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Abstract

In a two-task team project with observable task outcomes, optimal incentives prioritize

tasks differently depending on task externalities. When the tasks are independent, Principal

follows a decreasing order by placing more essential task first. A task is more essential if its

failure compromises the overall project’s chance of success from a task-specific cutoff level

by a greater percentage. This definition has no systematic relations to the variance of task

outcomes. In particular, a more risky task can be less essential or more essential.

Under externalities, essentiality and impact jointly determine the optimal ordering. A

task with much higher impact can be performed early even if it is less essential. Optimal

task ordering thus raises subtle new issues and forms an integral part in team incentives.

Our analysis provides some contrast with recent team incentives results.
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1 Introduction

Innovation is a process of trial and error. A medical research firm launching a project for the

discovery of a drug has to worry about not only achieving a cure for a disease, it has to make sure

that the drug does not have other adverse medical effects for it to be approved by the FDA.

In addition, the take-up cost of the drug has to be reasonable for ultimate business success.

Various aspects of a project can thus be compartmentalized into individual tasks. Besides the

discovery of drugs, similar description applies to any technological discovery.

Barring a natural ordering in a subset of the tasks for the planned project, there could be

rooms for flexibility in which order to execute some of the other tasks. For instance, in the

drug discovery example a research team may present one of several alternative drug options

for FDA approval, but even before one comes to that stage the team may be experimenting in

developing alternative viable solutions before presenting its best case scenario to the FDA. If

one submission fails to receive the approval, another solution can be presented improving the

overall chance of the application’s success.

It will be assumed that the project in question will succeed for sure if all component tasks

succeed but its chance of success still remains positive if some but not all of the tasks fail. The

firm has to contract out these tasks to a group of experts. We approach this exercise as a typical

moral hazard in teams problem with sequential tasks. If the task sequence can be freely chosen

and task outcomes can be observed as the project progresses, the principal (or the firm) has to

decide in which order to undertake the various tasks. We raise a number of scenarios and ask

some related questions, as follows:

(i) Some tasks’ failure means the overall project’s chance of success gets compromised much

more than the failure in other tasks. Should the former tasks be labeled as more essential in

the sense that these should have greater priorities?

(ii) Suppose the tasks are interdependent. Say, success in task 1 improves the chance of task

2’s success much more than the other way around. Then task 1 has a greater impact than task

2. Which of the two criteria – impact and essentiality – has higher significance in the principal’s

design of incentives?

(iii) Should the principal place more essential tasks first or the one with bigger impact?

(iv) Also, should a more risky task be placed early or late in the order? What are the

relations between riskiness, impact and essentiality?

(vi) How do the principal’s decisions differ from the social planner’s optimal decisions?

In team moral hazard problems with sequential tasks but intermediate task outcomes not

observable, Winter (2006) had observed that more essential tasks should be placed towards

the end of the production chain. The analysis in this paper broadens the meaning of essential

tasks and brings in other considerations that are relevant for task ordering in teams. Under

appropriate conditions our results do not always agree with Winter’s observation.
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2 Basic Framework

Consider a project that involves 2 sequential tasks, carried out by 2 agents. Each agent performs

one task. For his task, an agent decides whether to exert effort or not. Any agent’s cost

of effort for either task is c. Effort decision yields either success or failure. Without effort,

task 1 is completed successfully with probability α1 ∈ (0, 1), but with effort the task succeeds

with probability β1 ∈ (α1, 1). Similarly, without effort Task 2 only succeeds with probability

α2 ∈ (0, 1) but with effort this probability increases to β2 ∈ (α2, 1). Denote the task ordering

by (i, j), (i, j) ∈ {(1, 2), (2, 1)}. We assume that agent j (assigned to task j, moving second in the

sequence) observes only the outcome of task i and not the effort decision of the first mover.

In addition to the task success probabilities α and β, we consider the case where the failure

of an agent at his task has an impact on the overall success of the grand project. Specifically, if

both tasks are successful then the project ends successfully; if task k fails while task l succeeds,

then the project succeeds with probability γk; and if both tasks fail, then the project fails.

We can then think of task k being more important than task l in that γk < γl. To illustrate,

consider the extreme case of γk = 0: this means that task k is absolutely crucial, as failure in

this task leads the whole project to fail.

The principal receives the value v if the project succeeds and 0 if the project fails. The

rewards (vi, vj) are as follows. If player i (assigned to task i) succeeds in his task, then he

receives the reward vi(Si), and vi(Fi) if his task fails. As for player j, if he succeeds in his task,

then he receives vj(·, Sj), and if he fails his reward is vj(·, Fj). Note that either reward applies

regardless of the outcome of the task assigned to the other player.

The project, denoted as game G, proceeds as follows. Player i chooses effort ei, with which

he either successfully completes task i (denoted as outcome Si), or fails to complete it (outcome

Fi). Upon observing Si, Player j chooses effort ej(Si), and upon observing Fi Player j also chooses

effort ej(Fi). The principal aims to set the optimal effort inducements v and the optimal ordering

of tasks. Except for their task assignment, both players are identical, so in the following analysis

what matters is the ordering of tasks and not the assignment of players to a slot in the sequence.

Given this, we can use “task i” and “player i” interchangeably.

Consider two cases, namely Cases A and B. In both Case A and B, Player i exerts effort.

The difference is that in Case A, Player j exerts effort regardless of the outcome of Player i’s

task, whereas in Case B, Player j exerts effort if and only if task i succeeds. In other words, the

principal employs a contingent plan for task j in Case B but not in Case A. Denote an ordering

with a contingent plan for the second task by (i, ĵ), and an ordering without it by (i, j).

Immediately we see that it is optimizing for the principal to pay an agent nothing if he fails.

To see this, incentive compatibility requires that, for player i,

β1vi(Si, ·) + (1− βi)vi(Fi, ·) − c ≥ α1vi(Si, ·) + (1− αi)vi(Fi, ·)

or that vi(Si, ·) − vi(Fi, ·) ≥ c
βi−αi

. At the optimum, this constraint binds. But the cheapest

way to satisfy vi(Si, ·)−vi(Fi, ·) = c
βi−αi

is to have vi(Fi, ·) = 0. By similar reasoning, optimality

requires vj(·, Fj) = 0 for player j.

2



Case A. Consider the subgame that begins at Player j’s decision node following Fi. At this

decision node, Player j decides between ej = 1 and ej = 0. Call this subgame G(Fi). Recall our

assumption that vj(·, Fj) = 0. Given Fi, Player j chooses ej = 1 if and only if

βjvj(Fi, Sj) − c ≥ αjvj(Fi, Sj) ⇒ vj(Fi, Sj) ≥
c

βj − αj
.

Thus,

v∗j (Fi, Sj) =
c

βj − αj
. (1)

Next consider the subgame G(Si). Here, Player j chooses ej = 1 if and only if

βjvj(Si, Sj) − c ≥ αjvj(Si, Sj) ⇒ vj(Si, Sj) ≥
c

βj − αj
.

Thus,

v∗j (Si, Sj) =
c

βj − αj
. (2)

Finally, consider the effort decision of Player i. Recall that we assume vi(Fi) = 0. Player i

chooses ei = 1 if and only if

βivi(Si) − c ≥ αivi(Si) ⇒ vi(Si) ≥
c

βi − αi
.

Thus,

v∗i (Si) =
c

βi − αi
. (3)

The optimal rewards v∗ satisfy (1), (2), and (3). Player i’s expected utility is

Eui(v
∗, (i, j)) = βiv

∗
i (Si) − c =

[
αi

βi−αi

]
c > 0 (4)

and Player j’s expected utility is

Euj(v
∗, (i, j)) = βi

[
βjv
∗
j (Si, Sj) − c

]
+ (1− βi)

[
βjv
∗
j (Fi, Sj) − c

]
=
[

αj

βj−αj

]
c > 0. (5)

The Principal’s expected profit is

EΠ(v∗, (i, j)) = βiβj
[
v− v∗i (Si) − v

∗
j (Si, Sj)

]
+ βi(1− βj)

{
γj
[
v− v∗i (Si)

]
+ (1− γj)

[
− v∗i (Si)

]}
+ (1− βi)βj

{
γi
[
v− v∗j (Fi, Sj)

]
+ (1− γi)

[
− v∗j (Fi, Sj)

]}
= βi

[
βj + (1− βj)γj

]
v+ (1− βi)βjγiv− βi

[
βjv
∗
i (Si) + (1− βj)v

∗
i (Si)

]
− βiβjv

∗
j (Si, Sj) − (1− βi)βj

{
γi
[
v∗j (Fi, Sj)

]
+ (1− γi)v

∗
j (Fi, Sj)

}
= βi

[
βj + (1− βj)γj

]
v+ (1− βi)βjγiv− βi

[
c

βi−αi

]
− βiβj

[
c

βj−αj

]
− (1− βi)βj

[
c

βj−αj

]
= βi

[
βj + (1− βj)γj

]
v+ (1− βi)βjγiv− βi

[
c

βi−αi

]
− βj

[
c

βj−αj

]
. (6)

Comment 1: EΠ(v∗, (1, 2)) = EΠ(v∗, (2, 1)).

Case B. We now determine the optimal rewards v∗ and the Principal’s expected profit given
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these rewards when a contingent plan for j is employed. We assume that vj(·, Fj) = 0. Consider

again the subgame G(Fi). Since ej = 0 involves zero cost, individual rationality together with

the aim of implementing zero effort at least cost imply that the reward to the Player j when his

task is successfully completed following ej = 0 (and Player i has failed) is

v∗j (Fi, Sj) = 0. (7)

Next consider the subgame G(Si). Here, Player j chooses ej = 1 if and only if

βjṽj(Si, Sj) − c ≥ αjṽj(Si, Sj) ⇒ ṽj(Si, Sj) ≥
c

βj − αj
,

where we use ṽj(·, Fj) = 0. Thus

v∗j (Si, Sj) =
c

βj − αj
. (8)

Finally, consider the effort decision of Player i. As with Case A, we use vi(Fi) = 0. Player i

chooses ei = 1 if and only if

βiṽi(Si) − c ≥ αiṽi(Si) ⇒ vi(Si) ≥
c

βi − αi
.

Thus,

v∗i (Si) =
c

βi − αi
. (9)

The optimal rewards v∗ satisfy (7), (8), and (9). Player i’s expected utility is

Eui(v
∗, (i, ĵ)) = βiv

∗
i (Si) − c =

[
αi

βi−αi

]
c > 0, (10)

while Player j’s expected utility is

Euj(v
∗, (i, ĵ)) = βi

[
βjv
∗
j (Si, Sj) − c

]
=
[
αjβj

βj−αj

]
c > 0. (11)

The Principal’s expected profit is

EΠ(v∗, (i, ĵ)) = βiβj
[
v− v∗i (Si) − v

∗
j (Si, Sj)

]
+ βi(1− βj)

{
γj
[
v− v∗i (Si)

]
+ (1− γj)

[
− v∗i (Si)

]}
+ (1− βi)αj

{
γi
[
v− v∗j (Fi, Sj)

]
+ (1− γi)

[
− v∗j (Fi, Sj)

]}
= βi

[
βj + (1− βj)γj

]
v+ (1− βi)αjγiv− βi

[
βjṽ
∗
i (Si) + (1− βj)ṽ

∗
i (Si)

]
− βi

[
βjṽ
∗
j (Si, Sj)

]
− (1− βi)αj ṽ

∗
j (Fi, Sj)︸ ︷︷ ︸

=0

= βi
[
βj + (1− βj)γj

]
v+ (1− βi)αjγiv− βi

[
c

βi−αi

]
− βiβj

[
c

βj−αj

]
. (12)

The Principal might prefer not to incentivize effort from Player j following failure in task

i if the probability that the project succeeds given this failure is too low for the effort cost to

be worthwhile. This is easiest to see in the extreme case of γi = 0: failure in task i results in

failure of the entire project for certain following which the best action would be to terminate

the project.
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EΠ(v∗, (i, ĵ)) > EΠ(v∗, (i, j)) if and only if

(1− βi)γi(βj − αj)v < (1− βi)
βjc

βj − αj
(13)

i.e., γi <
βjc

(βj − αj)2v
= γ̄i. (14)

We see that γ̄i ≤ 1 if and only if

βjc ≤ (βj − αj)
2v.

Comment 2: Let the task ordering be (i, j). Suppose that the player assigned to task i is

induced to exert effort, and that the player assigned to task j is induced to exert effort following

success by Player i. The Principal prefers not to incentivize effort from Player j following failure

by Player i if γi falls below γ̄i, where γ̄i =
βjc

(βj−αj)2v
.

Fix α, β, c and v. We see that γ̄i is increasing in γj.

Observation: γ̄1 − γ̄2 =
c
v

[
β2

(β2−α2)2
− β1

(β1−α1)2

]
.

1. If β2

(β2−α2)2
− β1

(β1−α1)2
> 0, then γ̄1 > γ̄2.

2. If β2

(β2−α2)2
− β1

(β1−α1)2
= 0, then γ̄1 = γ̄2.

3. If β2

(β2−α2)2
− β1

(β1−α1)2
< 0, then then γ̄1 < γ̄2.

Proposition 1 Let the task ordering be (i, j), and define the ‘threshold value’ of task i to be

γ̄i =
βjc

(βj − αj)
2 v
.

Effort is exerted in task i, which can either succeed or fail.

(i) If γi ≥ γ̄i for i = 1, 2, then inducing effort in the task j regardless of the outcome of task
i is optimal, and (1, 2) ∼ (2, 1).

(ii) If γ1 < γ̄1 and γ2 ≥ γ̄2, then the optimal ordering is (1, 2̂).

(iii) If γ1 ≥ γ̄1 and γ2 < γ̄2, then the optimal ordering is (2, 1̂).

(iv) If γi < γ̄i for i = 1, 2, then the optimal ordering is (1, 2̂) provided that

γ̄1 − γ1
γ̄2 − γ2

>

(
β1 − α1
1− β1

)
1− β2
β2 − α2

, (15)

and the optimal ordering is (2, 1̂) provided that

γ̄1 − γ1
γ̄2 − γ2

<

(
β1 − α1
1− β1

)
1− β2
β2 − α2

. (16)

Otherwise, either (1, 2̂) or (2, 1̂) is optimal.
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Corollary 1 Suppose the two tasks are identical in every respect except for γ1, γ2. Moreover,
suppose γi < γ̄i, i = 1, 2. Then the optimal ordering is (1, 2) if γ1 < γ2.

Graphically, if we take the point (γ̄1, γ̄2) and draw a horizontal line as well as a vertical

line through it, then the result is a division of the set [0, 1]× [0, 1] into four sections or subsets,

where the top-right section corresponds to Prop. 1(i), the top-left section to Prop. 1(ii), the

lower-right section to Prop. 1(iii), and the lower-left section to Prop. 1(iv).

From Proposition 1 we see then that for task i to have an impact (i.e., task i’s outcome

influences the desired effort in task j), it must be that γi < γ̄i; otherwise, effort is incentivized

in task j whether task i succeeds or not. One insight is that γ1 being less than γ2 does not

automatically entail task 1’s place ahead of task 2. If both γ values are above their thresholds,

the ordering (1, 2) is as good as the ordering (2, 1) though γ1 < γ2 (see Example 1 below).

In fact, if γ1 < γ2 but γ2 is below its threshold while γ1 is not, then by Prop. 1(iii) task 2

should go first (Example 2). That said, the fact that a task’s γ value is below its threshold

is not sufficient for it to be placed first; whether the other task’s γ is below its own threshold

or not is also taken into account. Specifically, as case (iv) shows, when both tasks are below

their respective thresholds, then some other factor comes into play, which is how far below one’s

threshold a task’s γ value is relative to the other task.

To see this last point, consider again condition (15), which we rewrite here as

γ̄1 − γ1
γ̄2 − γ2

> kj,

with kj denoting the right-hand side of (15). Given that both γ values are below their threshold

values, task 1 goes first in the optimal task ordering if and only if this inequality holds. To

illustrate, suppose that α and β probabilities are such that kj = 1, and that γ1 < γ2. Then

the inequality holds (thus the optimal task ordering is (1, 2)) if and only if γ2 − γ1 > γ̄2 − γ̄1.

One can easily imagine other values kj for which (15) fails to hold although γ1 < γ2. Satisfying

condition (15) given a larger kj entails a steeper drop in γ1 from γ̄1.

Example 1. Suppose that (α1, β1) = (0.2, 0.4), (α2, β2) = (0.6, 0.7), c = 1, and v = 80. Then

γ̄1 = 0.875, γ̄2 = 0.125, and kj = 1.

Figure 1 shows the optimal task ordering for any (γ1, γ2) ∈ [0, 1]× [0, 1] given these parameter

values. The task having the lower γ value need not be placed first in the task sequence. To

illustrate, consider the area under the 45◦ line, where γ2 < γ1 for any (γ1, γ2). In the gray

portion, γ1 falls below its threshold while γ2 does not, so task 1 is placed first although γ2 < γ1.

Also note the olive green parallelogram in the bottom of the figure; here γ2 is below its threshold

value, however so is γ1, with the latter sufficiently below γ̄1 for condition (15) to hold, resulting

in task 2 going last instead of first in the optimal task ordering. ||

� Comparative statics

A change in βj and a reversal of the optimal preference ordering. Denote the initial
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Figure 1: Example 1

optimal task ordering by (i, j)∗. We see that

∂γ̄i
∂βj

= −
(βj + αj)c

(βj − αj)3v
< 0,

while
∂γ̄j

∂βj
= 0.

Therefore, an increase in βj (task ordered last in the optimal task ordering) decreases γ̄i (thresh-

old value of the task placed first in the optimal task ordering) with no accompanying change

in γ̄j. Let the new threshold value of γi be ¯̄γi, and suppose that γj < γ̄j while ¯̄γi ≤ γi < γ̄i.
Then, with everything else constant, an increase in βj reverses the optimal ordering. Note that

this may also result from an decrease in αj, since

∂γ̄i
∂αj

=
2βjc

(βj − αj)3v
> 0,

while
∂γ̄j

∂αj
= 0.

� Social planner’s problem. Suppose that efforts were observable and enforceable. We

show that the information asymmetry makes effort more costly to implement for the principal

compared to the social planner, thus the latter would pursue later tasks more often than the

principal. To see this, consider the case when task i has been successful. The social planner

would push for effort in task j whenever the gain from effort does not fall below its cost, which

7



in the social planner’s case would be c. That is,

{[βj + (1− βj)γj] − [αj + (1− αj)γj]} v ≥ c ⇒ (βj − αj) (1− γj) v− c ≥ 0.

However, in the same situation the principal would induce effort if and only if

(βj − αj) (1− γj) v− βjv
∗
j (Si, Sj) = (βj − αj) (1− γj) v− βj

c
βj−αj

≥ 0.

Clearly, if the principal finds it desirable to incentivize effort, then the social planner should

do so as well (since
βj

βj−αj1
> 1). But the converse need not be true.

The social planner seeks to maximize the surplus from implementing a particular task order-

ing. Any task ordering entails effort from the worker assigned to the first task; effort from the

worker assigned to the second task may be contingent on first task success or not. We denote

the surplus from a task ordering in which second-task effort is not contingent upon first-task

outcomes as S(i, j), and the surplus when it is contingent on first-task success as S(i, ĵ).

S(i, j) = βi
[
βj + (1− βj)γj

]
v+ (1− βi)βjγiv− 2c (17)

S(i, ĵ) = βi
[
βj + (1− βj)γj

]
v+ (1− βi)αjγiv− c− βic (18)

Comment : S(1, 2) = S(2, 1).

S(i, ĵ) > S(i, j) if and only if

(1− βi)γi(βj − αj)v < (1− βi)c (19)

i.e., γi <
c

(βj − αj)v
= γ̄SPi <

βj

(βj − αj)

[
c

(βj − αj)v

]
= γ̄i. (20)

Proposition 2 Let the task ordering be (i, j), and define the ‘threshold value’ of task i for the
social planner to be

γ̄SPi =
c

(βj − αj)v
.

Effort is exerted in task i, which can either succeed or fail.

(i) If γi ≥ γ̄SPi for i = 1, 2, then inducing effort in the task j regardless of the outcome of task
i is optimal, and (1, 2) ∼ (2, 1).

(ii) If γ1 < γ̄SP1 and γ2 ≥ γ̄SP2 , then the optimal ordering is (1, 2̂).

(iii) If γ1 ≥ γ̄SP1 and γ2 < γ̄SP2 , then the optimal ordering is (2, 1̂).

(iv) If γi < γ̄SPi for i = 1, 2, then the optimal ordering is (1, 2̂) provided that

β2−α2

β2
γ̄1 − γ1

β1−α1

β1
γ̄2 − γ2

>

(
β1 − α1
1− β1

)
1− β2
β2 − α2

, (21)

8



and the optimal ordering is (2, 1̂) provided that

β2−α2

β2
γ̄1 − γ1

β1−α1

β1
γ̄2 − γ2

<

(
β1 − α1
1− β1

)
1− β2
β2 − α2

. (22)

Otherwise, either (1, 2̂) or (2, 1̂) is optimal.

Corollary 2 Suppose the two tasks are identical in every respect except for γ1, γ2. Moreover,
suppose γi < γ̄i, i = 1, 2. Then the optimal ordering is (1, 2) if γ1 < γ2.

One case where the principal and the social planner would prefer different task orderings:

Suppose that γ1 < γ̄SP1 (this implies, given (20), that γ1 < γ̄1). Suppose further that γ̄SP1 ≤
γ2 < γ̄2, and condition (16) is satisfied for the principal. Then the optimal tasking ordering for

the social planner would be (1, 2̂) while the optimal ordering for the principal would be (2, 1̂).

� Risks and task ordering. We now look at the implications of task riskiness on the optimal

ordering of tasks. Specifically, note that effort increases the probability of task success but

does not eliminate it: even with effort there remains some chance that the task will fail. If we

take task performance (with effort exertion) to be a continuous random variable X ∼ N (µ, σ2)

and calculate the probability of task success β as P(X > x̄) for some x̄ in the support of the

probability distribution, then we can use the variance of X as a measure of the riskiness of the

task, with β in turn reflecting this riskiness. As the comparative statics shows, changes in β

may affect the optimal task ordering. Thus we can see the effect of task riskiness, represented

by the variance of the task performance X, on the optimal task ordering via its impact on β.

To simplify, suppose that both tasks initially have identical α, β, and γ values. It is easy to

see that γ̄i = γ̄j. Then by Proposition 1, either task ordering is optimal.

Now suppose that performance in task 1 when effort is exerted is the random variable

X1 ∼ N (µ1, σ
2
1) and the performance in task 2 following positive effort is X2 ∼ N (µ1, σ

2
2), where

and µ1 = µ2 and σ21 > σ
2
2: the cdf F2 is a mean-preserving spread of F1. To simplify, denote the

common mean by µ.

Recall that β = P(X > x̄). It is easy to see that

σ21 = σ
2
2 ⇒ β1 = β2

for any cut-off value x̄. As explained above, either task ordering is optimal in this case.

Returning to σ21 > σ
2
2, we now consider two cases. In the first case, x̄ < µ. Note that

β = P(X > x̄) = P
(
Z > x̄−µ

σ

)
.

We see that if x̄ < µ, then
∂
(
x̄−µ
σ

)
∂σ

> 0.
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Therefore, in this case x̄−µ
σ1
> x̄−µ

σ2
and

P
(
Z > x̄−µ

σ1

)
< P

(
Z > x̄−µ

σ2

) ⇒ β1 < β2.

Recall that when the tasks had the same variance, β1 = β2, hence given the assumptions on

the values of the other parameters (1, 2) ∼ (2, 1). But with an increase in task 1’s riskiness,

β1 < β2. Using our comparative statics, we know that this fall in β1 increases γ̄2 but leaves γ̄1

unchanged. Denote this higher threshold by ¯̄γ2.

Suppose that the (identical) γ values are at least as large as their initial threshold values.

If γ̄2 ≤ γ2 < ¯̄γ2, then (2, 1) � (1, 2), otherwise either ranking is optimal. Note that when the

increase in task 1’s riskiness results in a change in the principal’s ranking of orderings, it is task

2 rather than task 1 that is placed ahead.

Now suppose that the γ values fall below their initial thresholds. Recall Proposition 1(iv).

Note that when the tasks have the same variance,

γ̄1 − γ1
γ̄2 − γ2

=

(
β1 − α1
1− β1

)
1− β2
β2 − α2

thus (1, 2) ∼ (2, 1). However, an increase in task 1’s riskiness decreases β1 and increases γ̄2. The

latter decreases the left-hand side of the expression above while the former decreases the right-

hand side. Depending on which side falls faster, we have either (1, 2) � (2, 1) or (2, 1) � (1, 2).

Again, task 1, which is riskier, need not be placed first.

Now consider the second case of x̄ > µ. Now we see that

∂
(
x̄−µ
σ

)
∂σ

< 0.

Therefore, in this case x̄−µ
σ1
< x̄−µ

σ2
and

P
(
Z > x̄−µ

σ1

)
> P

(
Z > x̄−µ

σ2

) ⇒ β1 > β2.

This time, the increase in riskiness increases β1, which in turn decreases γ̄2; γ̄1 is unaffected.

Denote this lower threshold by ¯̄̄γ2. Suppose that γ1 ≥ γ̄1 and γ2 ≥ γ̄2; since γ2 ≥ γ̄2 > ¯̄̄γ2,

one would still have (1, 2) ∼ (2, 1). However, suppose γ1 < γ̄1 and γ2 < γ̄2. There are

two possibilities. The first is ¯̄̄γ2 ≤ γ2 < γ̄2, in which case (1, 2) � (2, 1) for the principal:

the less risky task is put first. The second possibility is γ2 < ¯̄̄γ2 < γ̄2; here the optimal

ranking would depend on whether (15) or (16) would be satisfied, which is not immediately

clear since the increase in β1 increases the right-hand side of the equality above while the fall

in γ̄2 simultaneously increases the left-hand side.

Proposition 3 An increase in the riskiness in one task may or may not result in an optimal
task ordering where the riskier task goes first.

� Positive externality of task i success on βj. Now suppose that, along with the negative

externality of task i’s failure on the project’s overall chance of success, task i also has a positive
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externality on task j. Specifically, task i’s success increases the effectiveness of player j’s effort,

represented here as β′j > βj, Pr (Sj | Si) = β
′
j and Pr (Sj | Fi) = βj.

This time, denote the ordering with a contingent plan for the second task by (i, ĵ′) and the

ordering without it by (i, j′).

Case A′. Given Fi, Player j chooses ej = 1 if and only if

βjvj(Fi, Sj) − c ≥ αjvj(Fi, Sj) ⇒ vj(Fi, Sj) ≥
c

βj − αj
.

Thus,

v∗j (Fi, Sj) =
c

βj − αj
. (1 ′)

Next consider the subgame G(Si). Here, Player j chooses ej = 1 if and only if

β′jvj(Si, Sj) − c ≥ αjvj(Si, Sj) ⇒ vj(Si, Sj) ≥
c

β′j − αj
.

Thus,

v∗j (Si, Sj) =
c

β′j − αj
. (2 ′)

Finally, consider the effort decision of Player i. Recall that we assume vi(Fi) = 0. Player i

chooses ei = 1 if and only if

βivi(Si) − c ≥ αivi(Si) ⇒ vi(Si) ≥
c

βi − αi
.

Thus,

v∗i (Si) =
c

βi − αi
. (3 ′)

The optimal rewards v∗ satisfy (1 ′), (2 ′), and (3 ′). Player i’s expected utility is

Eui(v
∗, (i, j′)) = βiv

∗∗
i (Si) − c =

[
αi

βi−αi

]
c > 0 (4 ′)

and Player j’s expected utility is

Euj(v
∗, (i, j′)) = βi

[
β′jv
∗∗
j (Si, Sj) − c

]
+ (1− βi)

[
βjv
∗∗
j (Fi, Sj) − c

]
= βi

[
αj

β′j−αj

]
+ (1− βi)

[
αj

βj−αj

]
> 0. (5 ′)

Player j’s expected utility is less than his utility without a positive externality (compare (5 ′)
with (5)).
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The Principal’s expected profit is

EΠ(v∗, (i, j′)) = βiβ
′
j

[
v− v∗i (Si) − v

∗
j (Si, Sj)

]
+ βi(1− β

′
j)
{
γj
[
v− v∗i (Si)

]
+ (1− γj)

[
− v∗i (Si)

]}
+ (1− βi)βj

{
γi
[
v− v∗j (Fi, Sj)

]
+ (1− γi)

[
− v∗j (Fi, Sj)

]}
= βi

[
β′j + (1− β′j)γj

]
v+ (1− βi)βjγiv− βi

[
β′jv
∗
i (Si) + (1− β′j)v

∗
i (Si)

]
− βiβ

′
jv
∗∗
j (Si, Sj) − (1− βi)β

′
j

{
γi
[
v∗∗j (Fi, Sj)

]
+ (1− γi)v

∗∗
j (Fi, Sj)

}
= βi

[
β′j + (1− β′j)γj

]
v+ (1− βi)βjγiv− βi

[
c

βi−αi

]
− βiβ

′
j

[
c

β′j−αj

]
− (1− βi)βj

[
c

βj−αj

]
. (6 ′)

Corollary 3 With positive externalities, the principal that is not employing a contingent plan
for the second task may not be indifferent between task orderings. Specifically, with positive
externalities EΠ(v∗, (1, 2′)) = EΠ(v∗, (2, 1′)) if and only if

β′2
β2

− 1

β′1
β1

− 1
=

(1− γ1) v+
α1c

(β1−α1)(β′1−α1)

(1− γ2) v+
α2c

(β2−α2)(β′2−α2)
.

With a positive externality, player j’s is payoff when he exerts effort and succeeds following

Si is smaller, but he has a greater chance of receiving this smaller reward (since β′j > βj). The

question is whether the change in expected reward decreases profit. We see that

EΠ(v∗, (i, j′) − EΠ(v∗, (i, j)) = βi
[
β′j + (1− β′j)γj

]
v− βiβ

′
j

[
c

β′j−αj

]
+ βiβj

[
c

βj−αj

]
− βi

[
βj + (1− βj)γj

]
v

= βi
(
β′j − βj

) [
(1− γj) v+

[ αj

(βj−αj)(β′j−αj)

]
c

]
> 0. (23)

Comment : Suppose rewards are such player i contributes and player j contributes regardless

of the history. Then the positive externality increases the principal’s profit.

The principal’s profit increases because the positive externality, by raising βj to β′j following

success in task i, (1) increases the expected value of the project, given by the term

βi
[ (
β′j − βj

)
(1− γj)

]
v,

and (2) lowers the expected reward paid to player j, resulting in the cost savings

βi

[
αj(β′j−βj)

(β′j−αj)(βj−αj)

]
c.

This last expression confirms that

βj

βj − αj
>

β′j
β′j − αj

.
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It is also easy to check that
βi

βi − αi
>

β′i
β′i − αi

.

Corollary 4 Suppose the principal incentivizes all players to contribute and, for player j, to
contribute regardless of history. Then (1, 2) � (2, 1), if

β′2
β2

− 1

β′1
β1

− 1
>

(1− γ1) v+
[

α1

(β1−α1)(β′1−α1)

]
c

(1− γ2) v+
[

α2

(β2−α2)(β′2−α2)

]
c
;

and (2, 1) � (1, 2) if
β′2
β2

− 1

β′1
β1

− 1
<

(1− γ1) v+
[

α1

(β1−α1)(β′1−α1)

]
c

(1− γ2) v+
[

α2

(β2−α2)(β′2−α2)

]
c
.

Case B′. We now determine the optimal rewards when the principal implements a contingent

plan for player j. We assume that vj(·, Fj) = 0. Consider again the subgame G(Fi). As in the

benchmark case,

v∗j (Fi, Sj) = 0. (7 ′)

Next consider the subgame G(Si). Here, Player j chooses ej = 1 if and only if

β′jṽj(Si, Sj) − c ≥ αjṽj(Si, Sj) ⇒ ṽj(Si, Sj) ≥
c

β′j − αj
,

where we use vj(·, Fj) = 0. Thus

v∗j (Si, Sj) =
c

β′j − αj
. (8 ′)

Finally, consider the effort decision of Player i. Player i chooses ei = 1 if and only if

βivi(Si) − c ≥ αivi(Si) ⇒ ṽi(Si) ≥
c

βi − αi
.

Thus,

v∗i (Si) =
c

βi − αi
. (9 ′)

The optimal rewards v∗ satisfy (7 ′), (8 ′), and (9 ′). Player i’s expected utility is

Eui(v
∗, (i, ĵ′)) = βiv

∗
i (Si) − c =

[
αi

βi−αi

]
c > 0, (10 ′)

while Player j’s expected utility is

Euj(v
∗, (i, ĵ′)) = βi

[
β′jv
∗
j (Si, Sj) − c

]
=
[
αjβ
′
j

β′j−αj

]
c <

[
αjβj

βj−αj

]
c = Euj(v

∗, (i, ĵ)). (11 ′)

The presence of a positive externality decreases the expected utility of player j, although it still

allows him some surplus.
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The Principal’s expected profit is

EΠ(v∗, (i, ĵ′)) = βiβ
′
j

[
v− v∗i (Si) − v

∗
j (Si, Sj)

]
+ βi(1− β

′
j)
{
γj
[
v− v∗i (Si)

]
+ (1− γj)

[
− v∗i (Si)

]}
+ (1− βi)αj

{
γi
[
v− v∗j (Fi, Sj)

]
+ (1− γi)

[
− v∗j (Fi, Sj)

]}
= βi

[
β′j + (1− β′j)γj

]
v+ (1− βi)αjγiv− βi

[
β′jv
∗
i (Si) + (1− β′j)v

∗
i (Si)

]
− βi

[
β′jv
∗
j (Si, Sj)

]
− (1− βi)αj v

∗
j (Fi, Sj)︸ ︷︷ ︸

=0

= βi
[
β′j + (1− β′j)γj

]
v+ (1− βi)αjγiv− βi

[
c

βi−αi

]
− βiβ

′
j

[
c

β′j−αj

]
(12 ′)

= EΠ(v∗, (i, j′)) − (1− βi) (βj − αj)γiv+ (1− βi)βj
[

c
βj−αj

]
= EΠ(v∗, (i, j′)) + (1− βi)

[
βjc

βj−αj
− (βj − αj)γiv

]
.

When might a principal prefer to use a contingent plan for task j? EΠ(v∗, (i, ĵ′)) > EΠ(v∗, (i, j′))

if and only if

γi(βj − αj)v <
βjc

βj − αj
(13 ′)

i.e., γi <
βjc

(βj − αj)2v
= γ̄′i = γ̄i. (14 ′)

Lemma 1 The existence of a positive externality of task i on task j does not change γ̄i.

EΠ(v∗, (i, ĵ′)) can also be written as

EΠ(v∗, (i, ĵ′)) = EΠ(v∗, (i, j′)) + (1− βi) [γ̄i (βj − αj) v− (βj − αj)γiv]

= EΠ(v∗, (i, j′)) + (1− βi) (βj − αj) v [γ̄i − γi] (24)

= EΠ(v∗, (i, j′)) + ∆i. (12 ′′)

Proposition 4 (Essential & externality) Suppose that there are positive externalities be-
tween the two tasks and that

EΠ(v∗, (1, 2′)) ≥ EΠ(v∗, (2, 1′)). (25)

Task ordering can be characterized as follows:

(i) When γi ≥ γ̄i for i = 1, 2, the optimal ordering is (1, 2′) if (25) holds strictly, while the
optimal ordering is either (1, 2′) or (2, 1′) if (25) holds as an equality.

(ii) When γ1 < γ̄1 and γ2 ≥ γ̄2, the optimal ordering is (1, 2̂′).

(iii) When γ1 ≥ γ̄1 and γ2 < γ̄2 , the optimal ordering is (2, 1̂′) if ∆2 > EΠ(v∗, (1, 2′)) −

EΠ(v∗, (2, 1′)), either (2, 1̂′) or (1, 2′) if ∆2 = EΠ(v∗, (1, 2′)) − EΠ(v∗, (2, 1′)), and (1, 2′)

if ∆2 < EΠ(v∗, (1, 2′)) − EΠ(v∗, (2, 1′)).
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(iv) When γi < γ̄i for i = 1, 2, the optimal ordering is (2, 1̂′) if ∆2 − ∆1 > EΠ(v∗, (1, 2′)) −

EΠ(v∗, (2, 1′)), either (2, 1̂′) or (1, 2̂′) if ∆2 − ∆1 = EΠ(v∗, (1, 2′)) − EΠ(v∗, (2, 1′)), and
(1, 2̂′) if ∆2 − ∆1 < EΠ(v∗, (1, 2′)) − EΠ(v∗, (2, 1′)).

Proposition 5 Suppose that there are positive externalities between the two tasks and that

EΠ(v∗, (2, 1′)) > EΠ(v∗, (1, 2′)).

Task ordering can be characterized as follows:

(i) When γi ≥ γ̄i for i = 1, 2, the optimal ordering is (2, 1′).

(ii) When γ1 < γ̄1 and γ2 ≥ γ̄2, the optimal ordering is (1, 2̂′) if ∆1 > EΠ(v∗, (2, 1′)) −

EΠ(v∗, (1, 2′)), either (2, 1′) or (1, 2′) if ∆1 = EΠ(v∗, (2, 1′)) − EΠ(v∗, (1, 2′)), and (2, 1′)

if ∆1 < EΠ(v∗, (2, 1′)) − EΠ(v∗, (1, 2′)).

(iii) When γ1 ≥ γ̄1 and γ2 < γ̄2, the optimal ordering is (2, 1̂′).

(iv) When γi < γ̄i for i = 1, 2, the optimal ordering is (1, 2̂′) if ∆1 − ∆2 > EΠ(v∗, (2, 1′)) −

EΠ(v∗, (1, 2′)), either (1, 2̂′) or (2, 1̂′) if ∆1 − ∆2 = EΠ(v∗, (2, 1′)) − EΠ(v∗, (1, 2′)), and
(2, 1̂′) if ∆1 − ∆2 < EΠ(v∗, (2, 1′)) − EΠ(v∗, (1, 2′)).

� Ordering reversal with positive externality. We now consider the possibility of a

reversal of the optimal ordering when task i’s success exerts a positive impact on task j. One

situation in which reversal in possible is when γ1 < γ̄1 and γ2 ≥ γ̄2. By Proposition 1, when

there are no positive externalities between the two tasks, (1, 2̃) � (2, 1). This results largely

depends on the fact that when the principal does not deploy a contingent plan for task j,

the two task orderings are equivalent, thus EΠ(v∗, (1, 2̃)) > EΠ(v∗, (1, 2)) also implies that

EΠ(v∗, (1, 2̃)) > EΠ(v∗, (2, 1)).

However, with positive externalities, this equivalence between the two task orderings may

not hold, thus creating the possibility of ordering reversal. Specifically, reversal occurs when

EΠ(v∗, (2, 1′)) > EΠ(v∗, (1, 2′)) and ∆1 < EΠ(v∗, (2, 1′)) − EΠ(v∗, (1, 2′)); together, these con-

ditions imply that EΠ(v∗, (2, 1′)) > EΠ(v∗, (1, 2̂′)) > EΠ(v∗, (1, 2′)), hence the optimal ordering

is (2, 1′) instead of (1, 2̂′) (see Prop. 5(ii)).

Example 2. Consider a two-task project with the following parameters: α1 = α2 = 0.4,

β1 = β2 = 0.5, c = 1 and v = 75. Both tasks then have the same threshold values γ̄1 = γ̄2 =
2
3 .

Suppose further that γ1 = 0.5 and γ2 = 0.80. Then γ1 < γ̄1 and γ2 > γ̄2, so in the absence of

positive externalities, (1, 2̂) � (2, 1).

Now let β′1 = 0.9, β
′
2 = 0.6. We see that EΠ(v∗, (2, 1′))−EΠ(v∗, (1, 2′)) = 42.225−34.875 =

7.35 > ∆1 = 0.625. By Prop. 5(ii), the optimal ordering is (2, 1′). ||

Appendix
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Proof of Proposition 1: (i) Let γ1 ≥ γ̄1, γ2 ≥ γ̄2. In this case, EΠ(v∗, (i, j)) ≥ EΠ(ṽ∗, (i, j)) for

any (i, j). Moreover, we know that EΠ(v∗, (1, 2)) = EΠ(v∗, (2, 1)) (see Comment 1). Therefore,

full contribution is optimal, and the Principal is indifferent between the two task orderings.

(ii) Let γ1 < γ̄1, γ2 ≥ γ̄2. Suppose i = 1. Since γ1 < γ̄1, EΠ(ṽ∗, (1, 2)) > EΠ(v∗, (1, 2))

(the Principal prefers not to incentivize effort in task 2). On the other hand, if i = 2, then

EΠ(ṽ∗, (2, 1)) ≤ EΠ(v∗, (2, 1)) (since γ2 ≥ γ̄2). To determine which task ordering yields more

profit, recall that by Result 1), EΠ(v∗, (2, 1)) = EΠ(v∗, (1, 2)). Therefore, the condition γ1 <

γ̄1, which implies that EΠ(ṽ∗, (1, 2)) > EΠ(v∗, (1, 2)), likewise implies that EΠ(ṽ∗, (1, 2)) >

EΠ(v∗, (2, 1)): the optimal ordering of tasks is (1, 2) and the optimal rewards ṽ.

(iii) The proof of part (ii) applies here with the task labels interchanged.

(iv) Let γ1 < γ̄1, γ2 < γ̄2. Suppose i = 1. Since γ1 < γ̄1, EΠ(ṽ∗, (1, 2)) > EΠ(v∗, (1, 2)).

On the other hand, if i = 2, then the EΠ(ṽ∗, (2, 1)) > EΠ(v∗, (2, 1)) (since γ2 < γ̄2). Given

EΠ(v∗, (2, 1)) = EΠ(v∗, (1, 2)), then

EΠ(ṽ∗, (1, 2)) > EΠ(ṽ∗, (2, 1)) ⇔ EΠ(ṽ∗, (1, 2))−EΠ(v∗, (1, 2)) > EΠ(ṽ∗, (2, 1))−EΠ(v∗, (2, 1)).

Using (13), we write the inequality above as

(1− β1)
[
β2

(
c

β2−α2

)
− (β2 − α2)γ1v

]
> (1− β2)

[
β1

(
c

β1−α1

)
− (β1 − α1)γ2v

]
.

Simplifying, we get

(1− β1)
[
γ̄1 (β2 − α2) v− (β2 − α2)γ1v

]
> (1− β2)

[
γ̄2 (β1 − α1) v− (β1 − α1)γ2v

]
(1− β1)(γ̄1 − γ1) (β2 − α2) v > (1− β2)(γ̄2 − γ2) (β1 − α1) v

γ̄1 − γ1
γ̄2 − γ2

>

(
β1 − α1
1− β1

)
1− β2
β2 − α2

. (26)

This last inequality is condition (15).

By the same reasoning, EΠ(ṽ∗, (2, 1)) > EΠ(ṽ∗, (1, 2)) if and only if

γ̄2 − γ2
γ̄1 − γ1

>

(
β2 − α2
1− β2

)
1− β1
β1 − α1

.

This inequality is condition (16). �

Proof of Proposition 4: (i) If γi ≥ γ̄i for i = 1, 2, then (1, 2′) � (1, 2̂′) and (2, 1′) � (2, 1̂′). If

EΠ(v∗, (1, 2′)) > EΠ(v∗, (2, 1′)), then (1, 2′) � (2, 1′). If EΠ(v∗, (1, 2′)) = EΠ(v∗, (2, 1′)), then

(1, 2′) ∼ (2, 1′).

(ii) Suppose that γ1 < γ̄1 and γ2 ≥ γ̄2. Then (1, 2̂′) � (1, 2′) and (2, 1′) � (2, 1̂′). We see

that

EΠ(v∗, (1, 2̂′)) = EΠ(v∗, (1, 2′)) + (1− β1) (β2 − α2) v [γ̄1 − γ1]

> EΠ(v∗, (2, 1′)),

since EΠ(v∗, (1, 2′)) ≥ EΠ(v∗, (2, 1′)) and γ1 < γ̄1. Therefore, (1, 2̂′) � (2, 1′).
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(iii) Suppose that γ1 ≥ γ̄1 and γ2 < γ̄2. Then (1, 2′) � (1, 2̂′) and (2, 1̂′) � (2, 1′). We see

that

EΠ(v∗, (2, 1̂′)) = EΠ(v∗, (2, 1′)) + ∆2

= EΠ(v∗, (2, 1′)) + ∆2 − EΠ(v∗, (1, 2′)) + EΠ(v∗, (1, 2′)).

Hence

EΠ(v∗, (2, 1̂′)) − EΠ(v∗, (1, 2′)) = ∆2 −
[
EΠ(v∗, (1, 2′)) − EΠ(v∗, (2, 1′))

]
.

If the right-hand side is positive, then EΠ(v∗, (2, 1̂′)) > EΠ(v∗, (1, 2′)) and (2, 1̂′) � (1, 2′).

If the right-hand side is equal to zero, then (2, 1̂′) ∼ (1, 2′). Finally, if it is negative, then

(1, 2′) � (2, 1̂′).

(iv) Suppose that γi ≥ γ̄i for i = 1, 2. Then (1, 2̂′) � (1, 2′) and (2, 1̂′) � (2, 1′). We see that

EΠ(v∗, (2, 1̂′)) = EΠ(v∗, (2, 1′)) + ∆2

= EΠ(v∗, (2, 1′)) + ∆2 − EΠ(v∗, (1, 2̂′)) + EΠ(v∗, (1, 2̂′))

= EΠ(v∗, (2, 1′)) + ∆2 − EΠ(v∗, (1, 2′)) − ∆1 + EΠ(v∗, (1, 2̂′)).

Hence

EΠ(v∗, (2, 1̂′)) − EΠ(v∗, (1, 2̂′)) =
[
∆2 − ∆1

]
−
[
EΠ(v∗, (1, 2′)) − EΠ(v∗, (2, 1′))

]
.

If the right-hand side is positive, then EΠ(v∗, (2, 1̂′)) > EΠ(v∗, (1, 2̂′)) and (2, 1̂′) � (1, 2̂′).

If the right-hand side is equal to zero, then (2, 1̂′) ∼ (1, 2̂′). Finally, if it is negative, then

(1, 2̂′) � (2, 1̂′). �

Proof of Proposition 5: The reasoning is analogous to the proof of Proposition 4, with the task

labels interchanged. �

References

Bessen, J. and Maskin, E., “Sequential Innovation, Patents, and Imitation,” Rand Journal of

Economics 40 (2009), 611–635.

Bonatti, A. and Horner, J., “Collaborating,” American Economic Review, 101 (2011), 632–663.

Budish, E., Roin, B.N. and Williams, H., “Do Firms Underinvest in Long-Term Research?

Evidence from Cancer Clinical Trials,” American Economic Review, forthcoming (2014).

Cabral, L., “R&D Competition When Firms Choose Variance,” Journal of Economics and

Management Strategy 12 (2003), 139–150.

Corts, K.S., “Team versus Individual Accountability: Solving Multitask Problems through Job

Design,” Rand Journal of Economics 38 (2007), 467–479.

Granot, D. and Zuckerman, D., “Optimal Sequencing and Resource Allocation in Research and

Development Projects,” Management Science 37 (1991), 140–156.

17



Neher, D., “Staged Financing: An Agency Perspective,”Review of Economic Studies 66 (1999),

255–274.

Strausz, R., “Efficiency in Sequential Partnerships,” Journal of Economic Theory 85 (1999),

140–156.

Varian, H. R., “Sequential Contributions to Public Goods,” Journal of Public Economics 53

(1994), 165–186.

Winter, E., “Optimal Incentives for Sequential Production Processes,” Rand Journal of Eco-

nomics 37 (2006), 376–390.

18



 

 

Contact : 

Centre de Recherche 
+33 (0)1 34 43 30 91 

research.center@essec.fr 
                                                                                  ISSN 1291-9616 

 
 
 


	Pepito_essential task_25Jan2016.pdf
	Introduction
	Basic Framework


