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Abstract

We consider the issue of choosing a subset of locations to construct new housing devel-
opments maximizing the satisfaction of potential buyers. The allocation of demands to the
selected locations is modeled by a choice model, based on the distance to the location, real-
estate prices and incomes. We study two robust counterparts of the optimal location problem,
where uncertainty lies on demand volumes for the first one, and on customer preferences for
the second one. In both cases, the parameters subject to uncertainty appear both in the
objective function and constraints. The second robust model combines a scenario-based ap-
proach with nominal, price-centric and distance-centric scenarios on customers preferences,
and an uncertainty budget approach that limits the number of cities that can deviate from the
nominal scenario. Computational experiments are conducted on instances of the Paris region
to analyze the tractability of the problem and its robust counterparts, and derive insights for
the new housing development issue.
Keywords Robust Optimization, Multinomial Logit Choice Models, Facility Location, Hous-
ing.

1 Introduction

Housing supply is a complex problem arising in multiple and diverse contexts. Driant (2011),
Gilbert (2011), and Sandoval (2012) all provide examples of different problematic situations related
to housing supply. In France, housing supply is an important issue with a shortfall of 800,000 to
1 million dwellings in 2012 Driant (2012). While housing policies mainly consist in building new
housing, (Driant, 2011) addresses the existence of a mismatch between demand and offer.

At the same time, investments in new residential buildings have been increasing. To cite an
example, in the U.S., the value of residential construction by the private sector alone has increased
from $208 B in 1993 to $336 B in 2013 according to information from the United States Census
Bureau (2014). In France, the National Institute of Statistic and Economic Studies (INSEE) and
Eurostat, the statistical office of the European Union, paint a similar picture: a somewhat stable
number of new dwellings and constantly increasing construction costs as shown in Figures 1a and
1b.
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(a) New dwellings built in (continental) France 1990-2014

(b) Quarterly construction cost and its components gross
2005-2014

Figure 1: New buildings and construction costs statistics

Failing efforts at solving this problem see a proliferation of inadequate housing encouraged by the
rising prices and the social policies which exacerbate the original issue, prompting the need for a
better solution as to what type of and where to build new housing units (Driant, 2011). The issue
of choosing locations for new housing developments in a network of possible sites can be seen as a
more general facility location problem. The allocation of customers to the selected locations and
the rules governing said allocation play a fundamental role in the solution of the problem.

Contrary to the supply chain sector where the decision-maker can assign supply sites to customers
who are generally indifferent to the sourcing, in housing development the customers actually choose
themselves their location to buy a flat, which naturally conducts to use a choice model based on
consumers’ utilities and willingness to buy (see the seminal paper of (Guadagni (1983)) for the
Multinomial Logit(MNL) choice model).

Choice models have already been used in the context of housing supply, but not in an optimization
framework to our knowledge. Bulent and Kenneth (2005) and Pagliara et al (2010) propose the
use of scoring methods to address the decision of buyers in the housing context. Pagliara et al
(2010) use a Stated Preference model to estimate the willingness to pay of a specific buyer for each
alternative available, which is then used to estimate the probability of choosing a housing unit.
Similarly, Bulent and Kenneth (2005) propose a discrete choice model to compute this probability.
Additionally, de Palma et al (2007) develop a model for residential location choice where capacity
constraints are considered.

When dealing with optimization and especially facility location, Haase and Müller (2014) have
tested different linearizations of the multinomial logit model (MNL) for the problem of selecting a
subset of r sites maximizing coverage, i.e. the part of the demand that does not go to competitors.
They found the formulation of Aros-Vera et al (2013), which extends the simple formulation of
Haase (2009), to achieve the best performance. Later, in Müller and Haase (2014) they extend this
model to include customer segmentation in the retail industry. They used segmentation to reduce
the predictive bias of the MNL. In Haase (2009), a linearization of the Independence of Irrelevant
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Alternatives (IIA) property of choice models was also proposed for the case of binary variables
associated with opening a site or not.

When positioning our paper compared to the work of Haase and Muller, beyond our specific new
housing context we can distinguish two main features:

(i) Their work deals with maximizing the total demand covered, where part of the demand can
flow to competitors. In our work all demands flow to the set of sites of the new housings
developer as we consider well-identified customers engaged in a program, but to avoid drop-
outs we maximize the average satisfaction of potential buyers.

(ii) We introduce a robustness approach where uncertainty lies on customers’ demands and pref-
erences. Due to (i), the robust model has the particularity that the demand parameters
subject to uncertainty appear both in the constraints and the objective function.

Robustness approaches are natural for strategic facility location since decisions have a long term
impact which is subject to uncertainty. The facility location literature typically considers uncer-
tainty in demand quantities and service costs (Alumur et al, 2012; Baron et al, 2011; Gülpinar et
al, 2013; Snyder, 2006). Snyder (2006) provides an extensive review of the literature on facility
location under uncertainty where problems are classified according to the type of objective function
stochastic location problems (mean-outcome models, probabilistic guaranties, where information
on the underlying probability distribution of the uncertainty is required), and robust location
problems.

Baron et al (2011) and Gülpinar et al (2013) deal with a robustness formulation of facility location
problems. Baron et al (2011) model a location problem under box and ellipsoidal uncertainty,
comparing the results in terms of number of facilities used, capacity assigned to them, and profit
change w.r.t. the nominal solution. The authors also test different distribution functions for the
demand and different conservativeness of the solution. Gülpinar et al (2013) address the issue of
uncertainty in the distribution functions and asymmetric uncertainty sets. The authors explore
the impact of the estimated moments of the distributions and that of the cost parameters. Alumur
et al (2012) deal with the uncertainty in costs using a minimization of regret approach over a set of
scenarios while the uncertainty in demands is handled using stochastic optimization. As mentioned
before, this paper focuses on demand uncertainty.

As for robust optimization approaches in general, let us cite the minimax approach (Bertsimas
and Sim, 2004), minimax regret, p-robustness (Gabrel et al, 2013) and the review of (Gabrel et al,
2014). See also the papers of Billionnet, Costa, and Poirion (2014) and Gabrel and Murat (2010)
dealing with uncertainty on the right hand-sides of constraints (column-wise uncertainty instead
of row-wise). Recently, Denoyel et al (2014) also studied a robust selection problem for healthcare
using a choice model, but using a fractional formulation instead of linear formulation of the IIA
property.

The paper is structured as follows. Section 2 presents the optimization problem and the underlying
choice model for customers’ willingness to buy in a given location. Section 3 describes the robust
counterparts of the location problem, where uncertainty lies first on demand volumes, then on cus-
tomers preferences. Section 4 reports numerical results on a study in the Paris region and provides
an analysis of the results as well as managerial insights for new housing development.

2 Problem statement

We consider a set of demand sources indexed by i ∈ {1, . . . , n}, with Di the number of potential
buyers of source i interested in new housing, and V =

∑
iDi the total number of potential buyers.

Note that indices i can aggregate multiple smaller demand sources, in order to keep the optimization
problem tractable. The set of possible locations for constructing new housing developments is
indexed by j ∈ {1, . . . ,m}, with a variable cost cj per housing unit built in location j (which is
mainly a construction cost but can include other variable costs such as local taxes and management
costs). The total cost of constructed housings should not exceed a given budget B, and the number
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of selected locations should be no more than a given bound P , to avoid providing potential buyers
a plethoric offer and to limit high fixed costs associated with opening multiple programs. Finally,
the choice model that computes the volumes flowing from demand sources to selected locations,
requires to know customer preference data, namely the utility uij of a potential buyer from demand
source i for choosing location j. In a choice model where all locations would be open, the probability
pij that i chooses location j is given by equation (1)

pij =
euij∑
k∈J e

uik
(1)

where the utility uij aggregates criteria or attributes based on the characteristics of the housing
unit, and the preferences of the potential buyer. Pagliara et al (2010) relate uij to the price of the
housing unit, cost of traveling, location in the city, type of dwelling, among others. Bulent and
Kenneth (2005) also consider the property tax of the location. As in the literature, we consider
the utility as a linear combination of L locations characteristics and their relative value to the
potential customers, so that

uij =

L∑
l=1

wlija
l
ij (2)

where alij is the value of criterion l that a customer from demand source i perceives from choosing

location j, and wlij is a coefficient associated with criterion l, which can be a regression parameter
or a weight. In this paper we mainly focus on price and distance attributes, as will be detailed
later.

Since the subset of constructed locations is not known in advance, we introduce binary decision
variables yj = 1 if location j is selected for constructing new housing, 0 otherwise. The utilities
are used to compute the distribution flows xij , i.e., the fraction of the demand of source i that
flows from source i to location j:

xij =
euijyj∑
k∈J e

uikyk
(3)

Distribution flow xij , as the ratio of two linear functions of variables yj , is non linear. The New
Housing Location Problem (NHLP) considered in this paper can be formulated as follows.

max
1

V

n∑
i=1

m∑
j=1

uijDixij (4)

s.t.

n∑
i=1

m∑
j=1

cjDixij ≤ B (5)

m∑
j=1

yj ≤ P (6)

m∑
j=1

xij = 1 ∀i (7)

xij =
euijyj∑
k∈J e

uikyk
∀(i, j) (8)

xij ≥ 0 ∀(i, j) (9)

yj ∈ {0, 1} ∀j (10)
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The objective function (4) maximizes the average utility of the potential buyers, in order to avoid
drop-outs as much as possible. Constraints (5) and (6) are the budget constraints for the construc-
tion of the whole set of new developments. Constraints (7) assign the total demand of a source
node to the selected locations, and distribution flows are modeled by (8). In the spirit of Haase,
we use the Irrelevance of Independent Alternatives (IIA) property of choice models to linearize the
above formulation as follows.

Proposition 2.1. Non-Linear model (3)-(9) is equivalent to the following Linear Programming
formulation NHLP:

max
1

V

n∑
i=1

m∑
j=1

uijDixij (11)

s.t.

n∑
i=1

m∑
j=1

cjDixij ≤ B (12)

m∑
j=1

yj ≤ P (13)

m∑
j=1

xij = 1 ∀i (14)

xij ≤ yj ∀(i, j) (15)

xike
uij−uik + (2− yj − yk) ≥ xij ∀(i, j, k)|j 6= k (16)

xij ≥ 0 ∀(i, j) (17)

yj ∈ {0, 1} ∀j (18)

Proof. The linearization relies on the Independence of Irrelevant Alternatives (IIA) property of
the MNL. IIA has been previously identified in the literature and simply states that equations (3)
are equivalent to xij/xik = euij/euik for all (j, k) such that yj = yk = 1. This can be formulated
by linear constraints (15) and (16) similarly as in Haase (2009). Indeed, if yj = 0 then xij = 0 by
(15) so equations (3) are true for all (i, j) in that case. If yj = 1, then for all k such that yk = 1,
by (16) we get xije

uik = xike
uij so there exists a > 0 such that, given i, xik/e

uik = a for all k. By

summing over all k one obtains a =
∑

k xik∑
k e

uikyk
= 1∑

k e
uikyk

using (14). Since xij = a euijyj we get

equation (8).

Note that the NHLP model contains m(n + 1) variables and O(nm2) constraints of type (16).
Section 4 will report numerical experiments to analyze the tractability of the above formulation,
and the consistency of optimal locations with the attributes of the choice model, which will be
described more precisely in that section. The next section presents a Robust Optimization (RO)
approach for the New Housing Development Problem.

3 Robust Optimization formulations for the NHLP

We consider uncertainty on the demand data of Model NHLP, both volumes and customer pref-
erences. It is quite common in the literature of Robust Optimization to consider variations in
demands. Especially in new housing development, demands are more customers intents than real
orders, as the locations are not chosen yet. Moreover, given the duration of the process from devel-
opment planning to building/selling the units in it, said intentions are subject to change. Decisions
that are robust to uncertainty on demands are thus more than needed for protecting oneself from
possible variations. Before providing a robust formulation of NHLP, we briefly review the core of
Robust Optimization in the sense of Bertsimas and Sim.

5



3.1 The Robust Optimization approach

The research by Bertsimas and Sim (2004) is the basis of this approach. This methodology has
been previously used to address uncertainty in diverse contexts: Alvarez et al (2014) deal with
yield uncertainty; Zokaee et al (2014) tackle a supply chain design with uncertainty in demands,
costs, and supplies; Bohle et al (2010) solve a scheduling problem with uncertainty in productivity;
and Bertsimas and Thiele (2006) address an inventory problem with uncertain demands.

In the remainder of this section we present Bertsimas and Sim’s results as they apply to our
problem. For a linear problem (P) of the form max c′x : Ax ≤ b,x ≥ 0, where wlog only A is
subject to uncertainty, we note A = {Ã ∈ Rm×n|ãij ∈ [aij− âij , aij + âij ] ∀ i, j, aij is the nominal
value of the coefficient (i, j) of the constraint matrix, and âij is the maximum variation around
this value. Contrary to Bertsimas and Sim (2004), in this brief review we restrict the notation to
the case x ≥ 0 as it is the case for NHLP.

Bertsimas and Sim consider a budget of uncertainty, Γi, controlling the maximum number of
coefficients (i, j) where the variation âij can be realized. The Robust counterpart of (P) is the
following program:

max c′x

s.t.
∑
j

aijxj + max
Si∪{ti}||Si|=bΓic,ti∈J\Si

∑
j∈Si

âijxj + (Γi − bΓic)âitixti

 ≤ bi ∀i
x ≥ 0

For a given vector x, the protection against the uncertainty in ãij is given by the function

βi(x,Γi) = maxSi∪{ti}||Si|=bΓic,ti∈J\Si

{∑
j∈Si

âijxj + (Γi − bΓic)âitixti
}

and equals the objective

function of the following linear program:

βi(x,Γi) = max
∑
j

âijxjzij

s.t.
∑
j

zij ≤ Γi

0 ≤ zij ≤ 1 ∀j

Bertsimas and Sim showed the optimal solution of the above problem consists of bΓic variables
zij equal to 1 and one variable equal to Γi − bΓic which is equivalent to the selection of a subset
Si ∪ {ti}||Si| = bΓic, ti ∈ J\Si. The maximum protection achieved by the function βi(x,Γi)
corresponds to the worst case scenario with an uncertainty budget Γi. This result is obtained
through the dualization of βi(x,Γi)

βi(x,Γi) = min qiΓi +
∑
j

rij

s.t. qi + rij ≥ âijxj ∀j
qi, rij ≥ 0 ∀j

The main result of Bertsimas and Sim is summarized in Theorem 1.

Theorem 1 (Bertsimas and Sim): The Robust counterpart of the generic problem (P) can be
formulated as the following Linear Program:

min c′x

s.t.
∑
j

aijxj + qiΓi +
∑

j:(i,j)∈J

rij ≤ bi ∀i

qi + rij ≥ âijxj ∀(i, j) ∈ J
x, q, r ≥ 0

6



where Γi is the uncertainty budget for constraint i, and J is the set of parameters subject to
uncertainty. We now describe the robust counterpart of the NHLP when there is uncertainty on
demand volumes first, then on customer utilities. Demands and utilities have in common that
they both appear in the objective function and the budget constraint, which requires to define two
categories of deviation variables in each robust model.

3.2 Uncertainty on demand volumes

We first consider uncertainty on demands such that D̃i ∈ [Di − D̂i, Di + D̂i]. A robust approach
with this respect seeks to maximize the worst-case average utility of potential buyers over all
possible variations of the demand parameters, while ensuring feasibility of the solution in any case
which, given a subset of selected locations, is only critical for the budget constraint (12).

Note that, since demand data Di do not intervene in equations (16), the proportion of demand
xij is not affected by fluctuations to Di. Model NHLP can then be rewritten with a protection
function β(x,Γ), where Γ is the uncertainty budget, to ensure feasibility, and a function δ(x,Γ) to
protect the objective as:

max
1

V

n∑
i=1

m∑
j=1

uijD̄ixij + δ(x,Γ) (19)

s.t.

n∑
i=1

m∑
j=1

cjD̄ixij + β(x,Γ) ≤ B (20)

(14)− (18)

where β(x,Γ) = max
z

n∑
i=1

m∑
j=1

cjD̂ixijzi

s.t.

n∑
i=1

|zi| ≤ Γ

− 1 ≤ zi ≤ 1 ∀i

δ(x,Γ) = min
z’

1

V

n∑
i=1

m∑
j=1

uijD̂ixijz’i

s.t.

n∑
i=1

|z’i| ≤ Γ

− 1 ≤ z’i ≤ 1 ∀i

Note that, despite the fact that the same parameter Di varies in the objective function and the
budget constraint, one actually needs two sets of variables zi and z′i in the above model since the
deviation vector z that achieves the worst added cost for the budget constraint is generally not the
same that achieves the worst loss of utility in the objective function.

Proposition 3.1. The robust counterpart of model NHLP (11)-(18) is the following model R-
NHLP

max
1

V

n∑
i=1

m∑
j=1

uijD̄ixij − Γqδ −
n∑
i=1

rδi R-NHLP

s.t.

n∑
i=1

m∑
j=1

cjD̄ixij + Γqβ +

n∑
i=1

rβi ≤ B

qδ + rδi ≥
1

V
D̂i

m∑
j=1

uijxij ∀i

qβ + rβi ≥ D̂i

m∑
j=1

cjxij ∀i

(14)− (18)

q, r ≥ 0
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Proof. In the sense of Bertsimas and Sim (2004), the protection function β(x,Γ) for (20) is the
optimal value of the problem:

max
z

n∑
i=1

m∑
j=1

cjD̂ixijzi min Γqβ +

n∑
i=1

rβi

s.t.

n∑
i=1

zi ≤ Γ ⇐⇒ s.t. qβ + rβi ≥ D̂i

m∑
j=1

cjxij ∀i

zi ≤ 1 ∀i qβ ≥ 0

zi ≥ 0 ∀i rβi ≥ 0 ∀i

where dual variable qβ is associated with the uncertainty budget constraint, and each dual variable
rβi is associated with constraint zi ≤ 1 for i = 1, . . . , n. Similarly, the protection function δ(x,Γ)
for (19) is the optimal value of:

−max
z’

1

V

n∑
i=1

m∑
j=1

uijD̂ixijz’i −min Γqδ +

n∑
i=1

rδi

s.t.

n∑
i=1

z’i ≤ Γ ⇐⇒ s.t. qδ + rδi ≥
1

V
D̂i

m∑
j=1

uijxij ∀i

z’i ≤ 1 ∀i qδ ≥ 0

z’i ≥ 0 ∀i rδi ≥ 0 ∀i

In some way, the above robust model is a simple extension of the robustness approach of Bertsimas
and Sim (2004) where uncertainty impacts not only constraints but also the objective function; it
will provide interesting insights though for new housing developments as shown in the numerical
results section. The case when uncertainty lies on customer preferences or utilities is, to our mind,
quite original on a purely research point of view, as we mix a scenario-based approach and a Γ-
budget approach. This strategy leads to a more complex formulation where the distribution flows
need to be modeled by specific variables and constraints for each scenario, given the particular
structure of the choice model.

3.3 Uncertainty on customer utilities

The impact of uncertainty on customers’ utilities is twofold: a direct impact on the objective
function, which can be addressed as in the previous section, with the added consideration of
updating the proportion of demand flowing from each demand source to the chosen locations.
Contrary to the previous section where demand volumes are continuous within their variation
range as in Bertsimas and Sim (2004), we choose to discretize the set of possible scenarios for
utilities, for two main reasons. On one hand, considering continuous utilities leads to intractable
non-linearity of the IIA constraints (16). On the other hand, since utilities are generally hard to
calibrate in a multinomial logit choice model, we structure the uncertainty focusing on the two
main criteria that drive customer preferences for new housing: distance (d) and price (p). Hence
we consider for each demand source a base (nominal) scenario and two variants: one scenario that
is more distance-centric than the base scenario, and one that is more price-centric.

Let us now describe more precisely the characteristics of utilities uij for our housing problem, and
which part of the utility that is impacted by uncertainty. We consider in expression (2) that the
locations differentiate from one another through the level of the attributes, alij which depend on

both i and j, but the coefficient or weight wli only varies with the customer i and not with the
location j. Furthermore, only parameters wli are subjected to uncertainty, e.g. from the level of
aggregation of the demand sources, changing of preferences with time, errors on the estimation
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of the parameter. We discretize the set of possible values such as w̃i ∈ {w0
i , w

d
i , w

p
i }, where as

mentioned before d and p respectively stand for distance and price, and 0 stands for the nominal
scenario. This leads to the following three scenarios for a given demand source i:

• nominal (base) scenario : weight vector w0
i and utilities u0

ij =
∑L
l=1 w

l0
i a

l
ij

• d-centric scenario : weight vector wdi and utilites udij =
∑L
l=1 w

ld
i a

l
ij

• p-centric scenario : weight vector wpi and utilities upij =
∑L
l=1 w

lp
i a

l
ij

Note that the d-centric and p-centric notion is relative to the base scenario. We define binary
variables zdi = 1 if there is a shift from the nominal scenario to the d-centric scenario, and zpi = 1 if
the shift is towards the p-centric scenario for demand source i. zdi +zpi = 0 means that the nominal
scenario remains. The constraint zdi + zpi ≤ 1 clearly holds, and the uncertain utility ũij can be
written as:

ũij = u0
ij(1− zdi − z

p
i ) + udijz

d
i + upijz

p
i

The nominal scenario partly depends on the characteristics of the demand source, e.g. low income
households are very sensitive to prices, whereas higher income would lead to a more distance-
centric behaviour. Therefore, the nominal scenario being the most likely one, only a limited
number of demand sources Γ ∈ N are allowed to deviate from this base scenario. This leads to
add the uncertainty budget constraint

∑n
i=1 z

d
i + zpi ≤ Γ. As uncertainty holds both in the budget

constraint and the objective function, we need to duplicate the above variables zdi and zpi for

feasibility into z’di and z’pi for the objective function as in section 3.2.

We can rewrite model NHLP using variables z, z’, and flow variables xsij for the flow of demand
in each possible scenario s = 0, d, p. A robust approach to Model NHLP seeking to protect the
optimal value against the worst realization of the uncertainty and ensure feasibility of the solution
can be written as (21)-(28):
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max
x,y



min
z’

1

V

[
n∑
i=1

m∑
j=1

u0
ijDix

0
ij(1−

∑
s6=0

z’si ) +
∑
s6=0

n∑
i=1

m∑
j=1

usijDix
s
ijz’

s
i

]

s.t.
∑
s6=0

n∑
i=1

z’si ≤ Γ

∑
s6=0

z’si ≤ 1 ∀i

z’ ∈ {0,1}


(21)

s.t.

max
z

[
n∑
i=1

m∑
j=1

cjDix
0
ij(1−

∑
s6=0

zsi ) +
∑
s 6=0

n∑
i=1

m∑
j=1

cjDix
s
ijz

s
i

]

s.t.
∑
s6=0

n∑
i=1

zsi ≤ Γ

∑
s6=0

zsi ≤ 1 ∀i

z ∈ {0,1}



≤ B

(22)

m∑
j=1

yj ≤ P (23)

m∑
j=1

xsij = 1 ∀(i, s) (24)

xsij ≤ yj ∀(i, j, s) (25)

xsij ≤ xsikeu
s
ij−u

s
ik + (2− yj − yk) ∀(i, j, k, s)|j 6= k (26)

x ≥ 0 (27)

y ∈ {0,1} (28)

Unlike in Bertsimas and Sim (2004), we keep both positive and negative deviations from the
estimated parameter since the direction of the objective function cannot be inferred directly from
the direction of change in the parameter. Furthermore, the uncertainty subproblem to be dualized
is no longer a classical knapsack problem due to this fact. (21)-(28) can be linearized in a similar
matter as that proposed by Bertsimas and Sim using protection functions. (22), and analogously
(21), can be rewritten with a deterministic and an uncertain component as

n∑
i=1

m∑
j=1

cjDix
0
ij + β(x,Γ) ≤ B, where

β(x,Γ) = max
∑
s6=0

n∑
i=1

m∑
j=1

cjDi(x
s
ij − x0

ij)z
s
i (29)

s.t.
∑
s6=0

n∑
i=1

zsi ≤ Γ (30)

∑
s6=0

zsi ≤ 1 ∀i (31)

z ∈ {0, 1} (32)

10



We now show that we can substitute the above 0− 1 subproblem with its linear relaxation. Doing
so, we can replace the linear relaxation of the subproblem by its dual program in the model and
find an equivalent formulation.

Lemma 3.1. The linear relaxation of subproblem (29)-(32) has an optimal solution such that
zdi , z

p
i ∈ {0, 1} for all i = 1, . . . , n.

Proof. We transform the constraints into
∑n
i=1 z

d
i +zpi +sl0 = Γ and zdi +zpi +sli = 1 for i = 1, . . . , n,

where sli, i = 0, . . . , n are slack variables. In this standard form the LP has 3n+ 1 variables and
n + 1 constraints. So we have at most n + 1 non-zero basis variables. If sl0 > 0, then there is
exactly one non-zero variable for each of the n constraints zdi +zpi +sli = 1. In that case, one of the
variables zdi , zpi or sli is one and the others are zero, and the solution is indeed binary. If sl0 = 0,
then there exists a single index i such that exactly two variables are non-zero. For this constraint
i, since Γ ∈ N, we necessarily have sli = 0 otherwise we would not have sl0 = 0. Therefore,
zdi + zpi = 1 and both variables are fractional. Since the solution is optimal, we necessarily have∑
j cj(x

d
ij − x0

ij) =
∑
j cj(x

p
ij − x0

ij), and setting zdi = 1 and zpi = 0 (or zdi = 0 and zpi = 1) does
not deteriorate the objective value.

We can then linearize (21)-(28) in the sense of Bertsimas and Sim (2004).

Proposition 3.2. The robust counterpart of (21)-(28) is the following model uR-NHLP

max
1

V

n∑
i=1

m∑
j=1

ūijDix̄ij − Γqδ −
n∑
i=1

rδi uR-NHLP

s.t.

n∑
i=1

m∑
j=1

cjDix̄ij + Γqβ +

n∑
i=1

rβi ≤ B (33)

qδ + rδi ≥
1

V
Di

m∑
j=1

(
u0
ijx

0
ij − usijxsij

)
∀(i, s)|s 6= 0

qβ + rβi ≥ Di

m∑
j=1

cj(x
s
ij − x0

ij) ∀(i, s)|s 6= 0

(23), (24)− (28)

q, r ≥ 0

Proof. We illustrate the linearization of the equations regarding uncertainty (21)-(22) with the
budget constraint (22) for simplicity. By Lemma 3.1 when dualizing the linear relaxation of
subproblem (29)-(32) we indeed obtain the optimal value of its binary 0-1 counterpart. The linear
relaxation of this subproblem is equivalent through dualization to :

min Γqβ +

n∑
i=1

rβi

s.t. qβ + rβi ≥ Di

m∑
j=1

cj(x
d
ij − x̄ij) ∀i

qβ + rβi ≥ Di

m∑
j=1

cj(x
p
ij − x̄ij) ∀i

qβ , rβ ≥ 0

which can be substituted in (22). The same reasoning holds for (21).

We end this subsection by studying a variant of the problem where demand sources have asymmetric
uncertainty budgets. Indeed, following the Γ-robustness framework developed by Bertsimas and
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Sim, we previously defined the different elements of the scenario set as deviations from a base
(most likely) scenario. One can consider however in the housing context that it is more likely
to deviate to the price-centric scenario than the distance-centric scenario, or the reverse. In this
case, we need to differentiate uncertainty budgets, i.e., set a distinct Γs for each scenario s. This
provides subproblem (34)-(37).

β(x,Γ) = max
∑
s 6=0

n∑
i=1

m∑
j=1

cjDi(x
s
ij − x0

ij)z
s
i (34)

s.t.

n∑
i=1

zsi ≤ Γs s 6= 0 (35)∑
s 6=0

zsi ≤ 1 ∀i (36)

z ∈ {0, 1} (37)

We show that, as in the general case, replacing the above 0− 1 subproblem by its linear relaxation
does not change the problem, so the dualization process remains valid also in that case.

Lemma 3.2. The linear relaxation of subproblem (34)-(37) has an optimal solution such that
zdi , z

p
i ∈ {0, 1} for all i = 1, . . . , n.

Proof. We transform the constraints using slack variables into
∑n
i=1 z

d
i +sld = Γd,

∑n
i=1 z

p
i +slp =

Γp and zdi + zpi + sli = 1 for i = 1, . . . , n. In this standard form the LP has 3n + 2 variables and
n+2 constraints. Therefore there are at most n+2 non-zero basis variables. There are three cases
w.r.t variables (sld, slp): i) sld, slp > 0, ii) sld, slp = 0, or iii) sld ⊕ slp = 0. If i), there is exactly
one non-zero variable for each of the n constraints zdi + zpi + sli = 1, and the solution is binary as
in the proof of lemma 3.1.

If ii), there exists a single pair of indices (i, i′) such that exactly two variables are non-zero for each
of the n constraints zdi + zpi + sli = 1, since Γd,Γp ∈ N. For this pair (i, i’), either sli + sli’ = 0 or
sli + sli’ = 1. In the first case, zdi + zpi = 1 and both variables are fractional. Since the solution is
optimal, we necessarily have

∑
j cj(x

d
ij − x̄ij) =

∑
j cj(x

p
ij − x̄ij), and setting zdi = 1 and zpi = 0

(or zdi = 0 and zpi = 1) does not deteriorate the objective value. The same reasoning follows for i’.
If sli + sli’ = 1, either zdi z

d
i’ > 0 and zpi + zpi’ = 0 or vice-versa. Since the solution is optimal, we

necessarily have
∑
j cj(x

d
ij − x̄ij) =

∑
j cj(x

p
i’j − x̄i’j), and setting (zdi , z

d
i’, sli, sli’) = (1, 0, 0, 1), or

(zdi , z
d
i’, sli, sli’) = (0, 1, 1, 0), does not deteriorate the objective value.

If iii), sld > 0 and slp = 0 implies that there exists exactly one constraint zdi + zpi + sli = 1 where
zdi + sli = 1 since Γp ∈ N and zdi , sli > 0. It necessarily follows that

∑
j cj(x

d
ij − x̄ij) = 0, since the

solution is optimal. Then setting zdi = 1 and sli = 0 (or zdi = 0 and sli = 1) does not deteriorate
the objective value. The same is true for the case where slp > 0 and sld = 0

We now present numerical experiments on a dataset of French cities, as well as some managerial
insights for housing development.

4 Numerical Experiments

4.1 Data

Model NHLP was tested on instances built from French data of the Paris region. 30 neighborhoods
were selected according to their location and population characteristics. With information gathered
from the National Institute of Statistic and Economic Studies (INSEE), we built a number of
instances from a combination of the following parameters:
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• Number of demand sources n ∈ {30, 40, 50, 60}1

• Number of possible locations for new housings m ∈ {15, 20}

• Maximum number of locations allowed for development P ∈ {2, 4, 6}

• Customers’ utilities computed from one of two behavioral traits: {distance-centric, price-
centric}

The utility combines two criteria ad and ap with weight vector w:

• Distance ratio : adij is the ratio of the distance between i and j and the average distance from
i to all sites (a small ratio is preferred)

adij = −dij
di·

where di· =
∑
j dij/m.

• Relative deviation of Real-estate price vs Purchasing Power: apij is the deviation in % between
the real-estate price per meter-square at location j, denoted by pj , and the price that demand
node i would be willing to pay given its income (Purchasing Power, noted PPi), where a small
deviation is preferred:

apij =
|pj − PPi|

PPi

Let us give more details on how purchasing powers (PP) were estimated in our study. We denote
by vi the city of demand source i. The INSEE French institute provides income data for two
different population segments in each city: non-taxed (lower-income) and taxed (higher-income)
households. We set PPi = pvi if i corresponds to the lower-income population segment of city
vi, and PPi = (Ii/Īi)pvi if i corresponds to the higher-income population of city vi, where Ii is
the average income of segment i and Īi is the average income of city vi. Indeed, we make the
assumption that the average PP of the lower-income segment is the average real-estate price of the
city this population lives in, but the higher-income segment has a higher PP, with a multiplicative
factor which is the ratio between the segment income and the city income.

As no survey was available with data to calibrate the parameters of the utility function, we scale
the two factors adij and apij using z-scores ((value-mean)/standard-deviation), which are noted âdij
and âpij . We obtain comparable measures that can be aggregated to compute utilities uij using
weights which sum over one. Thus we express the utility of a potential buyer i choosing housing
in j as:

uij = wdi â
d
ij + wpi â

p
ij

where wdi + wpi = 1. We call ”price-centric” the case when (wdi , w
p
i ) = (1/3; 2/3) and ”distance-

centric” the reverse case (wdi , w
p
i ) = (2/3; 1/3). We estimated demand volumes using INSEE data

on households. The real-estate prices were obtained from MeilleursAgents.com. Table 1 reports
data about cities. We selected a set of cities with high diversity in population size and income to
get richer instances.

1Each neighborhood was partitioned into two demand sources according to information available on income level.
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Table 1: Characteristics of the demand sources

Price Taxed households Non-Taxed households
City Population e/m2 Demand Income (e) Demand Income (e)

Boulogne-Billancourt 114205 7740 382 57966 146 10280
Argenteuil 103125 2811 189 31193 183 8886

Courbevoie 87469 5847 284 44904 103 9746
Cergy 56988 2534 120 31404 97 9006

Asnières-sur-Seine 82327 4795 216 42371 122 9459
Sarcelles 58614 2139 68 28385 106 8996
Nanterre 89185 4547 175 34116 151 8704

Franconville 33097 2768 86 33564 45 10112
Colombes 85398 4417 190 38949 132 9280

Garges-les-Gonesse 40012 2150 41 25742 79 8607
Rueil-Malmaison 79426 5561 240 54771 79 10993

Pontoise 29548 2594 67 33905 50 9176
Levallois-Perret 64253 7117 216 51419 81 9995

Ermont 27446 2992 67 36381 39 10244
Neuilly-sur-Seine 61754 9350 214 114418 66 13649

Bezons 27987 3085 54 30760 45 9332
Issy-les-Moulineaux 64355 6249 207 45857 73 9697

Sannois 26090 2923 62 36254 36 9695
Clichy 58916 4925 147 31640 113 8750

Taverny 26144 2765 64 36175 32 10258
mean 155 42009 89 9743

st. dev. 92 19186 43 1119

4.2 Numerical results for the non-robust model NHLP

In this section we present computational results for model NHLP. We analyze the consistency of
solutions with the defining assumptions of the choice model, and explore its tractability. Table
2 shows numerical results on instances considering m = 15 potential sites for new developments,
n ∈ {30, 60} and P ∈ 2, 4, 6. v∗ is the optimal value, IGap is the ratio v̄/v∗, where v̄ is the value of
the linear relaxation, Ts is CPU time in seconds, and #Sites is the number of sites actually selected
in the optimal solution. The complexity of the problem naturally increases with each parameter,
however, the number P of sites to select seems to have a particularly high impact. Additionally
to the parameters described in 4.1, we tested the model against four budgetary levels. For a
given cost vector c, we computed its median (2Q), mean (c̄), 3rd Quartile (3Q), and mean plus
standard deviation (c̄+σc) as average budget per housing unit, so that B/V ∈ {c2Q, c̄, c3Q, c̄+σc}.
We consistently find larger integrality gaps on instances with smaller budgets ((c2Q, c̄)). The
computation times however are generally shorter for these instances.
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Table 2: Results for NHLP with m=15,20 potential locations

v∗ IGap Ts #Sites

n P d/p B 15 20 15 20 15 20 15 20

30 2 d nc2Q 0,582 0,498 1,328 1,298 1,3 3,4 1 2
30 2 d nc̄ 0,582 0,517 1,350 1,513 1,5 7,7 1 2
30 2 d nc3Q 0,653 0,670 1,305 1,312 1,4 6,7 2 2
30 2 d n(c̄+ σc) 0,653 0,672 1,305 1,308 1,5 4,3 2 2
30 2 p nc2Q 0,504 0,075 1,488 6,642 2,1 10,1 1 1
30 2 p nc̄ 0,504 0,420 1,528 1,776 2,4 9,0 1 2
30 2 p nc3Q 0,760 0,735 1,296 1,370 1,2 5,2 2 2
30 2 p n(c̄+ σc) 0,760 0,791 1,296 1,282 1,1 3,1 2 2
30 4 d nc2Q 0,618 0,498 1,602 1,753 13,2 92,1 4 2
30 4 d nc̄ 0,618 0,604 1,621 1,691 24,6 169,4 4 4
30 4 d nc3Q 0,690 0,730 1,594 1,564 28,9 99,7 4 4
30 4 d n(c̄+ σc) 0,692 0,736 1,590 1,557 30,7 90,1 4 4
30 4 p nc2Q 0,548 0,312 1,596 2,020 10,8 85,5 4 3
30 4 p nc̄ 0,550 0,545 1,635 1,625 12,0 93,1 4 3
30 4 p nc3Q 0,769 0,810 1,583 1,541 26,8 92,2 4 4
30 4 p n(c̄+ σc) 0,794 0,844 1,538 1,501 10,1 64,8 4 4
30 6 d nc2Q 0,618 0,524 1,832 1,871 39,1 126,2 4 5
30 6 d nc̄ 0,623 0,647 1,843 1,820 42,1 271,0 5 6
30 6 d nc3Q 0,703 0,756 1,783 1,739 76,2 332,9 6 6
30 6 d n(c̄+ σc) 0,703 0,756 1,783 1,739 72,6 310,8 6 6
30 6 p nc2Q 0,548 0,343 1,735 2,041 30,2 93,7 4 5
30 6 p nc̄ 0,552 0,545 1,773 1,774 30,3 197,2 5 3
30 6 p nc3Q 0,775 0,820 1,689 1,652 59,5 381,8 5 6
30 6 p n(c̄+ σc) 0,794 0,844 1,648 1,614 39,4 229,6 4 4

60 2 d nc2Q 0,569 0,462 1,361 1,342 5,6 14,3 1 2
60 2 d nc̄ 0,569 0,490 1,386 1,571 6,8 25,5 1 2
60 2 d nc3Q 0,658 0,655 1,329 1,345 5,4 19,3 2 2
60 2 d n(c̄+ σc) 0,667 0,672 1,311 1,311 4,8 12,7 2 2
60 2 p nc2Q 0,516 0,060 1,487 8,153 6,9 34,4 1 1
60 2 p nc̄ 0,516 0,448 1,534 1,673 7,3 32,7 1 2
60 2 p nc3Q 0,764 0,726 1,296 1,377 3,4 20,1 2 2
60 2 p N(c̄+ σc) 0,764 0,787 1,297 1,280 3,0 13,3 2 2
60 4 d Nc2Q 0,586 0,462 1,637 1,786 37,3 224,8 4 2
60 4 d Nc̄ 0,588 0,591 1,656 1,666 88,1 354,5 4 4
60 4 d Nc3Q 0,685 0,691 1,568 1,593 93,2 429,3 4 4
60 4 d N(c̄+ σc) 0,685 0,691 1,568 1,593 89,4 418,9 4 4
60 4 p Nc2Q 0,575 0,306 1,541 2,000 31,8 337,4 4 3
60 4 p nc̄ 0,583 0,510 1,565 1,728 38,4 505,4 4 4
60 4 p nc3Q 0,780 0,805 1,531 1,514 79,6 319,5 4 4
60 4 p n(c̄+ σc) 0,780 0,805 1,531 1,517 43,2 301,6 4 4
60 6 d nc2Q 0,589 0,468 1,824 1,986 133,8 516,9 6 5
60 6 d nc̄ 0,602 0,613 1,816 1,840 187,9 1081,4 5 6
60 6 d nc3Q 0,695 0,723 1,729 1,725 205,8 1688,1 6 6
60 6 d n(c̄+ σc) 0,695 0,723 1,729 1,725 176,4 1537,8 6 6
60 6 p nc2Q 0,575 0,338 1,648 1,996 85,2 287,7 4 5
60 6 p nc̄ 0,583 0,552 1,671 1,731 79,2 828,9 4 6
60 6 p nc3Q 0,782 0,805 1,638 1,632 134,0 1266,6 5 4
60 6 p n(c̄+ σc) 0,782 0,805 1,638 1,634 120,7 1138,8 5 4

(c2Q, c̄, c3Q, c̄+ σc):(median, mean, 3rd Quartile, mean + standard deviation) values of vector c.
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Figure 2: Demographics of an instance with 15 cities (The size of the circles is proportional to correspond-
ing Di/PPi). Paris is the empty space on the bottom-right corner.

Figure 2 presents the main demographic characteristics of the area under study (Figure 2). The
upper level of the figure shows a higher concentration of the demand in the south of the region.
Furthermore, it points to a prevalence of high income potential buyers. On the lower level of the
figure, the left side shows the relative Purchasing Power (PP) for the high income-segments. A
comparison with the right-hand side shows that the demand sources with the highest PP from the
high income-segment also present the highest PP from the low income-segment. Figure 3 shows
the result of the optimization model with demand sources which are also potential locations (�),
and locations selected for new developments (� with some specific color). Additionally, the figure
draws, in form of a pie chart, the fraction of demand (xij) flowing from each demand source to the
selected locations (yj = 1). As could have been expected, the choice of new development locations
was influenced by the concentration of demand in the southern region. The consistency of model
NHLP can be appreciated by comparing the top and bottom halves of Figure 3. When the utility
is mainly driven by the distance criterion (top half of figure 3), we can see similar distributions of
demands when comparing the two segments (low-income and high-income) of a given city. This is
logical as these two segments mainly differ by their purchasing power but the price is not the main
choice criterion for the d-centric case, so income has a minor impact contrary to the p-centric case
(bottom half of the figure).

4.3 Numerical results for uncertainty on demands

In this section we present the impact of demand uncertainty on NHLP using the R-NHLP robust
model. The main findings in Table 3 highlight the usefulness of a robust model when dealing
with uncertainty. For each original (nominal) instance with demand vector D̄, we generated 25
”deviated” instances noted t = 1, . . . , 25 with demand vector D̃t inside uncertainty range [D̄ −
D̂, D̄+D̂] for each instance. Let us note by yR the robust solution and yN the nominal solution, i.e.,
the optimal solution for NHLP with nominal demand D̄. For each original instance we computed
over the 25 deviated instances, for yR and yN : the average loss of satisfaction in the objective
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(a) (b)

(c) (d)

Figure 3: Distribution of the demand for an instance with 30 demand sources. Selected locations for
development are assigned a colored square and shown with their name on the side. Demand flows from
each demand source are shown in the pie charts. For example, the black fraction in a pie flows to Neuilly-
sur-Seine.

function, the number of infeasibilities, and the number of times solutions achieved optimality.
We call ∆̄R the average loss of customer satisfaction (utility) of the robust solution yR over runs
t = 1, . . . , 25, when compared to the value v∗t of the optimal solution of deviated instance t:

∆̄R =
1

25

25∑
t=1

vt(yR)− v∗t
v∗t

where vt(y) is the value of solution y on deviated instance t. Similarly, we compute the average
loss of satisfaction ∆̄N achieved by the nominal solution yN :

∆̄N =
1

25

25∑
t=1

vt(yN )− v∗t
v∗t

We consider both the budget constraint (12) and the flow definition constraints (16) to be truly
binding. In this way, if a solution yR or yN is infeasible, then the satisfaction derived from it is 0.
Table 3 shows the effect of uncertainty on customer satisfaction with average losses ∆̄R, ∆̄N .

Generally, this loss is greater in the price-centric case. This can be explained by the interaction
between the demand and the budget constraint which reduces feasibility. The initial setting of
parameters Γ and D̂ also has an impact. Not surprisingly, enlarging Γ (10 vs 5) or the maximum
demand deviation D̂ (+30% D̄ vs +15 % D̄) generates higher losses of satisfaction, mainly when
the resources (B) are scarce as reported in the table. When comparing yR, which always remains
feasible, and yN , it evidences a greater need for a robust formulation for tighter budget constraints
(scenarios c2Q and c̄), as shown by the larger number of unfeasible repetitions (#inf) occurring
with yN . Finally, the number of times yR and yN achieved optimality tells us that the advantages
of using the robust model R-NHLP diminish when the budget constraint is less tight (scenarios
c3Q and c̄+ σc).
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Table 3: Results for a R-NHLP with (m,P)=(15,4)

# inf # best Time (s)

n Γ U B D̂ ∆̄R ∆̄N R N R N R N

30 5 d nc2Q 15%D -0.13 -0.05 0 1 0 24 19 23
30 5 d nc2Q 30%D -0.12 -0.38 0 8 0 14 13 23
30 5 d nc̄ 15%D -0.09 0.00 0 0 0 23 18 15
30 5 d nc̄ 30%D -0.14 -0.06 0 1 0 20 16 15
30 5 d nc3Q 15%D 0.00 0.00 0 0 20 20 32 32
30 5 d nc3Q 30%D -0.03 0.00 0 0 0 14 36 32
30 5 d n(c̄+ σc) 15%D 0.00 0.00 0 0 2 23 29 30
30 5 d n(c̄+ σc) 30%D 0.00 0.00 0 0 4 20 32 30
30 5 p nc2Q 15%D -0.16 -0.31 0 7 0 8 27 10
30 5 p nc2Q 30%D -0.26 -0.38 0 9 0 6 14 10
30 5 p nc̄ 15%D -0.14 -0.05 0 1 0 23 14 12
30 5 p nc̄ 30%D -0.22 -0.35 0 7 0 13 14 12
30 5 p nc3Q 15%D -0.05 -0.01 0 0 0 10 28 26
30 5 p nc3Q 30%D -0.07 -0.01 0 0 0 9 15 26
30 5 p n(c̄+ σc) 15%D 0.00 0.00 0 0 11 14 11 10
30 5 p n(c̄+ σc) 30%D 0.00 0.00 0 0 11 14 24 10

30 10 d nc2Q 15%D -0,14 -0,08 0 2 0 21 15 23
30 10 d nc2Q 30%D -0,20 -0,21 0 5 0 9 9 23
30 10 d nc̄ 15%D -0,13 -0,04 0 1 0 16 28 15
30 10 d nc̄ 30%D -0,21 -0,09 0 2 0 9 13 15
30 10 d nc3Q 15%D -0,04 0,00 0 0 0 14 36 31
30 10 d nc3Q 30%D -0,06 -0,01 0 0 0 12 38 31
30 10 d n(c̄+ σc) 15%D 0,00 0,00 0 0 10 8 34 29
30 10 d n(c̄+ σc) 30%D -0,01 -0,01 0 0 10 8 34 29
30 10 p nc2Q 15%D -0,21 -0,13 0 3 0 9 12 10
30 10 p nc2Q 30%D -0,41 -0,22 0 5 0 7 13 10
30 10 p nc̄ 15%D -0,19 -0,09 0 2 0 16 23 11
30 10 p nc̄ 30%D -0,34 -0,22 0 4 0 3 7 11
30 10 p nc3Q 15%D -0,07 -0,06 0 1 0 6 27 26
30 10 p nc3Q 30%D -0,16 -0,10 0 2 0 3 14 26
30 10 p n(c̄+ σc) 15%D 0,00 0,00 0 0 13 13 22 10
30 10 p n(c̄+ σc) 30%D -0,08 0,00 0 0 0 11 31 10

60 5 d nc2Q 15%D -0.08 -0.43 0 6 0 11 49 49
60 5 d nc2Q 30%D -0.14 -0.43 0 6 0 8 55 49
60 5 d nc̄ 15%D -0.05 -0.42 0 7 0 3 101 41
60 5 d nc̄ 30%D -0.16 -0.42 0 7 0 1 47 41
60 5 d nc3Q 15%D 0.00 0.00 0 0 25 25 99 92
60 5 d nc3Q 30%D -0.01 0.00 0 0 0 24 108 92
60 5 d n(c̄+ σc) 15%D 0.00 0.00 0 0 25 25 94 85
60 5 d n(c̄+ σc) 30%D 0.00 0.00 0 0 24 24 93 85
60 5 p nc2Q 15%D -0.15 -0.38 0 6 0 8 39 30
60 5 p nc2Q 30%D -0.23 -0.38 0 6 0 4 48 30
60 5 p nc̄ 15%D -0.15 -0.40 0 6 0 10 55 37
60 5 p nc̄ 30%D -0.23 -0.43 0 6 0 7 40 37
60 5 p nc3Q 15%D -0.02 0.00 0 0 0 25 88 82
60 5 p nc3Q 30%D -0.06 -0.04 0 1 0 24 45 82
60 5 p n(c̄+ σc) 15%D 0.00 0.00 0 0 25 25 73 75
60 5 p n(c̄+ σc) 30%D 0.00 0.00 0 0 25 25 74 75
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4.4 Numerical results for uncertainty on utilities

In this section we focus on the robust model uR-NHLP where uncertainty lies on customer
utilities. We classify the demand sources into two groups:

• Lower-than-average income: demand sources i with Ii < Ī, where Ī is the average income
over all cities, are considered more sensitive to price and better described by w0 = {1/3, 2/3}.

• Higher-than-average income: demand sources with Ii > Ī are considered more sensitive to
distance than price, and assigned a nominal weight vector w0 = {2/3, 1/3}

Table 4: Results for a uR-NHLP with (n,m,P)=(30,15,4)

# inf # best Time (s)

Γ B ∆̄R ∆̄N R N R N R N

5 nc2Q 0.000 0.000 0 0 24 24 68 15
5 nc̄ -0.001 -0.001 0 0 21 21 67 33
10 nc2Q -0.053 -0.001 0 0 0 21 58 15
10 nc̄ -0.015 -0.003 0 0 1 17 74 33
15 nc2Q -0.056 -0.120 0 3 0 22 70 15
15 nc̄ -0.004 -0.004 0 0 19 19 87 33
20 nc2Q -0.043 -0.400 0 10 0 14 151 14
20 nc̄ 0.000 0.000 0 0 20 20 50 28
25 nc2Q -0.035 -0.680 0 17 0 8 120 14
25 nc̄ 0.000 0.000 0 0 23 23 46 28

In Table 4 we see again that the robust solution yR is more interesting than the nominal solution yN
when the uncertainty budget Γ is quite large and the budget constraint is in the tightest scenario
B = nc2Q. The nominal solution starts to be infeasible for some of the 25 deviated instances from
Γ = 15, i.e. 0.5n, and is very often infeasible for greater Γ (# inf = 10 out of 25 for Γ = 20, and
inf = 17 out of 25 for Γ = 25. Nevertheless, for smaller values of Γ, the nominal solution behaves
very well with no infeasible solution and a higher proportion of best solutions. We can conclude
that the price of robustness, i.e. the price to pay for systematic feasibility, seems to be higher for
uncertainty on utilities.

5 Conclusion

We have presented a robust approach for selecting new housing programs, where uncertainty lies
first on demand volumes, then on customer utilities. We showed that when uncertainty lies on
utilities with a discrete set of deviation scenarios from the nominal data, the robustness subprob-
lem with binary variables can be replaced by its linear relaxation with no consequence on the
original model, which enables to use the classical dualization method. Since consumer behaviors
are modeled by a choice model, we used the Irrelevance of Independent Alternatives (IIA) property
to describe the flows from demand sources to selected sites in our models, which are reformulated
in a linear way. Numerical experiments on data of the Paris region show from which level of the
uncertainty budget and which degree of tightness of the budget constraint, the robust model starts
to be more accurate than just using the optimal solution of the nominal problem, that becomes
more and more infeasible when these parameters increase. To our knowledge, this paper is the first
contribution of optimization to selecting new housing programs with a choice model, beyond the
robustness aspect.
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