 8.8197 8.7794 8.7589 8.7471 8.7397 

$39 8.050 8.3655 7.9866 7.8863 7.8452 7.8247 7.8132 7.8064 

$40 7.050 7.4633 7.0757 6.9736 6.9328 6.9132 6.9028 6.897 

$41 6.125 6.5841 6.1905 6.0886 6.0493 6.0316 6.0232 6.0191 

$42 5.300 5.7356 5.3395 5.2398 5.2037 5.1889 5.1831 5.1812 

$43 4.575 4.9281 4.5333 4.438 4.4062 4.3951 4.3923 4.393 

$44 3.850 4.1747 3.7845 3.6949 3.6679 3.6607 3.6611 3.6644 
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$45 3.200 3.4906 3.1064 3.0224 2.9996 2.9958 2.9988 3.0042 

$46 2.610 2.8905 2.5108 2.4303 2.4102 2.4084 2.4129 2.4196 

$47 2.095 2.3842 2.0049 1.9246 1.9047 1.903 1.9077 1.9144 

$48 1.655 1.9725 1.5891 1.5057 1.4835 1.48 1.4833 1.4889 

$49 1.295 1.6466 1.2572 1.1684 1.142 1.1354 1.1361 1.1397 

$50 0.995 1.3921 0.9977 0.9032 0.872 0.8614 0.8591 0.8602 

$52.5 0.480 0.9724 0.5807 0.4784 0.4384 0.4199 0.4107 0.4059 

$55 0.215 0.7324 0.3623 0.2647 0.2242 0.2037 0.1919 0.1845 

$57.5 0.105 0.5827 0.2418 0.1553 0.1198 0.1014 0.0906 0.0836 

Table 9:  Estimated call prices for each fitted non-standardized Student distribution (s0 = $46.55). 
The closest prices to the market are underlined in bold. 

Strike !  
Estimated ! !  

!=2  !=3  !=4  !=5  !=6  !=7  !=8  

$29 1.30% -0.21% -0.53% -0.64% -0.69% -0.72% -0.74% 

$30 1.51% -0.15% -0.51% -0.64% -0.70% -0.74% -0.76% 

$31 1.77% -0.06% -0.47% -0.63% -0.70% -0.74% -0.77% 

$32 1.73% -0.29% -0.76% -0.94% -1.02% -1.08% -1.11% 

$33 1.90% -0.34% -0.88% -1.09% -1.19% -1.25% -1.29% 

$34 1.94% -0.57% -1.18% -1.43% -1.55% -1.62% -1.67% 

$35 3.32% 0.48% -0.23% -0.52% -0.67% -0.76% -0.81% 

$36 3.36% 0.16% -0.66% -1.00% -1.17% -1.27% -1.34% 

$37 4.01% 0.37% -0.58% -0.97% -1.17% -1.29% -1.36% 

$38 2.32% -1.74% -2.81% -3.26% -3.48% -3.61% -3.69% 

$39 3.92% -0.79% -2.03% -2.54% -2.80% -2.94% -3.03% 

$40 5.86% 0.36% -1.08% -1.66% -1.94% -2.09% -2.17% 

$41 7.50% 1.07% -0.59% -1.24% -1.52% -1.66% -1.73% 

$42 8.22% 0.75% -1.14% -1.82% -2.10% -2.21% -2.24% 

$43 7.72% -0.91% -2.99% -3.69% -3.93% -3.99% -3.98% 

$44 8.43% -1.70% -4.03% -4.73% -4.92% -4.91% -4.82% 

$45 9.08% -2.92% -5.55% -6.26% -6.38% -6.29% -6.12% 

$46 10.75% -3.80% -6.89% -7.66% -7.72% -7.55% -7.30% 

$47 13.80% -4.30% -8.13% -9.08% -9.16% -8.94% -8.62% 

$48 19.18% -3.98% -9.02% -10.36% -10.57% -10.37% -10.04% 

$49 27.15% -2.92% -9.78% -11.81% -12.32% -12.27% -11.99% 

$50 39.91% 0.27% -9.23% -12.36% -13.43% -13.66% -13.55% 

$52.5 102.58% 20.98% -0.33% -8.67% -12.52% -14.44% -15.44% 

$55 240.65% 68.51% 23.12% 4.28% -5.26% -10.74% -14.19% 

$57.5 454.95% 130.29% 47.90% 14.10% -3.43% -13.71% -20.38% 

Table 10: Estimated call prices as a percentage over market price for each fitted non-standardized 
Student distribution. The minimal percentage is indicated in bold. 

A first and quick way to assess which distribution yields the best result is to look at how 
close the cheapest call estimated and market prices Ð with strike $57.5 Ð are. We 
immediately see that the Student distribution with 6 degrees of freedom is the best performer 
in that sense. However, it also looks like the Student distribution with 3 degrees of freedom 
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performs better when pricing options with greater moneyness, 3 being closer to the empirical 
tail index of stock prices. 

However, a more precise analysis is required. We have to look at how separated estimated 
and market prices are globally. To do so, we cannot compute squared errors but instead 
percentage errors: indeed, a particular distribution could yield a sum of squared errors higher 
than another distribution, but from a price perspective what matters is how far apart prices 
are in percentage terms. Thus, for each distribution and for each strike we have computed 
statistics for the following measures Ð absolute error and relative error: 

! !"# !
! !

! !
! ! !!! ! !"# !

! !

! !
! ! . 

It is important to look at the maximum of the above statistics for each distribution. Indeed, 
from a practitioner perspective we want our estimated prices to be on average close to 
market prices on a relative basis, but we also want to minimize the likelihood of having 
outlier estimations. We also show the number of times the distribution is the most accurate in 
the absolute error table. 

Results are showed in Tables 11 and 12. 

Statistic  !=2  !=3  !=4  !=5  !=6  !=7  !=8  

Average 39.32% 9.92% 5.62% 4.45% 4.41% 5.15% 5.57% 

St. Dev. 1.00 0.29 0.10 0.04 0.04 0.05 0.06 

Maximum 454.95% 130.29% 47.90% 14.10% 13.43% 14.44% 20.38% 

Minimum 1.30% 0.06% 0.23% 0.52% 0.67% 0.72% 0.74% 

Table 11: Relative error statistics for estimated call prices 

Statistic  !=2  !=3  !=4  !=5  !=6  !=7  !=8  

Average 39.32% 7.94% 0.07% -2.98% -4.41% -5.15% 5.57% 

St. Dev. 1.00 0.29 0.12 0.05 0.04 0.05 0.06 

Maximum 454.95% 130.29% 47.90% 14.10% -0.67% -0.72% -0.74% 

Minimum 1.30% -4.30% -9.78% -12.36% -13.43% -14.44% -20.38% 

Best dist. 0 20 3 1 1 0 0 

Table 12:  Absolute error statistics for estimated call prices 

If we look at the relative error, the best distribution according to the statistics we have 
defined has 6 degrees of freedom, which is consistent with the computation of SSE, as the 
Student distribution with # = 6 was the one with the second lowest errors: its average relative 
difference is 4.41%. If we look at the maximum relative difference, this 6 degree distribution 
has also the best performance. Overall, Student distributions with 4, 5, 6, 7 and 8 degrees of 
freedom perform relatively well, with an average relative difference smaller than 6%. 
However, if we look at each option price independently, we notice that the Student 
distribution with 3 degrees also performs very well: it is the best pricing distribution for 20 
strikes, so 80% of our dataset. Its average results are distorted by the most out-of-the-
money calls Ð $52.5, $55 and $57.5 Ð where it yields an average relative difference of 
73.26%. However, if we exclude these options, it achieves an impressive 1.28% average 
difference.  

If we now look at absolute error statistics, we notice that distributions with 2, 3 and 4 degrees 
of freedom tend to overestimate the price of the call, while the rest tends to underestimate it. 
This feature is natural because, as we increase the degrees of freedom of the Student 
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distribution, the implied probability of extreme upward price movementsÕ decreases, 
therefore decreasing the value of the callÕs optionality. 

We have computed the same statistics but excluding the three most OTM options Ð strikes 
at $52.5, $55 and $57.5. These figures confirm what we highlighted above, namely that by 
excluding the OTM options we observe that the distribution with 3 degrees of freedom yields 
the best results. 

Statistic  !=2  !=3  !=4  !=5  !=6  !=7  !=8  

Average 8.40% 1.28% 3.14% 3.83% 4.05% 4.09% 4.05% 

St. Dev. 0.10 0.01 0.03 0.04 0.04 0.04 0.04 

Maximum 39.91% 4.30% 9.78% 12.36% 13.43% 13.66% 13.55% 

Minimum 1.30% 0.06% 0.23% 0.52% 0.67% 0.72% 0.74% 

Table 13:  Relative error statistics for estimated call prices excluding the three most OTM options 

Statistic  !=2  !=3  !=4  !=5  !=6  !=7  !=8  

Average 8.40% -0.96% -3.14% -3.83% -4.05% -4.09% -4.05% 

St. Dev. 0.10 0.02 0.03 0.04 0.04 0.04 0.04 

Maximum 39.91% 1.07% 0.23% -0.52% -0.67% -0.72% -0.74% 

Minimum 1.30% -4.30% -9.78% -12.36% -13.43% -13.66% -13.55% 

Best dist. 0 20 2 0 0 0 0 

Table 14:  Absolute error statistics for estimated call prices excluding the three most OTM options 

One final check we can make on the quality of our Student distributions is to price options 
that we did not include in the estimation process Ð those for which the bid-offer spread was 
wider than 35% or that did not have an implied volatility associated to them. As these options 
tend to be relatively illiquid, they might not accurately reflect market expectations and thus 
the estimation procedure will probably yield prices than deviate significantly from market 
observed prices. It is nonetheless interesting to test the limits of our procedure and this final 
test should shed further light on how reliable our RN density estimation method is. We have 
priced calls we did not use in the estimation of the density. There are 6 of them in total. 
Results are showed in Table 15. 

Strike !  Market ! !  
Estimated ! !  

!=2  !=3  !=4  !=5  !=6  !=7  !=8  

$25 21.6 21.8609 21.6268 21.5832 21.5692 21.5634 21.5604 21.5588 

$26 20.575 20.876 20.6342 20.5878 20.5725 20.5659 20.5625 20.5606 

$27 19.55 19.8926 19.6426 19.593 19.5763 19.5689 19.5651 19.5628 

$28 18.575 18.9107 18.6521 18.5992 18.5809 18.5726 18.5681 18.5655 

$60 0.075 0.482 0.1708 0.0967 0.0674 0.0527 0.0441 0.0386 

$65 0.05 0.3567 0.0967 0.0434 0.0249 0.0164 0.0119 0.0092 

Table 15: Estimated call prices for testing options  
(i.e. excluded from the estimation/calibration phase) 
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Strike !  
Estimated ! !  

!=2  !=3  !=4  !=5  !=6  !=7  !=8  

$25 1.21% 0.12% -0.08% -0.14% -0.17% -0.18% -0.19% 

$26 1.46% 0.29% 0.06% -0.01% -0.04% -0.06% -0.07% 

$27 1.75% 0.47% 0.22% 0.13% 0.10% 0.08% 0.07% 

$28 1.81% 0.42% 0.13% 0.03% -0.01% -0.04% -0.05% 

$60 542.67% 127.73% 28.93% -10.13% -29.73% -41.20% -48.53% 

$65 613.40% 93.40% -13.20% -50.20% -67.20% -76.20% -81.60% 

Table 16: Estimated call prices for testing options as a percentage over market price 
(i.e. excluded from the estimation/calibration phase) 

As done above, we have computed a series of statistics to assess the accuracy of our 
method. Results are showed in Table 17 and 18. 

Statistic  !=2  !=3  !=4  !=5  !=6  !=7  !=8  

Average 193.72% 37.07% 7.10% 10.11% 16.21% 19.63% 21.75% 

St. Dev. 2.99 0.58 0.12 0.20 0.28 0.32 0.35 

Maximum 613.40% 127.73% 28.93% 50.20% 67.20% 76.20% 81.60% 

Minimum 1.21% 0.12% 0.06% 0.01% 0.01% 0.04% 0.05% 

Table 17:  Relative error statistics for test call prices 

Statistic  !=2  !=3  !=4  !=5  !=6  !=7  !=8  

Average 193.72% 37.07% 2.68% -10.05% -16.18% -19.60% -21.73% 

St. Dev. 2.99 0.58 0.14 0.20 0.28 0.32 0.35 

Maximum 613.40% 127.73% 28.93% 0.13% 0.10% 0.08% 0.07% 

Minimum 1.21% 0.12% -13.20% -50.20% -67.20% -76.20% -81.60% 

Best dist. 0 0 2 2 1 0 1 

Table 18:  Absolute error statistics for test call prices 

The first observation is that the accuracy has greatly diminished compared to the pricing of 
call options that were used to estimate densities. Moreover, the best performing distribution 
seems now to be a non-standardized Student with 4 degrees of freedom.  

Again, it is worth analyzing the impact of OTM options on accuracy: as we increase further 
the number of degrees, the estimated price decreases drastically, particularly for the $65 
call. More precisely, if we look at distributions with 3 and 4 degrees of freedom, we see that 
the estimated price transitions from 193% of the market value to 87%.  

If we now look only at ITM calls, we can see that the estimation seems much more accurate 
than for the OTM calls Ð strikes at $60 and $65. We have thus calculated the same statistics 
but excluding these two options. Results are showed in Tables 19 and 20.  

Statistic  != 2 !=3  !=4  !=5  !=6  !=7  !=8  

Average 1.56% 0.33% 0.12% 0.08% 0.08% 0.09% 0.09% 

St. Dev. ~ 0.0 ~ 0.0! ~ 0.0! ~ 0.0! ~ 0.0! ~ 0.0! ~ 0.0!

Maximum 1.81% 0.47% 0.22% 0.14% 0.17% 0.18% 0.19% 

Minimum 1.21% 0.12% 0.06% 0.01% 0.01% 0.04% 0.05% 

Table 19 : Relative error statistics for test call prices excluding OTM options 
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Statistic  !=2  !=3  !=4  !=5  !=6  !=7  !=8  

Average 1.56% 0.33% 0.08% ~ 0.0% -0.03% -0.05% -0.06% 

St. Dev. ~ 0.0 ~ 0.0! ~ 0.0! ~ 0.0! ~ 0.0! ~ 0.0! ~ 0.0!

Maximum 1.81% 0.47% 0.22% 0.13% 0.10% 0.08% 0.07% 

Minimum 1.21% 0.12% -0.08% -0.14% -0.17% -0.18% -0.19% 

Best dist. 0 0 1 1 1 0 1 

Table 20: Absolute error statistics for test call prices excluding OTM options 

Our intuition is confirmed as results have improved a lot. Distribution with 5 degrees of 
freedom is the best performer, particularly if we look at absolute errors. Nonetheless these 
last results have to be considered cautiously, as this last sample of estimated option prices 
contains 4 points only Ð strikes at $25, $26, $27 and $28 respectively. 

The decrease in accuracy when pricing test options Ð i.e. options not included in the 
estimation and calibration phases Ð seems to be totally explained by OTM options. This 
phenomenon could be attributed to the tails of Student distribution, which we might fail to 
accurately model due to the lack of data: this phenomenon highlights the importance of the 
tails of distributions and indicates that a bespoken modelling of these might significantly 
improve our results.  

However, related to this aspect, it is also worth mentioning that the two OTM test options Ð 
$60 and $65 strikes Ð have a bid-offer spread of 100% and 800% respectively. In this 
context, it is far more challenging for our estimated densities to capture market expectations, 
as such large spreads convey that trading on those price ranges Ð $60-$65 Ð is extremely 
scarce and option values might not convey any meaningful market expectation.  Meanwhile, 
the ITM call test options just tested have an average bid-offer spread equal to 18.55%. 
Trading is more buoyant in those ranges and option prices incorporate market expectations 
better, thus our densities perform better. 

Therefore, one could reasonably ask whether there is a fundamental shortcoming in our 
distribution tail modelling or instead there is too little liquidity to properly assess the ability of 
our Student distribution to capture implied tail events. We not delve further into this question 
as the purpose of this paper is not to develop an option pricing technique. 

 

 
ITM  

calibration calls 
OTM  

calibration calls 
ITM  

test calls 
OTM  

test calls 

Average 
bid -offer  
spread  

11.04% 3.96% 18.55% 450.00% 

Table 21: Average market bid-offer spreads for different groups of options 

Finally, we have also used the test set to assess the impact of the stopping criterion !  on the 
integral approximation: we have computed test option prices by setting ! = 10 -10 to analyze 
whether there is any meaningful accuracy gain. In the next table, we have displayed the 
percentage difference between this 2nd group of estimated prices and the 1st one, where ! = 
10-9. 
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Strike  !  !=2  !=3  !=4  !=5  !=6  !=7  !=8  

$25 0.0037% 0.0005% ~0.0%! 0.0005% ~0.0%! ~0.0%! ~0.0%!

$26 0.0038% 0.0005% ~0.0%! ~0.0% ~0.0%! ~0.0%! ~0.0%!

$27 0.0040% ~0.0%! 0.0005% ~0.0%! ~0.0%! ~0.0%! ~0.0%!

$28 0.0042% ~0.0%! ~0.0%! ~0.0%! ~0.0%! ~0.0%! ~0.0%!

$60 0.1660% 0.0585% ~0.0%! ~0.0%! ~0.0%! ~0.0%! ~0.0%!

$65 0.1962% 0.1034% 0.2304% ~0.0%! ~0.0%! ~0.0%! ~0.0%!

Table 22: Test options estimated pricesÕ sensitivity to !  

As expected, the accuracy gains affect mostly the distribution # = 2. As we increase the 
number of degrees, the distribution tails get thinner and the accuracy gain coming from 
decreasing the value of !  decreases rapidly. Nonetheless, overall these accuracy gains 
remain extremely low.  

Further key statistics relating to our option pricing results can be found on the appendix. We 
end this discussion by considering two Tables. In the first one, Table 23,  we show how the 
percentage difference with respect to ATM options: these correspond to the $47 and $46 
call. 

Strike !  !=2  !=3  !=4  !=5  !=6  !=7  !=8  

$46 10.75% -3.80% -6.89% -7.66% -7.72% -7.55% -7.30% 

$47 13.80% -4.30% -8.13% -9.08% -9.16% -8.94% -8.62% 

Average  12.28% -4.05% -7.51% -8.37% -8.44% -8.25% -7.96% 

Abs. avrg.  12.28% 4.05% 7.51% 8.37% 8.44% 8.25% 7.96% 

Table 23: Estimated option prices for ATM options as a percentage over market price 

In Table 24, we show the same figures with respect to OTM options. 

Strike !  !=2  !=3  !=4  !=5  !=6  !=7  !=8  

$47 13.80% -4.30% -8.13% -9.08% -9.16% -8.94% -8.62% 

$48 19.18% -3.98% -9.02% -10.36% -10.57% -10.37% -10.04% 

$49 27.15% -2.92% -9.78% -11.81% -12.32% -12.27% -11.99% 

$50 39.91% 0.27% -9.23% -12.36% -13.43% -13.66% -13.55% 

$52.5 454.95% 130.29% 47.90% 14.10% -3.43% -13.71% -20.38% 

$55 240.65% 68.51% 23.12% 4.28% -5.26% -10.74% -14.19% 

$57.5 102.58% 20.98% -0.33% -8.67% -12.52% -14.44% -15.44% 

$60 542.67% 127.73% 28.93% -10.13% -29.73% -41.20% -48.53% 

$65 613.40% 93.40% -13.20% -50.20% -67.20% -76.20% -81.60% 

Average  228.25% 47.78% 5.58% -10.47% -18.18% -22.39% -24.93% 

Abs. avrg.  228.25% 50.26% 16.63% 14.55% 18.18% 22.39% 24.93% 

Best dist.  0 4 2 2 1 0 0 

Table 24: Estimated option prices for OTM options as a percentage over market price 

These last results show that, in terms of pricing, choosing the best distribution depends 
significantly on your purpose: if you are mostly interested by highly liquid options, the best 
distribution is the one that has only 3 degrees; however, if your focus is on extreme tail 
events and how those are reflected on market prices, the Student distribution with 4 or 5 
degrees of freedom seems a much better fit. 
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Paradoxically, this result might be considered as counterintuitive: as we get further OTM and 
option prices become more sensible to extreme events, we observe that the number of 
degrees of the optimal Student distribution increases, which means that it assigns lower 
probabilities to tail returns. However, developments such as the 2008-2009 financial crisis 
might tend to indicate that market agents underestimate the likelihood of extreme events, 
thus we could have expected the number of degrees of the best distribution to decrease as 
we got further into OTM territory.  

Nevertheless, this last remark has to be nuanced: 

!  First and foremost we have to bear in mind that we are working with RN distributions, 
not real world probabilities; 

!  Let St1 and St2 be two Student distributions with roughly the same location and scale 
parameters, such St2 has more degrees of freedom than St1. As it can observed in 
distributions graphs throughout this paper, St1 is going to cross St2 at 4 points x1, x2, 
x3 and x4, such that St1Õs density will be above St2Õs density for values lower than x1, 
higher than x4 or between x2 and x3. 

 

Thus, we can see that the probability assigned to extreme events depends on what 
we call an extreme event, i.e. the threshold that determines we are in Òtail territoryÓ. 
Indeed, if we consider that upward tail events begin above x4, then unambiguously 
distribution St1 assigns a higher probability to these scenarios; however, if we 
consider that extreme scenarios begin at some point between x3 and x4, then 
distribution St2 might assign a higher probability to some of these scenarios. In this 
sense, our results might in fact not be counterintuitive. 

Finally, we undertake the same process but for put options this time. Although, as we have 
explained above, there are no bounds on dividends or computational shortcuts that allow us 
to obtain exact put prices, we have decided to make these computations because CitigroupÕs 
dividend is very low: 

!  The dividend yield for 2014 is 0.086% ; 

!  The dividend amount to be paid on May 1st, 2014 Ð 1 cent Ð represents just 0.040% 
of the lowest strike Ð $25.  

We thus believe that the distortion in the put price coming from ignoring the dividend 
payment should be negligible.  

The price estimation methodology is equivalent to the one implemented for call options. 
Results can be found in the appendix. 
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III.4.C/ Analysis of relevant events and their associated probabilities 

Here, we analyze our distributional results by considering relevant events, such as for 
example company default, and computing their probabilities. 

Risk neutral default probabilities  

First, it is worth commenting that by modelling our risk neutral density with a non-
standardized Student distribution, we allow the stock price to take negative values. However, 
we explained previously that this can be interpreted as the RN probability of default of the 
underlying bank. Let X be a random variable distributed according to a non-standardized 
Student distribution and tS a random variable distributed according to a Student distribution 
with x degrees of freedom. Then the probability that X could take negative values is equal to: 

! ! ! ! ! !
! ! !

!
! !

!

!
! ! ! ! ! !

!

!
! 

The probabilities returned by R for each parametrization of the Student distribution are: 

Degrees of freedom  ! ! ! !  

2 0.3074% 

3 0.0688% 

4 0.0200% 

5 0.0069% 

6 0.0027% 

7 0.0012% 

8 0.0005% 

Table  25: 3-month risk neutral probabilities of default for fitted non-standardized Student distributions 

We can interpret these probabilities as the 3-month risk neutral probability of bankruptcy for 
Citigroup. If we now assume that quarterly default is an independent random variable, these 
probabilities can be annualized by remarking that:   ! ! !" ! ! ! ! !" !

! !"#$"%"$ !! where 
PDA is the annual probability of default and PDT is the quarterly probability of default. It 
comes:   

!" ! ! ! ! ! ! !" !
! ! 

In Table 26, we display annualized default probabilities. We have also added the closest 
corresponding S&PÕs credit rating notation Ð S&P calculates a one-year Average Cumulative 
Default Rate for each credit rating category based on historical default data from 1981; the 
2014 figures can be consulted in [29]. Citigroup LT local issuer rating in April 2014 was ÒA-Ó, 
corresponding to a historical default rate of 0.08%.   

Degrees of freedom  Annualized probabilities  S&P rating  

2 1.2239% BB- (1.09%) 

3 0.2749% BBB- (0.30%) 

4 0.0800% A- (0.08%) 

5 0.0276% AA- (0.03%) 

6 0.0108% AA (0.02%) 

7 0.0048% AA+, AAA (0.00%) 

8 0.0020% AA+, AAA (0.00%) 

Table  26: One-year risk neutral probabilities of default for fitted non-standardized Student 
distributions assuming independence 
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Another option would be to assume dependence. In such a case, we use a result due to 
Groenendijk et al. [15] which states that, provided that the 2nd moment of the distribution 
converges Ð which is the case in our setting Ð the following scaling law applies: 

! ! !
!

!"#
! ! ! !

!

! !!"!
! ! ! ! ! !!! ! ! ! ! 

$A is the annual volatility Ð the standard deviation in our Student distribution Ð while $T is the 
quarterly volatility and !"#  the time to maturity. Annual probabilities are displayed in Table 
27: 

Degrees of freedom  Annualized probabilities  S&P rating  

2 1.0650% BB- (1.09%) 

3 0.4306% BB+ (0.40%) 

4 0.2203% BBB (0.19%) 

5 0.1303% BBB+ (0.13%) 

6 0.0850% A- (0.08%) 

7 0.0595% A+ (0.06%) 

8 0.0439% AA- (0.03%) 

Table 27: One-year risk neutral probabilities of default 
for fitted non-standardized Student distributions assuming non independence 

As expected, an increasing number of degrees of freedom is associated with a decrease in 
the default probability, given that by nature the bankÕs default is a tail event. 

We can compare these probabilities to those computed by S&P for guidance Ð always 
bearing in mind that S&P calculates real probabilities as opposed to risk neutral ones. 

We use Table 28 to compare S&PÕs and our own probabilities. Figures correspond to the 
ratio between the two: 

!"#$%!
!" !"#$%&"

!" ! ! !
 

Degrees of 
freedom  

Annualized probabilities relative to 
S&PÕs one-year default probability  

(independence hyp)  

Annualized probabilities relative to 
S&PÕs one-year default probability  

(non -independence hyp)  

2 15.30 13.31 

3 3.44 5.38 

4 1.00 2.75 

5 0.35 1.63 

6 0.14 1.06 

7 0.06 0.74 

8 0.03 0.55 

Table  28: Comparison of fitted default rates (independence hypothesis in the middle column  
and non independence hypothesis in the right one) and S&P default rates 

Risk neutral strikesÕ probabilities   

In this paragraph we show the RN probabilities associated to each quoted option strike for 
each calibrated Student distribution. Letting tS be a Student-distributed random variable, they 
have been obtained by using the following equality: 

! ! ! ! ! ! ! ! ! ! ! !
! ! !

!
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Strike !  
Probability ! ! ! ! ! ! !  

!=2  !=3  !=4  !=5  !=6  !=7  !=8  

$25 1.39% 0.63% 0.36% 0.24% 0.17% 0.13% 0.10% 

$26 1.52% 0.72% 0.43% 0.29% 0.21% 0.16% 0.13% 

$27 1.67% 0.83% 0.51% 0.35% 0.27% 0.21% 0.18% 

$28 1.84% 0.95% 0.61% 0.44% 0.34% 0.28% 0.24% 

$29 2.05% 1.10% 0.73% 0.55% 0.44% 0.37% 0.32% 

$30 2.28% 1.29% 0.89% 0.69% 0.57% 0.49% 0.44% 

$31 2.56% 1.52% 1.09% 0.87% 0.74% 0.65% 0.59% 

$32 2.90% 1.80% 1.35% 1.11% 0.97% 0.88% 0.81% 

$33 3.30% 2.16% 1.68% 1.43% 1.28% 1.18% 1.12% 

$34 3.78% 2.60% 2.11% 1.85% 1.70% 1.61% 1.54% 

$35 4.38% 3.17% 2.67% 2.42% 2.28% 2.19% 2.13% 

$36 5.12% 3.91% 3.42% 3.19% 3.06% 2.99% 2.95% 

$37 6.04% 4.87% 4.42% 4.22% 4.13% 4.10% 4.08% 

$38 7.23% 6.13% 5.75% 5.62% 5.59% 5.60% 5.62% 

$39 8.76% 7.79% 7.54% 7.50% 7.55% 7.62% 7.70% 

$40 10.76% 10.02% 9.93% 10.02% 10.16% 10.30% 10.44% 

$41 13.42% 12.98% 13.09% 13.33% 13.57% 13.80% 14.00% 

$42 16.95% 16.89% 17.23% 17.61% 17.94% 18.24% 18.48% 

$43 21.66% 21.98% 22.50% 22.97% 23.36% 23.68% 23.95% 

$44 27.81% 28.39% 28.98% 29.46% 29.84% 30.14% 30.38% 

$45 35.53% 36.11% 36.59% 36.96% 37.23% 37.45% 37.63% 

$46 44.55% 44.82% 45.02% 45.17% 45.28% 45.37% 45.44% 

$47 54.14% 53.94% 53.78% 53.67% 53.58% 53.52% 53.47% 

$48 63.30% 62.75% 62.29% 61.95% 61.69% 61.49% 61.33% 

$49 71.22% 70.62% 70.04% 69.57% 69.20% 68.91% 68.67% 

$50 77.59% 77.22% 76.68% 76.20% 75.81% 75.49% 75.22% 

$52.5 87.64% 88.20% 88.16% 87.98% 87.77% 87.57% 87.39% 

$55 92.59% 93.67% 94.03% 94.15% 94.18% 94.16% 94.13% 

$57.5 95.17% 96.38% 96.87% 97.12% 97.25% 97.33% 97.37% 

$60 96.64% 97.79% 98.27% 98.52% 98.67% 98.76% 98.83% 

$65 98.13% 99.03% 99.38% 99.55% 99.65% 99.71% 99.75% 

Table 30: Risk neutral strikesÕ probabilities 

Risk neutral quantiles  

We have also looked at some relevant quantiles for our fitted distributions and compared 
them to historical quantiles derived from CitigroupÕs stock price history. The question that 
naturally arises is how should risk neutral and real world probabilities compare? On one 
hand, assuming there is no dividend Ð i.e. d = 0 Ð recall that under the risk neutral 
distribution we should have: 

! ! ! ! ! ! ! ! !" ! 

That is, the expected risk neutral return of the stock is equal to the risk free rate. On the 
other hand, financial theory postulates that a risky investment should reward investors with 
an expected return µ higher than the risk-free rate (µ>r): 
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! ! ! ! ! ! ! ! !"  

Thus, if we designate the real world probability measure by $ , the following inequality holds: 

! ! ! ! ! ! ! ! ! ! 

Although we have ! ! ! ! ! ! ! ! ! ! !"
!

! , it does not help to compare the distribution of 

! !  under  !  and ! , respectively. In an empirical study on options on the FTSE100 by 
Humphreys and Noss (2012) (see [20]), it is shown that measuring with !  overestimates the 
losses and underestimates the profits (see Chart 26 p. 22 in [20]):  

! !
!! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
 

i.e. the real world measure assigns a higher likelihood to prices increases than the risk 
neutral measure. When looking at the first two moments, the authors obtain the same 
comparison for the mean as we have, ! ! ! ! ! ! ! , and the variance satisfies the reverse 

inequality, !"# ! ! ! ! ! !"# ! ! ! !  (see Charts 28 & 29 p. 23 in [20]). In another paper by 

Giordano and Siciliano (see [14]), this result comparing the P&L distributions under those 
two probability measures is confirmed and proved when considering a simplified binomial 
framework (see [14], Boxes 1 & 4, and Figure 1). If  an investor is risk-averse Ð i.e. his utility 
function is concave Ð then the real world probability ! ! ! ! ! !  is shown to be higher than 
the risk neutral probability ! ! ! ! ! ! . Picking up the same reasoning, it can be easily 
shown that the inverse is true if the investor is risk prone Ð i.e. his utility function is convex. 
Thus, comparing risk neutral and real world quantiles could also allow us to state whether, 
on an aggregate basis, investors on a particular asset are either risk averse or risk prone. 

From the above relations given in (S), we can deduce, by definition of quantiles, that for any 
given threshold !  and time T, 

! !
! ! ! ! ! ! !

! ! ! !! 

which means that we expect a higher Value-at-Risk of the price ! !  under the real-world 
probability ! !than the one obtained under the risk-neutral probability ! , for the same 
threshold.   

Now, when looking at returns, we should get a lower VaR of the return under the risk neutral 
probability than under the real-world one (since the signs of the returns are negative).  

In the following tables, we have summarized risk neutral quantiles for different Student 
distributions, when looking at quantiles below the median, focusing on negative ones. They 
have been obtained by using the following equality: 

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! 

where the non standardized rv !  has been introduced previously. 

In Table 31, quantiles are expressed as quarterly returns without annualization: 
! ! ! ! ! !! ! !

! !
 

with ! ! ! !"# !!! . 

As the returns are for a quarter, they can be relatively high in absolute value and therefore 
logarithmic returns are not suitable. 
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Quantile  !=2  !=3  !=4  !=5  !=6  !=7  !=8  

0.01% -100.00% -100.00% -100.00% -92.57% -79.24% -71.48% -66.47% 

0.05% -100.00% -100.00% -78.88% -65.69% -58.83% -54.72% -52.01% 

0.1% -100.00% -88.06% -65.71% -56.36% -51.41% -48.41% -46.43% 

0.5% -78.17% -50.34% -42.16% -38.55% -36.59% -35.39% -34.60% 

1% -54.84% -39.12% -34.31% -32.16% -31.01% -30.32% -29.86% 

5% -22.97% -20.26% -19.50% -19.24% -19.16% -19.14% -19.16% 

10% -14.82% -14.09% -14.01% -14.08% -14.18% -14.29% -14.38% 

25% -6.39% -6.56% -6.75% -6.91% -7.05% -7.16% -7.25% 

50% 0.04% 0.04% 0.04% 0.04% 0.04% 0.04% 0.04% 

Table  31: Relevant quantiles for fitted non-standardized Student distributions 

In order to put into perspective the quarterly returns showed on the previous tables, we 
compute historical quantiles for CitigroupÕs stock returns. To do so, we first retrieve historical 
prices adjusted for splits and dividends (source: Yahoo Finance). Then, we have computed 
returns, which are approximately quarterly, from April 9th, 1984, to April 7th, 2014.  

Time to maturity for our panel of options is equal to 0.282, but based on a full year Ð i.e. 
taking into account weekend days. If we make the standard assumption that a year has 252 
working days, multiplying this figure by 0.282 we obtain a time to maturity of 71 business 
days. Therefore to compute CitigroupÕs quarterly stock returns we consider a 70-day lag: 

! !
!"#$%&'"() !

! ! ! ! ! ! !"

! ! ! !"
 

We compute quantiles for the following stock price quarterly returns time series, all ending 
on April 7th, 2014: 2 years (502 observations), 5 years (1,258 observations), 10 years (2,516 
observations), 15 years (3,774 observations) and 30 years (7,563 observations). Note that 
we compute those quarterly returns by a window moving every day, which means using 
overlapping daily observations. Hence, the extreme quantiles beyond 1% should be taken 
with caution as they are computed from strongly dependent observations.  

Results are shown on Table 32. We notice there that quantiles do not converge with the 
number of observations, except for the extreme quantile (0.01%). They are quite unstable. 
The first quartile is negative while the median becomes positive, reflecting the risk premium 
attributed to equities. For the extreme quantile, we move from no data (2 years) to 7 
overlapping observations (30 years), thus the saturation in the high quantiles, as well as the 
drastic change in values, contrary to the median.  

Quantile  2 years  5 years  10 years  15 years  30 years  

0.01% -31.38% -59.66% -86.19% -86.06% -85.64% 

0.05% -31.23% -59.16% -85.07% -84.34% -82.56% 

0.1% -31.04% -57.72% -83.82% -82.57% -80.55% 

0.5% -29.36% -45.37% -78.22% -77.01% -72.68% 

1% -28.31% -40.33% -75.00% -72.71% -59.71% 

5% -22.09% -29.27% -40.15% -33.40% -31.09% 

10% -16.85% -22.88% -29.16% -24.44% -19.59% 

25% -2.91% -9.26% -11.58% -8.67% -5.93% 

50% 8.59% 3.78% -0.53% 1.14% 4.76% 

Table  32: Historical quantiles for CitigroupÕs stock quarterly return 
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For better comparison, we have added to Table 33 the historical quantiles from the 30 years 
series: 

Quantile  30yr  !=2  !=3  !=4  !=5  !=6  !=7  !=8  

0.01% -85.64% -100.00% -100.00% -100.00% -92.57% -79.24% -71.48% -66.47% 

0.05% -82.56% -100.00% -100.00% -78.88% -65.69% -58.83% -54.72% -52.01% 

0.1% -80.55% -100.00% -88.06% -65.71% -56.36% -51.41% -48.41% -46.43% 

0.5% -72.68% -78.17% -50.34% -42.16% -38.55% -36.59% -35.39% -34.60% 

1% -59.71% -54.84% -39.12% -34.31% -32.16% -31.01% -30.32% -29.86% 

5% -31.09% -22.97% -20.26% -19.50% -19.24% -19.16% -19.14% -19.16% 

10% -19.59% -14.82% -14.09% -14.01% -14.08% -14.18% -14.29% -14.38% 

25% -5.93% -6.39% -6.56% -6.75% -6.91% -7.05% -7.16% -7.25% 

50% 4.76% 0.04% 0.04% 0.04% 0.04% 0.04% 0.04% 0.04% 

Table 33: Relevant quantiles for fitted non-standardized Student distributions together with historical 
quantiles for 30-year returns. Bold values are the closest to the historical ones. 

We have finally computed the sum of squared errors between Student distributionsÕ 
quantiles and historical quantiles for the 30-year series: 

Degrees of freedom  Sum of squared errors  

2 0.1054 

3 0.1660 

4 0.2205 

5 0.3036 

6 0.3775 

7 0.4458 

8 0.5000 

Table  34: Sum of squared errors for each fitted non-standardized Student distribution 

 
Graph 2 2: 30-year historical and distributional quantiles (Citigroup, April 7th 2014) 

In Graph 22, we present graphically 30-years historical quantiles as well as quantiles for the 
Student models. We observe that from the 1% quantile up to the first quartile, historical VaR 
are below the RN ones, contrary to what we claim in equations (S). We also notice that 
beyond 1%, the historical quantiles are leveling off, illustrating most probably the lack of 
observations. Empirical estimations of the tails have shown [5] that the degree of freedom of 
the Student-t distribution describing best the empirical distribution of financial returns should 
be around 3 or 4. 
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Our conclusion is therefore that we are observing the opposite of what we were expecting. A 
few explanations could be put forward: 

1. First, as we explained, the comparison of risk neutral and real world probability 
measures could be interpreted in terms of markets agentsÕ risk preferences. In this 
case, it could be argued that on aggregate basis investors in CitigroupÕs stock are 
risk prone. 

2. Another important interpretation is that investors fail to accurately price extreme 
events (beyond the first quartile). 

The second explanation is in our view the most plausible one, as does the havoc 
experienced by financial markets during the 2008-2009 crisis show. The mispricing of 
extreme events by market participants can be explained by various reasons related, among 
other things, to demand and supply dynamics: 

!  Holding deep OTM options can be viewed as an expensive trade, given that, in case 
the option is held to maturity, the initial investment is totally lost if the extreme event 
has not materialized. Therefore a lot of market participants could be deterred from 
entering this kind of trades, which should result in a structurally weak demand and 
low market prices. Low market prices in turn translate into a low implied likelihood of 
extreme events. 

!  It is relatively well known that a common practice in financial markets is to sell OTM 
puts, cashing in the premium while expecting the put will not be exercised; this 
strategy should drive up OTM puts supply and down OTM puts prices, thus lowering 
the risk neutral likelihood of extreme downfalls implied by these market prices. 

!  More generally, the repetition throughout financial markets history of crashes and 
crisis has lead experts and analysts to state that market participants have a short 
memory Ð see for example This time is different Ð Eight centuries of financial folly 
from C. M. Reinhart and K. Rogoff [24]. Whether this is due to pure negligence or to 
market dynamics that penalize investors that do not Òride the waveÓ of bull markets, 
the fact is that financial markets seem subject periodically to episodes of what R. 
Shiller has dubbed Òirrational exuberanceÓ [26], during which financial prices 
experience sharp revaluations that led investors to underestimate the likelihood of 
crashes. 

Although our results might indicate that market participants improperly price the likelihood of 
extreme events, there is evidence that option prices reflect to some extent adverse tail 
scenarios: since the stock crash of 1987, equity option markets [17] show a Òvolatility skewÓ 
Ð also known as Òvolatility smileÓ, for example in FX option markets. As observed in Graphs 
4, 5 and 6 Ð for convenience we have also schematically represented this skew in the figure 
below Ð the marketÕs implied volatility is a concave function of the strike price, with a 
minimum at ! ! ! ! ! In the case of the equity option market, the slope of the curve for ! ! ! ! ! 
tends to be higher than the slope when ! ! ! ! ! which is the reason why we speak of a skew 
instead of a smile. 
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Option pricing models always represent the optionÕs price as monotonically increasing in 
volatility, hence the above pattern indicates that Ð on a volatility-basis Ð OTM options are 
more expensive than ATM options. Our analysis shows that the pricing of extreme events is 
still insufficient Ð the volatility skew should be sharper. 

 

IV Ð Final results and concluding remarks  

We choose to concentrate on the SIFIs to explore if the market includes a systemic risk 
component in the pricing of options of those institutions. This component should translate in 
fat tails for the implied risk neutral distribution from option prices. Moreover, the option 
market for these large institutions is very liquid and should be quite representative of market 
perception. We developed our method on Citigroup option prices, then apply the same 
statistical procedure to three more American financial institutions belonging to the list of 
global SIFIs: Bank of America Merrill Lynch, Goldman Sachs and Morgan Stanley. Results 
for the other three banks Ð as well as for Citigroup in the case where selected option prices 
have a bid-ask spread equal to or lower than 10% Ð can be found in the appendix. Hereafter 
we display and discuss the main results for the four banks.  

 

 Citigroup * 
Bank of 

America Merrill 
Lynch * 

Goldman 
Sachs * 

Morgan 
Stanley * 

Best Student  
distribution in terms of 
log SE w.r.t average  

RN density   

% = 7 
 

(see Table 8) 

% = 4 
 

(see Table A.20) 

% = 5 
 

(see Table A.43) 

% = 8 
 

(see Table A.66)!

Closest Student  
distribution in terms  

of SE for quantile 1.0% 

% = 2 
 

(see Table 33) 

% = 2 
 

(see Table A.36) 

% = 2 
 

(see Table A.59) 

% = 3 
 

(see Table A.83)!

Closest Student  
distribution in terms  

of SE for quantile 5.0% 

% = 2 
 

(id) 

% = 2 
 

(id) 

% = 7 
 

(id) 

% = 2 
 

(id)!

Closest Student  
distribution in terms  
of SE for quantile 

25.0% 

% = 2 
 

(id) 

% = 4 
 

(id) 

% = 7 
 

(id) 

% = 2 
 

(id)  

Best Student  
distribution in terms 
of option pricing** 

(calibration & test options) 

% = 3 
 

(see Tables 9 & 
10) 

% = 3 
 

(see Table A.23) 

% = 2 
 

(see Table A.46) 

% = 4 
 

(see Table A.69)!

Best Student  
distribution in terms 

of ATM option 
pricing*** 

(calibration & test options) 

% = 3 
 

(see Table 23) 

% = 3 
 

(see Table A.29) 

% = 7 
 

(see Table A.52) 

% = 5 
 

(see Table A.75)!

Best Student  
distribution in terms 

of OTM option pricing** 
(calibration & test options) 

% = 3 
 

(see Table 24) 

% = 6 
 

(see Table A.30) 

% = 7 
 

(see Table A.53) 

% = 7 
 

(see Table A.76)!

* Only call options are considered. 

** The best distribution is selected according to the number of times it is the most accurate distribution. 

*** The best distribution is selected according to the average absolute error. 

Table 35: Best fit for non-standardized Student distributions according to various criteria 
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Citigroup  
(30 years) 

Bank of 
America Merrill 

Lynch  
(25 years) 

Goldman 
Sachs  

(14,75 years) 

Morgan  
Stanley  

(25 years) 

Empirical longest 
years 1% quantile  -59.71% -55,64% -50,40% 7NO:PPQ!

1% quantile 
computed with the 

fitted Student with % = 
3 distribution 

-39,12% -41,55% -32,51% 7RS:"SQ!

Difference between 
empirical (RW) and 
fitted RN quantiles 

-20,59% -14,09% -17,89% -2,04% 

Closest Student % = 2 % = 2 % = 2 % = 3!

Table 36: Comparison of the RW and the RN 1%-quantiles for four SIFIs 

When picking the best distribution in the option pricing category, for Òall call optionsÓ and 
ÒOTM call optionsÓ, we have made the choice to rank distributions according to the number 
of accurate valuations, instead of the average pricing error, as in some cases an extremely 
large valuation error on a single option might distort an otherwise excellent accuracy on the 
rest of options. 

We now discuss the main takeaways from Tables 35 & 36 : 

!  We notice that generally the best distributions in terms of sum of log squared errors Ð 
with respect to the estimated average RN density Ð have more degrees of freedom than 
those whose quantiles are the closest to empirical quantiles Ð line 1 against lines 2, 3 
and 4 of Table 35.  

As it has already been the case, this result is inconsistent with our understanding of risk 
neutral and real world probabilities: under the RN world financial assets yield on average 
the risk free rate, thus downwards events should have a greater probability mass under 
the RN distribution than under the real world one; we might then expect the RN 
distribution to have fatter tails than what we observe in the prices, which translates into 
higher likelihood of extreme events (except for Goldman Sachs from 5% quantile 
onwards). When comparing RN quantiles to real world quantiles, we would expect the 
closest Student distributions to have more degrees of freedom than the optimal (in terms 
of log squared errors) distribution, not less, as observed in our study. 

!  Looking at Table 35, we see the difficulty of accurately estimate the tails. We find 
scattered responses and sometimes contradictory when using various estimation criteria. 
We have discussed that when talking about Citigroup. The same holds for the other 
studied banks. We expect also that using other dates for the option prices would also 
lead to similar results. 

!  Regarding option pricing, on a general basis, Student distributions with few degrees of 
freedom seem to perform better for the ATM options, while it is the reverse for OTM 
ones. This seems paradoxical as the OTM options should be more sensitive to fat tails.  

!  For ATM option pricing, we observe a low number of degrees of freedom for Citigroup 
and Bank of America (# = 3) as well as Morgan Stanley (# = 5)  but a relatively high 
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number for Goldman Sachs (# = 7). Nevertheless, note that, for Goldman Sachs, the 
distribution # = 2 also performs very well Ð average absolute error equal to 2.00% 
against 1.18% for # = 7.  

!  On the contrary, for OTM pricing, distributions with a high number of degrees of freedom 
perform better, the exception being Citigroup.  

This phenomenon echoes what we already observe for CitigroupÕs deep OTM call 
options: OTM options are better priced by Student distributions with more degrees of 
freedom than those of optimal Student distributions for pricing ATM options. This 
phenomenon might be considered paradoxical with regards to financial markets history; 
although we reasoned that the paradox might be solved by considering the definition of 
an extreme event.  

¥ We make a last remark concerning OTM pricing results. It is only for Citigroup that a 
strictly correct pricing approach has been undertaken, as for Bank of America Merrill 
Lynch, Goldman Sachs and Morgan Stanley we decided to ignore the effect of 
dividend payments on the ground that their amount were small and thus their impact 
on American option prices should be negligible. These last results might indicate that 
the impact has not been in fact negligible; however, we have not been able to explain 
why ignoring dividends would lead to having an optimal pricing distribution with more 
degrees of freedom. If anything, pricing an American call as a European one should 
lead to an undervaluation of the option, therefore we would expect the best 
distribution to be one with very few degrees of freedom. 

To conclude, despite the difficulties of assessing the tail, it seems clear that the assumption 
that the RN distribution should overestimate the tail risk, is not verified in our study. As 
mentioned previously, there are two possible explanations for that: either investors are risk 
prone as far as the tails are concerned, or the market does not price the extreme risks. Both 
are not contradictory: a risk prone investor will not price correctly the extreme risks. 
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Appendix  
 
A Ð Additional Citigroup results  

Hereafter we present some additional graphs and tables relating to Citigroup results that we do not 
deem to be as critical as to be included in the main text.  

We also present some additional results relating to option put pricing to evaluate the accuracy of our 
Student distribution calibration procedure. 

For each one of the appendixÕs subsections and subsubsections, we have written in parenthesis the 
corresponding section and subsection numbering in the main text. 

 

A.1/ Risk Neutral Distribution of stock prices: te chnical methodology and 
results  (III) 

A.1.1/ Estimating the risk neutral probability (III.1)  

 
Graph A.1: Risk neutral distribution for the polynomial interpolation method (Citigroup, April 7th 2014) 

 
Graph A.2: Risk neutral distribution for the spline smoothing method (Citigroup, April 7th 2014) 
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Graph A.3: Risk Neutral Density for the polynomial interpolation method (Citigroup, April 7th 2014) 

 
Graph A.4: Risk Neutral Density for the spline smoothing method (Citigroup, April 7th 2014) 

 
Graph A.5: Amended risk neutral distribution for Nadaraya-Watson estimator h = 9  

(Citigroup, April 7th 2014) 
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Graph A.6: Amended Risk Neutral Density for Nadaraya-Watson estimator h = 9  

(Citigroup, April 7th 2014) 

A.1.2/ Fitting a known parametric probability distribution (III.4) 

Option pricing for call  options (Citigroup) 

The below tables display additional key statistics for all call options Ð calibration calls, test 
calls. 

 

Statistic  !=2  !=3  !=4  !=5  !=6  !=7  !=8  

Average 69.20% 15.17% 5.90% 5.55% 6.70% 7.96% 8.70% 

St. Dev. 1.63 0.37 0.10 0.09 0.13 0.15 0.17 

Maximum 613.40% 130.29% 47.90% 50.20% 67.20% 76.20% 81.60% 

Minimum 1.21% 0.06% 0.06% 0.01% 0.01% 0.04% 0.05% 

 
Table A.1: Relative error statistics for estimated option prices for all options  

Statistic  !=2  !=3  !=4  !=5  !=6  !=7  !=8  

Average 4.13% 0.82% 1.52% 1.86% 2.00% 2.05% 2.06% 

St. Dev. 0.03 0.01 0.02 0.02 0.02 0.02 0.02 

Maximum 10.75% 3.80% 6.89% 7.66% 7.72% 7.55% 7.30% 

Minimum 1.21% 0.06% 0.06% 0.01% 0.01% 0.04% 0.05% 

 
Table A.2: Relative error statistics for estimated ITM option prices for all options 

Statistic  !=2  !=3  !=4  !=5  !=6  !=7  !=8  

Average 7.34% 1.13% 2.68% 3.26% 3.44% 3.47% 3.44% 

St. Dev. 0.09 0.01 0.03 0.04 0.04 0.04 0.04 

Maximum 39.91% 4.30% 9.78% 12.36% 13.43% 13.66% 13.55% 

Minimum 1.21% 0.06% 0.06% 0.01% 0.01% 0.04% 0.05% 

   
Table A.3: Relative error statistics for estimated option prices for all options ex. the 5 most OTM 
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Statistic  !=2  !=3  !=4  !=5  !=6  !=7  !=8  

Average 69.20% 13.58% 0.57% -4.35% -6.69% -7.95% -8.69% 

St. Dev. 1.63 0.37 0.12 0.10 0.13 0.15 0.17 

Maximum 613.40% 130.29% 47.90% 14.10% 0.10% 0.08% 0.07% 

Minimum 1.21% -4.30% -13.20% -50.20% -67.20% -76.20% -81.60% 

Best dist. 0 20 5 3 2 0 1 

Table A.4: Absolute error statistics for estimated option prices for all options 

Statistic  !=2  !=3  !=4  !=5  !=6  !=7  !=8  

Average 4.13% -0.41% -1.48% -1.85% -1.99% -2.04% -2.05% 

St. Dev. 0.03 0.01 0.02 0.02 0.02 0.02 0.02 

Maximum 10.75% 1.07% 0.22% 0.13% 0.10% 0.08% 0.07% 

Minimum 1.21% -3.80% -6.89% -7.66% -7.72% -7.55% -7.30% 

Best dist. 0 16 3 1 1 0 1 

Table A.5: Absolute error statistics for estimated ITM option prices for all options 

Statistic  !=2  !=3  !=4  !=5  !=6  !=7  !=8  

Average 7.34% -0.77% -2.64% -3.24% -3.43% -3.47% -3.44% 

St. Dev. 0.09 0.02 0.03 0.04 0.04 0.04 0.04 

Maximum 39.91% 1.07% 0.22% 0.13% 0.10% 0.08% 0.07% 

Minimum 1.21% -4.30% -9.78% -12.36% -13.43% -13.66% -13.55% 

Best dist. 0 20 3 1 1 0 1 

Table A.6: Absolute error statistics for estimated option prices for all options excluding the 5 most OTM 

Option pricing for put options  (Citigroup) 

Strike !  Market ! !  
Estimated ! !  

!=2  !=3  !=4  !=5  !=6  !=7  !=8  

$37 0.165 0.514 0.283 0.203 0.167 0.147 0.136 0.129 

$38 0.220 0.580 0.338 0.254 0.216 0.196 0.184 0.177 

$39 0.295 0.659 0.407 0.320 0.281 0.261 0.250 0.243 

$40 0.395 0.756 0.495 0.406 0.368 0.349 0.338 0.333 

$41 0.530 0.876 0.609 0.521 0.484 0.466 0.458 0.454 

$42 0.705 1.027 0.758 0.671 0.637 0.623 0.617 0.616 

$43 0.925 1.219 0.951 0.869 0.839 0.829 0.826 0.827 

$44 1.200 1.465 1.202 1.125 1.100 1.094 1.094 1.098 

$45 1.545 1.780 1.523 1.452 1.431 1.428 1.431 1.437 

$46 1.955 2.180 1.927 1.859 1.841 1.840 1.845 1.851 

$47 2.445 2.673 2.420 2.353 2.335 2.334 2.339 2.346 

$48 3.020 3.260 3.004 2.933 2.913 2.910 2.914 2.920 

$49 3.650 3.934 3.671 3.595 3.571 3.565 3.566 3.570 

$50 4.350 4.679 4.411 4.329 4.300 4.291 4.288 4.289 

$52.5 6.350 6.757 6.492 6.403 6.365 6.347 6.338 6.334 

 

Table A.7: Estimated put prices for each fitted non-standardized Student distribution (S0 = $46.55) 
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Strike !  
Estimated ! !  

!=2  !=3  !=4  !=5  !=6  !=7  !=8  

$37 211.21% 71.52% 23.03% 1.03% -10.67% -17.64% -22.12% 

$38 163.45% 53.45% 15.23% -2.00% -11.09% -16.41% -19.73% 

$39 123.42% 37.90% 8.31% -4.85% -11.63% -15.42% -17.76% 

$40 91.44% 25.37% 2.84% -6.94% -11.75% -14.33% -15.77% 

$41 65.36% 14.98% -1.79% -8.75% -12.00% -13.57% -14.32% 

$42 45.72% 7.49% -4.81% -9.60% -11.62% -12.43% -12.68% 

$43 31.79% 2.80% -6.10% -9.29% -10.42% -10.70% -10.62% 

$44 22.08% 0.12% -6.26% -8.32% -8.87% -8.82% -8.54% 

$45 15.23% -1.44% -6.04% -7.36% -7.57% -7.37% -7.01% 

$46 11.49% -1.46% -4.91% -5.82% -5.88% -5.64% -5.30% 

$47 9.31% -1.03% -3.78% -4.49% -4.54% -4.34% -4.07% 

$48 7.96% -0.54% -2.88% -3.54% -3.63% -3.52% -3.33% 

$49 7.77% 0.58% -1.50% -2.16% -2.33% -2.30% -2.20% 

$50 7.55% 1.40% -0.48% -1.14% -1.37% -1.42% -1.39% 

$52.5 6.41% 2.24% 0.83% 0.24% -0.04% -0.18% -0.26% 

Table A.8: Estimated put prices as a percentage over market price 
for each fitted non-standardized Student distribution 

Statistic  !=2  !=3  !=4  !=5  !=6  !=7  !=8  

Average 54.68% 14.82% 5.92% 5.03% 7.56% 8.94% 9.67% 

St. Dev. 0.65 0.22 0.06 0.03 0.04 0.06 0.07 

Maximum 211.21% 71.52% 23.03% 9.60% 12.00% 17.64% 22.12% 

Minimum 6.41% 0.12% 0.48% 0.24% 0.04% 0.18% 0.26% 

Table A.9: Relative error statistics for estimated call prices 

Statistic  !=2  !=3  !=4  !=5  !=6  !=7  !=8  

Average 54.68% 14.23% 0.78% -4.87% -7.56% -8.94% -9.67% 

St. Dev. 0.65 0.23 0.09 0.04 0.04 0.06 0.07 

Maximum 211.21% 71.52% 23.03% 1.03% -0.04% -0.18% -0.26% 

Minimum 6.41% -1.46% -6.26% -9.60% -12.00% -17.64% -22.12% 

Best dist. 0 7 4 3 1 0 0 

Table A.10: Absolute error statistics for estimated call prices 

We have also priced some out-of-sample puts; we have decided to ignore some prices from 
our panel. Indeed, for strikes below $34 most options violate non-arbitrage conditions, as 
can be seen in Table 2. Let k1 and k2 be two different strikes, then by no-arbitrage we must 
have: 

! ! ! ! ! ! ! ! !
! ! ! !

 

Yet we can observe in the aforementioned table that market prices for put options at strikes 
$26, $27, $28, $29, $30, $32 and $33 break this condition. In such a case, modelling results 
might seem inaccurate and distorted, and it is wiser to not take into account these prices 
when assessing our method. 
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Strike !  Market ! !  
Estimated ! !  

!=2  !=3  !=4  !=5  !=6  !=7  !=8  

$34 0.070 0.370 0.175 0.110 0.081 0.066 0.056 0.050 

$35 0.080 0.411 0.204 0.134 0.102 0.085 0.075 0.068 

$36 0.110 0.458 0.239 0.164 0.130 0.112 0.101 0.094 

$55 8.380 9.016 8.772 8.688 8.650 8.630 8.618 8.611 

$57.5 10.780 11.364 11.150 11.077 11.044 11.026 11.015 11.008 

$60 13.180 13.762 13.578 13.516 13.490 13.475 13.467 13.462 

$65 18.430 18.634 18.500 18.460 18.444 18.436 18.432 18.429 

 
Table A.11: Estimated put prices for testing options  
(i.e. excluded from the estimation/calibration phase) 

Strike !  
Estimated ! !  

!=2  !=3  !=4  !=5  !=6  !=7  !=8  

$34 428.57% 150.57% 57.14% 15.57% -6.43% -19.71% -28.29% 

$35 413.25% 155.13% 67.25% 27.63% 6.50% -6.13% -14.50% 

$36 316.27% 117.55% 49.09% 18.18% 1.55% -8.36% -14.91% 

$55 7.59% 4.68% 3.67% 3.22% 2.98% 2.84% 2.75% 

$57.5 5.42% 3.43% 2.75% 2.44% 2.28% 2.18% 2.12% 

$60 4.42% 3.02% 2.55% 2.35% 2.24% 2.18% 2.14% 

$65 1.10% 0.38% 0.16% 0.07% 0.03% 0.01% -0.01% 

 
Table A.12: Estimated put prices for testing options as a percentage over market price  

(i.e. excluded from the estimation/calibration phase) 

Statistic  !=2  !=3  !=4  !=5  !=6  !=7  !=8  

Average 168.09% 62.11% 26.09% 9.92% 3.14% 5.92% 9.24% 

St. Dev. 2.07 0.75 0.30 0.11 0.02 0.07 0.10 

Maximum 428.57% 155.12% 67.25% 27.62% 6.50% 19.71% 28.29% 

Minimum 1.10% 0.38% 0.16% 0.07% 0.03% 0.01% 0.01% 

 
Table A.13: Relative error statistics for test put prices 

Statistic  !=2  !=3  !=4  !=5  !=6  !=7  !=8  

Average 168.09% 62.11% 26.09% 9.92% 1.31% -3.86% -7.24% 

St. Dev. 2.07 0.75 0.30 0.11 0.04 0.08 0.12 

Maximum 428.57% 155.12% 67.25% 27.62% 6.50% 2.84% 2.75% 

Minimum 1.10% 0.38% 0.16% 0.07% -6.43% -19.71% -28.29% 

Best dist. 0 0 0 0 3 2 3 

 

Table A.14: Absolute error statistics for test put prices 
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B Ð Computations for other banks  

This second appendix compiles additional results for risk neutral distribution estimation for 
three other banking corporations: Bank of America Merrill Lynch, Goldman Sachs and 
Morgan Stanley. Moreover, we have also included a section in which we test the sensitivity 
of our estimation procedure to the choice of option data by restricting the choice of 
CitigroupÕs options we pick. 

B.1/ Bank of America Merrill Lynch  

In this section, we have undertaken the same procedures as previously but applied to 
options written on Bank of America Merrill Lynch (BAML) stock. Data is from April 1st, 2014. 
Bank of America Merrill Lynch shares closed at $17.34 on that day. 

B.1.1/ Data 

Given that compared to CitigroupÕs Bank of America Merrill LynchÕs dataset is more limited, 
we have kept all option mid prices for which we have an implied volatility value for our 
estimation procedure. However, except for the $22 call and the $13 put, all other options 
have a bid-offer spread narrower than 35%, so our choice of data seems reasonable. 

Calls   Puts  

Strike Bid-offer 
spread Mid Implied 

volatility  Strike Bid-offer 
spread Mid Implied 

volatility 

10 1.37% 7.35 -  10 - 0.015 - 

11 1.59% 6.35 -  11 - 0.015 - 

12 1.87% 5.4 39.99%  12 200.00% 0.02 - 

13 2.30% 4.4 32.56%  13 66.67% 0.04 30.29% 

14 1.47% 3.425 27.77%  14 12.50% 0.085 27.94% 

15 0.40% 2.525 26.14%  15 5.88% 0.175 25.73% 

16 0.59% 1.705 24.25%  16 2.86% 0.355 23.95% 

17 0.96% 1.045 23.20%  17 1.43% 0.705 23.23% 

18 1.75% 0.575 22.57%  18 0.81% 1.235 22.60% 

19 3.57% 0.285 22.24%  19 0.52% 1.945 22.27% 

20 7.69% 0.135 22.40%  20 0.36% 2.795 22.44% 

21 16.67% 0.065 22.99%  21 2.70% 3.75 24.82% 

22 50.00% 0.025 22.73%  22 2.15% 4.7 24.72% 

23 100.00% 0.015 -  23 1.77% 5.7 28.38% 

24 - 0.005 -  24 1.50% 6.7 31.81% 

25 - 0.015 -  25 1.31% 7.7 35.03% 

26 - 0.01 -  26 1.74% 8.675 - 

Tables A .15 and A .16: Option prices data for BAML on April 1st, for a 109 days maturity (2014) 

B.1.2/ Risk neutral density estimation 

With respect to Citigroup, polynomial interpolation has been undertaken with a 3 degree 
polynomial in the case of Bank of America Merrill Lynch. Furthermore, given the structure of 
BAML option prices data the spline smoothing methods yielded unsatisfactory results Ð 
extremely bumpy interpolation, negative density. We decided to exclude it from the 
estimation procedure. 
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Method  Polynomial 
interpolation 

Spline 
smoothing 

Nadaraya-Watson 
estimator: h = h* 

Nadaraya-Watson 
estimator: h = 4 

SSE for implied  
volatility estimation  0.0008747 - 0.0018329 0.0049147 

Table A .17: Sum of Squared Errors for all implied volatility estimation methods 

Method  Polynomial 
interpolation 

Spline 
smoothing 

Nadaraya-Watson 
estimator: h = h* 

Nadaraya-Watson 
estimator: h = 4 

Density integral 
estimate  

99.07% - 96.56% 97.00% 

Table A .18: Density integral estimates for polynomial, spline and Nadaraya-Watson methods 

 
Graph  A.7: Estimated RNDs for BAML by polynomial and Nadaraya-Watson interpolation 

 
Graph  A.8: Estimated RNDs for BAML, logarithmic scale 

In addition, we observe in the above graph that the RND estimated through the Nadaraya-
Watson method has some undesirable properties, as it was the case for Citigroup. We thus 
decided to exclude it from the rest of the procedure so in the case of Bank of America we 
have not computed an average RND but simply retained the RND obtained by polynomial 
interpolation. 
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B.1.3/ Student distribution fitting 

Degrees of freedom  ! (visual approximation) ! (optimized fit) 

2 $1.625 $1.4032 

3 $1.700 $1.5794 

4 $1.720 $1.7043 

5 $1.750 $1.7963 

6 $1.765 $1.8668 

Table A .19: Optimal scale parameters for fitted non-standardized Student distributions 

Degrees of freedom  Sum of squared errors  Sum of log squared errors  

2 24.64 4,430.05 

3 5.93 928.43 

4 0.98 439.79 

5 1.23 1,003.90 

6 3.40 1,922.32 

Table A .20: Errors for each fitted non-standardized Student distribution 

 
Graph  A.9: Comparison of average Risk Neutral Density and 

fitted non-standardized Student distribution 

 
Graph  A.10: Comparison of average Risk Neutral Density and best fitted  

non-standardized Student distribution in terms on log SSE, logarithmic scale 
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Option pricing  

We explained in section III.4.B of this paper that the distribution of dividends by the underlying 
stock gives rise to a price difference between a European call option and its American 
counterpart. We also commented that there are some conditions or computational tricks that 
allow us to compute an American call option price using techniques for evaluating European call 
options. 

In the case of Citigroup, we showed that the following holds:   ! ! ! ! ! ! ! ! ! ! ! ! !!where tD is 
the payment date of the dividend. In such setting, we stated that the price of an American call is 
equal to the price of its European counterpart. However, this upper bound on the dividend 
amount does not hold for Bank of America Merrill Lynch. Nonetheless, the dividend to be paid on 
date tD Ð June 21st, 2014 Ð is equal to $0.01, which corresponds to 0.058% of the stock price on 
April 1st and 0.10% of the lowest strike Ð $10. Therefore we believe that the theoretical price 
difference between the American and the European call arising from this dividend payment 
should be negligible; we think that the European call price that we can estimate with our RN 
distribution is a satisfactorily good approximation of the American call price so as to assess the 
accuracy of our calibrated Student distribution.  
We have tested this assertion by computing prices for the following options using the 
`RQuantL ib ` package: 

!  The price of a European call written on Bank of America Merrill Lynch using the Black-
Scholes formula, with strike equal to the current price Ð $46.55. We linearly interpolated 
the implied volatilities for strikes $46 and $47 from OptionMetrics data. All other 
parameters have remained unchanged, particularly the annual dividend yield for Bank of 
America, 0.869%. 

!  The price of an American call written on Bank of America Merrill Lynch using the Barone-
Adesi-Whaley method, with all parameters set as for the European option above. 

We found a price difference of just 0.15% between the two prices.  

We repeated the same test but this time using the lowest strike for which there still is an implied 
volatility figure supplied by OptionMetrics Ð $12. We found a price difference of 0.22%. Finally, 
we did the same test again but for the highest possible strike Ð $22 Ð and the price difference 
was 0.38%.  

These results seem to confirm our intuition that, considering the low amounts paid out as 
dividends by Bank of America Merrill Lynch, American call prices can be reasonably approached 
by their European counterpartsÕ prices.  

We show our call pricing results hereafter. We only show estimated prices through our RN 
distributions as a percentage over the true market price, as well as relevant statistics. 

Strike !  
Estimated ! !  

!=2  !=3  !=4  !=5  !=6  

$12 1.52% -0.56% -1.06% -1.26% -1.36% 

$13 2.75% -0.03% -0.73% -1.02% -1.17% 

$14 4.50% 0.66% -0.32% -0.72% -0.90% 

$15 5.85% 0.47% -0.84% -1.29% -1.45% 

$16 7.92% 0.19% -1.36% -1.69% -1.65% 

$17 10.66% -1.02% -2.86% -2.88% -2.42% 

$18 22.40% 0.61% -3.11% -3.41% -2.78% 

$19 60.46% 13.23% 2.81% -0.04% -0.53% 

$20 141.26% 41.19% 16.07% 6.81% 2.89% 

$21 283.69% 86.46% 35.85% 15.38% 5.23% 

$22 703.60% 229.20% 111.20% 63.20% 38.80% 

Table A .21: Estimated call prices as a percentage of market price 
 for each fitted non-standardized Student distribution 
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Statistic  !=2  !=3  !=4  !=5  !=6  

Average 113.15% 33.97% 16.02% 8.88% 5.38% 

St. Dev. 2.14 0.70 0.33 0.19 0.11 

Maximum 703.60% 229.20% 111.20% 63.20% 38.80% 

Minimum 1.52% 0.03% 0.32% 0.04% 0.53% 

Table A .22: Relative error statistics for estimated call prices 
for each fitted non-standardized Student distribution 

Statistic  !=2  !=3  !=4  !=5  !=6  

Average 113.15% 33.67% 14.15% 6.65% 3.15% 

St. Dev. 2.14 0.70 0.34 0.20 0.12 

Maximum 703.60% 229.20% 111.20% 63.20% 38.80% 

Minimum 1.52% -1.02% -3.11% -3.41% -2.78% 

Best dist. 0 6 1 1 3 

Table A .23: Absolute error statistics for estimated call prices 
for each fitted non-standardized Student distribution 

Moreover, following the same argument as for Citigroup, we believe that the distortion in an 
American put price arising from the payment of the 1 cent dividend should be negligible, so 
we have undertaken pricing computations for put prices also. Results are showed hereafter. 

Strike !  
Estimated ! !  

!=2  !=3  !=4  !=5  !=6  

$13 302.00% 119.50% 56.00% 27.25% 12.00% 

$14 156.47% 60.12% 26.94% 12.47% 5.29% 

$15 77.83% 28.29% 12.63% 6.80% 4.63% 

$16 34.54% 11.38% 5.46% 4.20% 4.48% 

$17 12.54% 2.23% 0.28% 0.43% 1.13% 

$18 8.51% 2.36% 1.08% 1.03% 1.34% 

$19 7.60% 3.22% 1.98% 1.62% 1.57% 

$20 5.92% 2.86% 1.85% 1.44% 1.26% 

$21 3.56% 1.46% 0.73% 0.41% 0.24% 

$22 2.86% 1.39% 0.88% 0.65% 0.53% 

$23 1.76% 0.72% 0.37% 0.22% 0.14% 

$24 1.13% 0.38% 0.14% 0.04% -0.02% 

$25 0.74% 0.19% 0.02% -0.05% -0.08% 

Table A .24: Estimated put prices as a percentage of market price for each fitted  
 non-standardized Student distribution 

Statistic  !=2  !=3  !=4  !=5  !=6  

Average 55.78% 21.23% 9.84% 5.14% 2.96% 

St. Dev. 0.94 0.37 0.17 0.08 0.04 

Maximum 302.00% 119.50% 56.00% 27.25% 12.00% 

Minimum 1.76% 0.72% 0.28% 0.22% 0.14% 

Table A .25: Relative error statistics for estimated put prices 
for each fitted non-standardized Student distribution 
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Statistic  !=2  !=3  !=4  !=5  !=6  

Average 55.78% 21.23% 9.84% 5.14% 2.96% 

St. Dev. 0.94 0.37 0.17 0.08 0.04 

Maximum 302.00% 119.50% 56.00% 27.25% 12.00% 

Minimum 1.76% 0.72% 0.28% 0.22% 0.14% 

Best dist. 0 0 2 2 9 

Table A .26: Absolute error statistics for estimated put prices 
for each fitted non-standardized Student distribution 

Recall that by no arbitrage, the following condition holds Ð see main appendix with CitigroupÕs put 
pricing results:!!!!!!! ! ! ! ! ! ! ! !

! ! ! !
. 

Equivalently:     
! ! ! ! ! ! ! ! !

! ! ! !
 

! ! ! ! ! ! ! ! !
! ! ! !

 

! ! ! ! ! ! ! ! !
! ! ! !

! 

We have estimated out-of-sample option prices by ignoring some options which market prices do 
not comply with these conditions Ð $25 and $26 calls, $10 and $11 puts.  

Strike !  
Estimated ! !  

!=2  !=3  !=4  !=5  !=6  

$10 1.14% -0.15% -0.41% -0.51% -0.56% 

$11 1.65% 0.03% -0.34% -0.48% -0.55% 

$23 1018.00% 293.33% 122.67% 56.00% 22.67% 

$24 2776.00% 782.00% 344.00% 182.00% 106.00% 

Table A .27: Estimated call prices for testing options as a percentage of market price 
excluding arbitrageable prices 

Strike !  
Estimated ! !  

!=2  !=3  !=4  !=5  !=6  

$11 538.00% 180.00% 62.00% 10.67% -16.00% 

$12 513.50% 198.00% 90.50% 42.00% 16.50% 

$26 0.78% 0.37% 0.25% 0.21% 0.18% 

Table A .28: Estimated put prices for testing options as a percentage of market price excluding 
arbitrageable prices 

 

Strike !  
Estimated option prices  

!=2  !=3  !=4  !=5  !=6  

$17 call 10.66% -1.02% -2.86% -2.88% -2.42% 

$18 call 22.40% 0.61% -3.11% -3.41% -2.78% 

$17 put 12.54% 2.23% 0.28% 0.43% 1.13% 

$18 put 8.51% 2.36% 1.08% 1.03% 1.34% 

Average  13.53% 1.05% -1.15% -1.21% -0.68% 

Abs.  average 13.53% 1.56% 1.83% 1.94% 1.92% 

Table A .29: Estimated option prices for ATM options as a percentage of market price 
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Strike !  
Estimated option prices  

!=2  !=3  !=4  !=5  !=6  

$18 call 22.40% 0.61% -3.11% -3.41% -2.78% 

$19 call 60.46% 13.23% 2.81% -0.04% -0.53% 

$20 call 141.26% 41.19% 16.07% 6.81% 2.89% 

$21 call 283.69% 86.46% 35.85% 15.38% 5.23% 

$22 call 703.60% 229.20% 111.20% 63.20% 38.80% 

$23 call 1018.00% 293.33% 122.67% 56.00% 22.67% 

$24 call 2776.00% 782.00% 344.00% 182.00% 106.00% 

Average  715.06% 206.57% 89.93% 45.71% 24.61% 

Abs. average  715.06% 206.57% 90.82% 46.69% 25.56% 

Best dist.  0 1 0 1 5 

Table A .30: Estimated option prices for OTM call options as a percentage of market price 

Risk neutral default probabilities  

Degrees of freedom  ! ! ! !  

2 0.3255% 

3 0.0814% 

4 0.0265% 

5 0.0102% 

6 0.0045% 

Table A .31: Three-month risk neutral probabilities of default for fitted  
non-standardized Student distributions 

Degrees of freedom  Annualized probabilities  Closest S&P rating  

2 1.2957% BB- (1.09%) 

3 0.3252% BBB- (0.30%) 

4 0.1060% BBB+ (0.13%) 

5 0.0408% AA- (0.03%) 

6 0.0180% AA (0.02%) 

Table A .32: One-year risk neutral probabilities of default for fitted non-standardized 
Student distributions assuming independence and closest matching S&P rating 

Degrees of freedom  Annualized probabilities  Closest S&P rating  

2 1.0644% BB- (1.09%) 

3 0.4655% BB+ (0.40%) 

4 0.2574% BBB- (0.30%) 

5 0.1638% BBB (0.19%) 

6 0.1145% BBB+ (0.13%) 

Table A .33: One-year risk neutral probabilities of default for fitted non-standardized Student 
distributions assuming non independence and closest matching S&P rating 

 

In 2014, S&P had a LT local issuer rating of ÒA-Ó for Bank of America Corp. The Global 
Corporate Average Cumulative Default Rate for a one-year horizon corresponding to an ÒA-Ó 
rating is 0.08% Ð the probability has been estimated by S&P using data from 1981 to 2014. 
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Degrees of freedom  
Annualized probabilities relative to 
S&PÕs one-year default probability  

2 16.20 

3 4.07 

4 1.33 

5 0.51 

6 0.23 

Table A .34: Comparison of fitted default rates (independence hypothesis) and S&P default rates 

Degrees of freedom  
Annualized probabilities 

relative to S&PÕs one-
year default probability  

2 13.31 

3 5.82 

4 3.22 

5 2.05 

6 1.43 

Table A .35: Comparison of fitted default rates (non independence hypothesis) and S&P default rates 

Risk neutral quantiles  

Time to maturity for our panel of options is equal to 0.299, but based on a full year Ð i.e. 
taking into account weekend days. If we make the standard assumption that a year has 252 
working days, multiplying this figure by 0.299 we obtain a time to maturity of 75 business 
days. Therefore to compute Bank of America Merrill LynchÕs quarterly stock returns we 
consider a 74-day lag: 

! !
!"#$%&'"() !

! ! ! ! ! ! !"

! ! ! !"
!! 

We have computed quantiles for the following stock price quarterly returns time series, 
ending on April 1st, 2014: 25 years (6,301 observations). 

Quantile  25yr  !=2  !=3  !=4  !=5  !=6  

0.01% -84.77% -100% -100% -100% -100% -86.59% 

0.05% -83.52% -100% -100% -84.82% -71.35% -64.34% 

0.1% -80.67% -100% -93.23% -70.69% -61.24% -56.26% 

0.5% -71.09% -80.51% -53.39% -45.44% -41.96% -40.11% 

1% -55.64% -56.55% -41.55% -37.02% -35.05% -34.03% 

5% -29.35% -23.82% -21.63% -21.14% -21.07% -21.11% 

10% -18.87% -15.45% -15.11% -15.26% -15.48% -15.69% 

25% -7.32% -6.80% -7.16% -7.47% -7.72% -7.92% 

50% 3.33% -0.19% -0.19% -0.19% -0.19% -0.19% 

Table A .36: Relevant quantiles for fitted non-standardized Student distributions 
Together with historical quantiles for 25-year returns 

Degrees of freedom  Sum of squared errors  

2 0.1022 

3 0.1259 

4 0.1431 

5 0.2123 

6 0.2485 

Table A .37: Sum of squared errors for each fitted non-standardized Student distribution 
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Graphic A .11: Historical and distributional quantiles for selected distributions 

As for CitigroupÕs, we observe the same phenomenon happening: except for the Student distribution 
with #=2, RN quantiles for negative returns are generally above historical quantiles. The historical 
distribution seems to assign a greater probability mass to extreme downward events than our RN 
distributions, whereas we were expecting the reverse to happen. This result would tend to confirm the 
idea that market participants underestimate the likelihood of crashes and crisis.  

B.2/ Goldman Sachs  

In this section, we have undertaken the same procedures as previously but applied to options written 
on Goldman Sachs stock. Data is from April 1st, 2014. Goldman Sachs shares closed at $165.92 on 
that day. 

B.2.1/ Data 

Selected data for Goldman Sachs has better characteristics than that of Citigroup or Bank of America 
Merrill Lynch: while the average bid-offer spread for all options retained for the estimation procedure 
were respectively 8.67% and 7.64%, the average for Goldman Sachs is just 5.12%, which should 
indicate that Goldman Sachs options are more liquid and their prices are better gauges of market 
participantsÕ expectations.  

Calls   Puts  

Strike Bid-offer 
spread 

Mid Implied 
volatility 

 Strike Bid-offer 
spread 

Mid Implied 
volatility 

85 4.9% 80.78 -  85 100.0% 0.03 45.25% 

90 5.1% 75.85 -  90 300.0% 0.075 46.05% 

95 4.9% 71.05 47.08%  95 300.0% 0.075 42.29% 

100 5.9% 65.88 -  100 100.0% 0.075 38.71% 

105 6.4% 60.88 -  105 112.5% 0.125 37.71% 

110 6.1% 56.10 37.58%  110 162.5% 0.145 34.97% 

115 6.9% 51.15 35.45%  115 141.7% 0.205 33.27% 

120 1.1% 46.30 34.90%  120 94.4% 0.265 31.14% 

125 6.9% 41.08 26.50%  125 60.7% 0.365 29.37% 

130 1.4% 36.45 29.42%  130 40.5% 0.505 27.64% 

135 1.4% 31.63 27.43%  135 8.1% 0.645 25.43% 

140 1.7% 26.88 25.53%  140 6.6% 0.94 24.00% 

145 2.3% 22.30 23.97%  145 4.4% 1.4 22.75% 

150 2.5% 17.93 22.54%  150 1.4% 2.115 21.72% 

155 1.4% 13.90 21.37%  155 4.9% 3.125 20.67% 
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160 1.0% 10.35 20.49%  160 4.4% 4.6 19.84% 

165 2.1% 7.33 19.69%  165 2.3% 6.625 19.14% 

170 3.1% 4.93 19.08%  170 1.6% 9.225 18.48% 

175 4.9% 3.13 18.57%  175 2.0% 12.475 18.03% 

180 3.7% 1.91 18.30%  180 1.6% 16.225 17.49% 

185 6.5% 1.12 18.14%  185 14.4% 21.175 20.60% 

190 11.3% 0.66 18.24%  190 12.8% 25.325 19.13% 

195 36.4% 0.39 18.50%  195 12.1% 30.275 21.35% 

200 83.3% 0.26 19.12%  200 1.3% 34.525 - 

205 53.3% 0.19 20.09%  205 9.2% 40 23.58% 

210 240.0% 0.11 20.22%  210 8.2% 44.925 24.79% 

215 140.0% 0.09 21.15%  215 7.0% 49.95 27.04% 

220 900.0% 0.06 21.53%  220 6.5% 54.925 28.61% 

225 - 0.05 22.46%  225 5.7% 59.95 30.76% 

230 - 0.04 23.21%  230 6.2% 64.65 26.57% 

235 - 0.03 24.14%  235 5.8% 69.675 28.89% 

240 - 0.03 24.94%  240 4.5% 74.425 - 

245 - 0.03 26.16%  245 5.1% 79.675 31.86% 

Tables A .38 and A .39: Option prices data for Goldman Sachs on April 1st, for a 109 days maturity (2014) 

B.2.2/ Risk neutral density estimation 

As for Bank of America Merrill Lynch, polynomial interpolation is undertaken using a 3 degree 
polynomial. Moreover, we have ignored results obtained through the Nadaraya-Watson method as we 
obtained a RN density that was negative on some subsets of prices. 

Method  Polynomial 
interpolation 

Spline 
smoothing 

Nadaraya-Watson 
estimator: h = h* 

Nadaraya-Watson 
estimator: h = 30 

SSE for implied  
volatility estimation  

0.0064770 0.0046727 - - 

Table A .40: Sum of Squared Errors for all implied volatility estimation methods 

Method  
Polynomial 

interpolation 
Spline 

smoothing 
Nadaraya-Watson 
estimator: h = h* 

Nadaraya-Watson 
estimator: h = 30 

Density integral 
estimate  99.61% 98.70% - - 

Table A .41: Density integral estimates for polynomial, spline and Nadaraya-Watson methods 

 
Graph  A.12: Estimated RNDs for Goldman Sachs by polynomial and spline interpolation 
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Graph  A.13: Estimated RNDs for Goldman Sachs by polynomial and spline interpolation,  

logarithmic scale 

B.2.3/ Student distribution fitting 

Degrees of freedom  ! (visual approximation) ! (optimized fit) 

2 $13.50 $9.7392 

3 $10.00 $11.7447 

4 $12.50 $13.1450 

5 $14.50 $14.1785 

6 $15.00 $14.9740 

7 $15.20 $15.6058 

Table A .42: Optimal scale parameters for fitted non-standardized Student distributions 

Degrees of freedom  Sum of squared errors  Sum of log squared errors  

2 12.57 223,219.00 

3 3.98 80,919.78 

4 1.07 26,571.31 

5 0.18 9,865.59 

6 0.07 10,320.62 

7 0.30 18,748.43 

Table A .43: Errors for each fitted non-standardized Student distribution 

 
Graph  A.14: Comparison of average Risk Neutral Density and 

fitted non-standardized Student distribution 
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Graph  A.15: Comparison of average Risk Neutral Density and best fitted non-standardized  
Student distributions in terms on SSE (in terms of squared errors and squared log-errors),  

logarithmic scale on the range $110-$130 

Option pricing  

As for Bank of America, the dividend payment made by Goldman Sachs on May 28th does 
not respect the upper bound constraint that would allow us to price American options as 
European ones. 

In the case of Goldman Sachs, the dividend payment is equal to $0.55, which represents 
0.331% of the stock price on April 1st Ð against 0.058% in the case of Bank of America Ð and 
0.647% of the lowest strike, $85 Ð against 0.100% for Bank of America. 

Although these values increase with respect to Bank of America Merrill Lynch, they still 
remain relatively low. We have decided to retain again the option pricing test to assess the 
accuracy of our procedure. Results are shown hereafter. 

Strike !  
Estimated ! !  

!=2  !=3  !=4  !=5  !=6  !=7  

$110 0.02% -1.00% -1.22% -1.30% -1.35% -1.37% 

$115 0.09% -1.08% -1.35% -1.46% -1.51% -1.53% 

$120 0.00% -1.37% -1.69% -1.82% -1.88% -1.91% 

$125 0.85% -0.77% -1.16% -1.31% -1.38% -1.42% 

$130 0.35% -1.55% -2.01% -2.19% -2.27% -2.30% 

$135 0.48% -1.79% -2.33% -2.52% -2.59% -2.61% 

$140 0.62% -2.09% -2.70% -2.88% -2.91% -2.89% 

$145 0.47% -2.75% -3.37% -3.45% -3.38% -3.25% 

$150 0.06% -3.70% -4.19% -4.05% -3.76% -3.43% 

$155 -1.12% -5.32% -5.42% -4.84% -4.15% -3.49% 

$160 -3.14% -7.69% -7.09% -5.82% -4.53% -3.37% 

$165 -3.96% -9.53% -8.21% -6.09% -4.05% -2.25% 

$170 -0.03% -9.34% -7.94% -5.16% -2.39% 0.10% 

$175 14.22% -4.03% -4.15% -1.35% 1.88% 4.96% 

$180 42.70% 7.77% 3.61% 5.24% 8.28% 11.55% 

$185 94.16% 29.98% 18.06% 16.72% 18.54% 21.37% 

$190 172.76% 61.54% 36.85% 30.09% 29.18% 30.50% 

Table A .44: Estimated call prices as a percentage of market price 
for each fitted non-standardized Student distribution 
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Statistic  !=2  !=3  !=4  !=5  !=6  !=7  

Average 19.71% 8.90% 6.55% 5.66% 5.53% 5.78% 

St. Dev. 0.45 0.15 0.09 0.07 0.07 0.08 

Maximum 172.76% 61.54% 36.85% 30.09% 29.18% 30.50% 

Minimum 0.00% 0.77% 1.16% 1.30% 1.35% 0.10% 

Table A .45: Relative error statistics for estimated call prices 
for each fitted non-standardized Student distribution 

Statistic  !=2  !=3  !=4  !=5  !=6  !=7  

Average 18.74% 2.78% 0.33% 0.46% 1.28% 2.27% 

St. Dev. 0.47 0.18 0.11 0.09 0.09 0.10 

Maximum 172.76% 61.54% 36.85% 30.09% 29.18% 30.50% 

Minimum -3.96% -9.53% -8.21% -6.09% -4.53% -3.49% 

Best dist. 11 1 1 2 1 1 

Table A .46: Absolute error statistics for estimated call prices 
for each fitted non-standardized Student distribution 

Again, in order to test whether our technique yields prices very far away from market prices, 
we have also computed put prices despite the presence of dividend payouts Ð given the low 
amount of the dividend, distortions should be small. Results are showed hereafter. 

Strike !  
Estimated ! !  

!=2  !=3  !=4  !=5  !=6  !=7  

$135 86.68% 14.64% -8.03% -16.62% -19.94% -20.93% 

$140 55.86% 5.10% -9.60% -14.07% -14.85% -14.13% 

$145 30.52% -2.91% -10.91% -11.96% -10.71% -8.67% 

$150 11.30% -8.71% -11.62% -10.24% -7.69% -4.92% 

$155 1.08% -9.58% -9.19% -6.47% -3.37% -0.41% 

$160 -3.55% -8.33% -6.44% -3.47% -0.55% 2.07% 

$165 -2.75% -5.13% -3.27% -0.86% 1.41% 3.41% 

$170 1.11% -1.13% -0.11% 1.43% 2.92% 4.25% 

$175 3.97% 1.41% 1.59% 2.33% 3.15% 3.92% 

$180 5.49% 2.94% 2.61% 2.83% 3.19% 3.58% 

$185 1.81% -0.38% -0.89% -0.94% -0.83% -0.68% 

$190 3.37% 1.48% 0.94% 0.79% 0.77% 0.80% 

$195 2.07% 0.53% 0.05% -0.13% -0.20% -0.21% 

$205 1.34% 0.31% -0.03% -0.18% -0.25% -0.29% 

$210 1.08% 0.23% -0.05% -0.17% -0.24% -0.27% 

$215 0.71% 0.01% -0.22% -0.32% -0.37% -0.40% 

$220 0.54% -0.05% -0.24% -0.32% -0.36% -0.38% 

$225 0.33% -0.16% -0.32% -0.38% -0.41% -0.43% 

$230 0.67% 0.26% 0.13% 0.08% 0.06% 0.04% 

$235 0.51% 0.16% 0.06% 0.02% 0.00% -0.02% 

$245 0.33% 0.08% 0.01% -0.02% -0.03% -0.03% 

Table A .47: Estimated put prices as a percentage of market price 
for each fitted non-standardized Student distribution 
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In this case we observe that the best performing distribution varies wildly from strike to strike, 
particularly for the range $135-$190. This phenomenon might be linked to the fact that we are pricing 
American puts as if they were European; it could also mean that the empirical RN distribution is 
particularly irregular.  

Statistic  !=2  !=3  !=4  !=5  !=6  !=7  

Average 10.24% 3.02% 3.16% 3.50% 3.39% 3.33% 

St. Dev. 0.21 0.04 0.04 0.05 0.05 0.05 

Maximum 86.68% 14.64% 11.62% 16.62% 19.94% 20.93% 

Minimum 0.33% 0.01% 0.01% 0.02% 0.00% 0.02% 

Table A .48: Relative error statistics for estimated put prices 
for each fitted non-standardized Student distribution 

Statistic  !=2  !=3  !=4  !=5  !=6  !=7  

Average 9.64% -0.44% -2.64% -2.79% -2.30% -1.60% 

St. Dev. 0.22 0.05 0.04 0.05 0.06 0.06 

Maximum 86.68% 14.64% 2.61% 2.83% 3.19% 4.25% 

Minimum -3.55% -9.58% -11.62% -16.62% -19.94% -20.93% 

Best dist. 0 7 7 1 3 3 

Table A .49: Absolute error statistics for estimated put prices 
for each fitted non-standardized Student distribution 

We have estimated out-of-sample option prices by ignoring some options which market prices do not 
comply with arbitrage conditions Ð $235, $240 and $245 calls, $85, $90, $95 and $100 puts.  

Strike !  
Estimated ! !  

!=2  !=3  !=4  !=5  !=6  !=7  

$85 0.07% -0.49% -0.59% -0.62% -0.63% -0.64% 

$90 0.04% -0.58% -0.70% -0.74% -0.75% -0.76% 

$95 -0.17% -0.87% -1.00% -1.05% -1.07% -1.08% 

$100 0.15% -0.63% -0.79% -0.85% -0.88% -0.89% 

$105 0.27% -0.63% -0.82% -0.89% -0.92% -0.94% 

$195 289.10% 104.51% 60.46% 45.31% 39.85% 38.41% 

$200 405.85% 137.81% 72.38% 47.77% 36.92% 31.92% 

$205 510.11% 158.53% 73.11% 40.00% 24.26% 15.95% 

$210 841.36% 262.18% 124.55% 71.00% 44.91% 30.45% 

$215 939.00% 265.44% 110.33% 50.78% 21.78% 5.44% 

$220 1320.50% 359.67% 146.17% 66.33% 27.83% 6.17% 

$225 1465.40% 368.60% 134.60% 49.40% 9.20% -13.00% 

$230 1708.75% 403.50% 136.00% 42.25% -1.00% -24.50% 

Table A .50: Estimated call prices for testing options as a percentage of market price 
excluding arbitrageable prices 

Strike !  
Estimated ! !  

!=2  !=3  !=4  !=5  !=6  !=7  

$105 291.76% 58.00% -13.92% -43.68% -58.48% -66.88% 

$110 284.69% 64.00% -5.52% -34.83% -49.72% -58.28% 

$115 211.61% 41.12% -13.71% -37.17% -49.17% -56.10% 

$120 178.00% 34.49% -12.34% -32.57% -42.87% -48.68% 

$125 134.82% 22.14% -14.88% -30.74% -38.60% -42.85% 
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$130 99.70% 12.46% -15.98% -27.72% -33.17% -35.78% 

$200 3.40% 2.11% 1.69% 1.52% 1.44% 1.40% 

$240 0.75% 0.45% 0.37% 0.33% 0.32% 0.31% 

Table A .51: estimated put prices for testing options as a percentage of market price 
excluding arbitrageable prices 

Strike !  
Estimated option prices  

!=2  !=3  !=4  !=5  !=6  !=7  

$165 call -3.96% -9.53% -8.21% -6.09% -4.05% -2.25% 

$170 call -0.03% -9.34% -7.94% -5.16% -2.39% 0.10% 

$165 put -2.75% -5.13% -3.27% -0.86% 1.41% 3.41% 

$170 put 1.11% -1.13% -0.11% 1.43% 2.92% 4.25% 

Average  -1.41% -6.28% -4.88% -2.67% -0.53% 1.38% 

Abs. avrg.  1.96% 6.28% 4.88% 3.39% 2.69% 2.50% 

Table A .52: Estimated option prices for ATM options as a percentage of market price 

Strike !  
Estimated option prices  

!=2  !=3  !=4  !=5  !=6  !=7  

$170 call -0.03% -9.34% -7.94% -5.16% -2.39% 0.10% 

$175 call 14.22% -4.03% -4.15% -1.35% 1.88% 4.96% 

$180 call 42.70% 7.77% 3.61% 5.24% 8.28% 11.55% 

$185 call 94.16% 29.98% 18.06% 16.72% 18.54% 21.37% 

$190 call 172.76% 61.54% 36.85% 30.09% 29.18% 30.50% 

$195 call 289.10% 104.51% 60.46% 45.31% 39.85% 38.41% 

$200 call 405.85% 137.81% 72.38% 47.77% 36.92% 31.92% 

$205 call 510.11% 158.53% 73.11% 40.00% 24.26% 15.95% 

$210 call 841.36% 262.18% 124.55% 71.00% 44.91% 30.45% 

$215 call 939.00% 265.44% 110.33% 50.78% 21.78% 5.44% 

$220 call 1320.50% 359.67% 146.17% 66.33% 27.83% 6.17% 

$225 call 1465.40% 368.60% 134.60% 49.40% 9.20% -13.00% 

$230 call 1708.75% 403.50% 136.00% 42.25% -1.00% -24.50% 

Average  600.30% 165.09% 69.54% 35.26% 19.94% 12.26% 

Abs. avrg.  600.30% 167.15% 71.40% 36.26% 20.46% 18.02% 

Best dist.  1 0 1 2 3 6 

Table A .53: Estimated option prices for OTM call options as a percentage of market price 

Risk neutral default probabilities  

Degrees of freedom  ! ! ! !  

2 0.1726% 

3 0.0388% 

4 0.0115% 

5 0.0041% 

6 0.0016% 

7 0.0007% 

Table A .54: Three-month risk neutral probabilities of default 
for fitted non-standardized Student distributions 
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Degrees of freedom  Annualized probabilities  Closest S&P rating  

2 0.6886% BB (0.64%) 

3 0.1551% BBB+ (0.13%) 

4 0.0460% A+ (0.06%) 

5 0.0164% AA (0.02%) 

6 0.0064% AA+, AAA (0.00%)!
7 0.0028% AA+, AAA (0.00%)!

Table A .55: One-year risk neutral probabilities of default for fitted non-standardized 
Student distributions assuming independence and closest matching S&P rating 

Degrees of freedom  Annualized probabilities  Closest S&P rating  

2 0.5705% BB (0.64%) 

3 0.2279% BBB (0.19%) 

4 0.1172% BBB+ (0.13%) 

5 0.0702% A (0.07%) 

6 0.0467% A+ (0.06%) 

7 0.0334% AA- (0.03%) 

Table A .56: One-year risk neutral probabilities of default for fitted non-standardized 
Student distributions assuming non independence and closest matching S&P rating 

In 2014, S&P had a LT local issuer rating of ÒA-Ó for Goldman Sachs Group Inc. The Global 
Corporate Average Cumulative Default Rate for a one-year horizon corresponding to an ÒA-Ó 
rating is 0.08% Ð the probability has been estimated by S&P using data from 1981 to 2014. 

Degrees of freedom  
Annualized probabilities 

relative to S&PÕs one-
year default probability  

2 8.61 

3 1.94 

4 0.58 

5 0.21 

6 0.08 

7 0.04 

Table A .57: Comparison of fitted default rates (independence hypothesis) and S&P default rates 

Degrees of freedom  
Annualized probabilities 

relative to S&PÕs one-
year default probability  

2 7.13 

3 2.85 

4 1.47 

5 0.88 

6 0.58 

7 0.42 

Table A .58: Comparison of fitted default rates (non independence hypothesis) and S&P default rates 

Risk neutral quantiles  

Time to maturity for our panel of options is equal to 0.299, but based on a full year Ð i.e. 
taking into account weekend days. If we make the standard assumption that a year has 252 
working days, multiplying this figure by 0.299 we obtain a time to maturity of 75 business 
days. Therefore to compute CitigroupÕs quarterly stock returns we consider a 74-day lag: 
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We have computed quantiles for the following stock price quarterly returns time series, 
ending on April 1st, 2014: approximately 14 years and & (3,679 observations), given that 
Goldman Sachs stock history began in 1999. 

Quantile  14yr "  !=2  !=3  !=4  !=5  !=6  ! =7  

0.01% -69.78% -100% -100% -100% -83.07% -72.79% -66.80% 

0.05% -69.34% -100% -91.85% -68.58% -59.06% -54.15% -51.23% 

0.1% -65.13% -100% -72.67% -57.20% -50.73% -47.37% -45.38% 

0.5% -55.94% -58.62% -41.71% -36.84% -34.82% -33.83% -33.28% 

1% -50.40% -41.25% -32.51% -30.05% -29.12% -28.73% -28.57% 

5% -24.56% -17.51% -17.03% -17.26% -17.59% -17.90% -18.19% 

10% -18.67% -11.44% -11.96% -12.51% -12.98% -13.36% -13.68% 

25% -8.62% -5.16% -5.78% -6.24% -6.58% -6.84% -7.06% 

50% +3.37% -0.37% -0.37% -0.37% -0.37% -0.37% -0.37% 

Table A .59: Relevant quantiles for fitted non-standardized Student distributions 
Together with historical quantiles for 14' -year returns 

Degrees of freedom  Sum of squared errors  

2 0.3288 

3 0.1177 

4 0.0811 

5 0.0425 

6 0.0143 

7 0.0049 

Table A .60: Sum of squared errors for each fitted non-standardized Student distribution 

 
Graph  A.16: Historical and distributional quantiles for selected distributions 

B.3/ Morgan Stanley  

In this section, we have undertaken the same procedures as previously but applied to 
options written on Morgan Stanley stock. Data is from April 1st, 2014. Morgan Stanley shares 
closed at $31.21 on that day. 
































