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Abstract

Standard tests for the rank of cointegration of a vector autoregressive process present distributions

that are affected by the presence of deterministic trends. We consider the recent approach of

Demetrescu et al. (2009) who recommend testing a composite null. We assess this methodology in

the presence of trends (linear or broken) whose magnitude is small enough not to be detectable at

conventional significance levels. We model them using local asymptotics and derive the properties

of the test statistics. We show that whether the trend is orthogonal to the cointegrating vector

has a major impact on the distributions but that the test combination approach remains valid.

We apply of the methodology to the study of cointegration properties between global temperatures

and the radiative forcing of human gas emissions. We find new evidence of Granger Causality.
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1 Introduction

There has been a recent renewed interest in designing testing strategies for unit roots that are

robust to the possible presence or a linear trend, see Harvey, Leybourne and Taylor (2008) and the

multivariate extension in Demetrescu, Lütkepohl and Saikkonen (2009). These studies draw on the

long established difficulties in distinguishing in finite samples between stochastic and deterministic

trends, see e.g. Sampson (1991), and Murray and Nelson (2000). In a multivariate context,

the difficulties are compounded by the presence of many nuisance parameters and many analyses

have focused on their influences, see Hubrich, Lütkepohl and Saikkonen (2001) for an overview.

Also, in the joint occurrence of stochastic and deterministic trends, the latter can be restricted

or not to lie within the space spanned by the cointegrating vectors. Perron and Campbell (1993)

distinguish between “stochastic” and “deterministic” cointegration: only for the latter is the trend

orthogonal to the cointegrating vector. In a simulation experiment, Toda (1994) shows that the

Likelihood Ratio (LR) test (see Johansen, 1988, 1991 and 1994) can be strongly affected by nuisance

parameters when a trend is also present. This realization has led H. Lütkepohl and P. Saikkonen to

propose in a series of papers (in 1999 and 2000) a Lagrange Multiplier (LM) test which estimates

the deterministic parameters under the null and proceeds to correct for them. In parallel, S.

Johansen has suggested, also in a series of papers (in 2000 and 2002) a Bartlett correction for the

LR test in finite samples. This correction works well in the presence of deterministic cointegration

when, as in Nielsen and Rahbek (2000), the parameters are restricted so that similarity of the

tests results. As an alternative to the Bartlett correction, Cavaliere, Rahbek and Taylor (2012)

have proposed a method for bootstrapping finite sample distributions of the LR statistics. Yet, it

appears that the issue of how to handle deterministic trends is not entirely settled, although the

simulations in Cavaliere, Taylor and Trenkler (2013) show that some techniques perform better

than others.

In view of the difficulties associated with disentangling stochastic and deterministic trends,

Demetrescu, Lütkepohl and Saikkonen (2009) have proposed extending the work by Harvey, Ley-

bourne and Taylor (2008) to the vector autoregressive (VAR) process. The technique they recom-

mend consists in estimating two models with a deterministic trend that is either–or not–restricted

to lie in the space orthogonal to the cointegrating vector; the test rejects the null if one of the

statistics is significant. These authors show that their ‘combination’ methodology compares advan-

tageously to pretesting for the correct trend specification. In particular, when there is uncertainty

about the presence and position of a deterministic trend, their simulations show that the technique

selects the ‘correct’ cointegration rank most often.

The question we address here concerns the behavior of the combination method when the trend

is hardly noticeable so its absence cannot be rejected at conventional significance levels. We assess
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whether the approach recommended by Demetrescu et al. (2009) still holds then. This situation

may occur when the power of the t-test for the null of no linear trend is low, say less than 50%.

Consider for instance a random walk with drift τ driven by normal innovations with variance σ2

and where the estimator of τ is the mean of the differenced process over a sample of T observations.

The power of the test for the null that τ = 0 is about 50% when the noncentrality
√
Tτ/σ is equal

to the critical value (close to 2 in general for a 95% two-sided test, see Section 7.1 in the Appendix).

This is for instance the magnitude of the values that Diebold and Senhadji (1996, Table 1) report

for tests of the presence of a drift in the difference of the log U.S. Gross National Product (GNP)

using four distinct measures over 1875-1993.

A convenient way to analyze the impact of “hardly noticeable” trends in this context is to

derive asymptotic distributions where the parameter of the deterministic trend vanishes at the

rate O
(
T−1/2

)
, as in the famous Pitman drift, so that both the stochastic and deterministic

trends interact asymptotically. We consider in this paper the robustness to such local trends of

the test for the rank of cointegration and show that very different behaviors result, depending on

whether the data are stochastically or deterministically cointegrated.

Why do we assess the recommendation of Demetrescu et al. (2009) in the presence of local

trends? The rationale behind their choice of test statistics is that they combine (i) one which is

robust to trends but inefficient in their absence and (ii) another which is inconsistent in the presence

of trends. Hence in the presence of a trend, the latter statistic terminates (by not rejecting the null)

the conventional sequential cointegration rank testing strategy too early. The authors therefore

ensure this does not happen in the overall testing strategy by combining the two tests. The results

of these authors hold in the presence of deterministic trends whose presence is testable, but they

show that their procedure is still preferable to pretesting for the trend. Clearly if pretesting is

not available (e.g. under a local trend) than a fortiori, the test combination approach should be

recommended.

We wish to assess their results as they could require modifying under local trends. Our question

here is then twofold: under a local trend, (i) is the “inconsistent” statistic still inconsistent so its

impact on the cointegration rank selection is limited, and (ii) is there a better choice of statistics

to combine? The contribution of this paper is to show that although the distribution of the LR

statistics differ under the alternative when the trend is considered local from when it is not, the

recommendation of Demetrescu et al. (2009) still holds. Indeed, the LR statistics which correspond

to the models with an unrestricted constant (LRµ in our notation below) or with a restricted linear

trend (LR∗τ ) achieve, here also, their desirable properties: the former is more efficient under a well

specified model and we show it to be conservative under the local alternative; the latter is robust to

the presence of trends. There does not seem to be test combinations that achieve better properties

than the Demetrescu et al. proposal. We also extend the linear deterministic trend setting to allow
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for a stochastic trend driven in part by Bernoulli innovations with local asymptotic parameter. This

allows us to show that the Demetrescu et al. proposal applies to a larger class of weak trends that

include in particular a form of broken trend.

In order to assess the relevance of the weak trends framework (which we understand as com-

prising local linear trends), we provide an application of our results to the question of the human

origin of global warming. We show that global temperatures and greenhouse gas emissions of

human origin are integrated and we test whether they cointegrate. The presence of a weak trend

constitutes an hypothesis which is difficult to rule out and which has been the subject of a rich and

hotly debated literature. Our results point towards the presence of cointegration without requiring

that we take a stance on the presence and position of a (possibly broken) deterministic trend. In

this context, we test that human emissions Granger cause global temperatures.

The paper is organized as follows. Section 2 present the models for weak trends. We then

derive in Section 3 the distributions of the various statistics for the tests on the cointegration rank.

A Monte Carlo analysis follows in Section 4 where we confirm the results of Demetrescu et al.

(2009) in the presence of weak trends. We provide an empirical analysis of the human origin of

global warming in Section 5. An appendix collects the proofs. Throughout the paper, row vectors

are denoted by (a : b) ; also, for any (p× q) matrix α of full rank q ≤ p, we define α⊥ of dimension

p × (p− q) such that (α : α⊥) is of full rank p. We also let the generalized projection operator

α = α (α′α)
−1
. The space spanned by linear combinations of the columns of a matrix α is denoted

by sp (α) ; the rank of a matrix A is written rk (A).

2 The models

Consider a p-dimensional vector of variables xt that admits a vector autoregressive representation

of order k such that, for t = 1, ..., T,

∆xt = Πxt−1 +

k−1∑
i=1

Γi∆xt−i + εt. (1)

Assume that the disturbances εt follow a martingale difference sequence with bounded fourth

moments and variance covariance given by Ω = ΣΣ′ for some positive definite matrix Σ. If xt is

I(1) and Π is of reduced rank q, then there exist α and β of order (p× q) such that Π = αβ′ and

β′xt−E [β′xt] is stationary. xt is then said to cointegrate, with cointegrating vector β. We also let

x0 = 0 in (1), although this is not an inconsequential assumption (see Müller and Elliott, 2003).

4



2.1 Local linear trend

We define yt as the sum of xt and of a deterministic trend which we assume local, i.e. satisfying

the definition:

yt = xt + µ+ ψ
t√
T

= xt + ΨdT,t (2)

where Ψ = (µ : ψ) is a matrix of dimension p × 2, dT,t =
(
1 : T−1/2t

)′
. Throughout the paper,

we rely on triangular arrays that are parameterized by the sample size T ; for notational ease, we

do not write explicitly this dependence and let dt = dT,t. Then yt admits the following moving

average representation : yt = C
∑t
i=1 εi + Ψdt + C1 (L) εt + A (Johansen, 1995), where L is the

lag operator, C = β⊥ (α′⊥Γβ⊥)
−1
α′⊥, Γ = Ip −

∑k−1
i=1 Γi, the power series for C1 (z) is convergent

for |z| < 1 + δ for some δ > 0 and β′A = 0. Expressions (1) and (2) together imply that yt admits

the equilibrium correction:

∆yt = −Πµ+T−1/2Γψ + α
(
β′yt−1 − T−1/2β′ψ (t− 1)

)
+

k−1∑
i=1

Γi∆yt−i + εt. (3)

Here, we only consider deterministic trends that are local since our purpose is to study the

robustness of the cointegration tests to the presence of potential deterministic misspecification.

We follow in this Lütkepohl and Saikkonen (2000) and differ from analyses such as in Johansen

(1995), chapter 14, Rahbek (1994) and Saikkonen and Lütkepohl (1999) whose focus is on the

power of the test for the rank of cointegration vis-à-vis a locally larger rank.

The process yt, suitably scaled and interpolated, admits a weak limit that follows from a

straightforward multivariate extension of the random walk with a local drift, drawing on Haldrup

and Hylleberg (1995) and Stock and Watson (1996).1 Define UT in Dp [0, 1], such that ∀r ∈

[0, 1] , UT (r) = T−1/2
∑[Tr]
i=0 εi ⇒ ΣW (r), as T → ∞, where W is a standard Brownian motion

on Cp [0, 1]. Then T−1/2y[Tr] retains asymptotically the sum of both the stochastic and of the

degenerate linear trend, i.e. for r ∈ [0, 1] :

T−1/2y[Tr] ⇒ CΣW (r) + ψr
def
= Kψ,CΣ (r) (4)

where Kψ,CΣ is a Brownian motion with drift. Motivated by expressions (3) and (4), and by our

interest in allowing for a local trend, we assume in the rest of the paper that y0 = 0, i.e. µ = 0.

2.2 Weak broken trend

We also consider a slightly different setting of weak broken trends since the recent literature has

shown that they can be confused with stochastic trends (and hence local linear trends), see e.g.

1We let, as usual, [w] denote the integer part of w for any real scalar w; Dp [0, 1] is the space of Rp-valued

functions on the interval [0, 1] which are right continuous and have finite left limits (càdlàg); Cp [0, 1] is the subspace

of Dp [0, 1] of continuous functions; and ‘⇒’ denotes weak convergence of the associated probability measure.
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Pretis and Hendry (2012). Let, for t = 1, ..., T,

δt = δt−1 + qtνt,

with δ0 = 0 and where qt and νt are independent random variables distributed as

qt
i.i.d.∼ Bernoulli

(
ψT−1/2

)
, νt

i.i.d.∼ N
(
1, σ2

ν

)
.

The process δt satisfies δt = qt + δt−1 + qt (νt − 1) with qt (νt − 1) a white noise. This defines a

random walk with non-Gaussian innovations and random drift. In particular, Pr (∆δt = 0) 6= 0, i.e.

δt does not experience shifts in every period. As T →∞, the probability of success Pr (qt = 1) =

O
(
T−1/2

)
, ensuring that δt = Op

(√
T
)

but, contrary to the type of processes considered in, say,

Elliott and Müller (2006), E[∆δt] 6= 0 so δt behaves differently from a pure stochastic trend. More

precisely, E [δt] = ψ t√
T
, and Var [δt] = ψσ2

ν

(
1− ψ/

√
T
)

t√
T

so

δt = ψ
t√
T

+Op

(
T 1/4

)
. (5)

We define a straightforward multivariate extension of δt as δt = δt−1 + qtνt where qt is a p-

dimensional diagonal matrix whose diagonal is an independently and Bernoulli(ψ/
√
T ) distributed

vector and νt is multivariate normal. Hence E[δt] = ψt/
√
T , and we consider

zt = xt + µ+ δt (6)

Instead of a local linear trend, the cointegrated process zt exhibits a form of broken stochastic

trend:

∆zt = −Πµ+T−1/2

(
∆δt −

k−1∑
i=1

Γi∆δt−i

)
+ α

(
β′zt−1 − T−1/2β′δt−1

)
+

k−1∑
i=1

Γi∆zt−i + εt.

Figure 1 presents realizations of univariate processes (xt, yt, zt) where T = 100, 250 and 1000

and σ2
ν = 1. The third column shows the Bernoulli trend δt together with the local linear trend

t/
√
T . The figure exemplifies why we referred to δt as a broken trend: the shifts in δt occur

irregularly but the magnitude is similar to that of a local linear trend.2 Asymptotics for zt follow

simply from (5):

T−1/2z[Tr] ⇒ Kψ,CΣ (r) . (7)

In the following we use the term weakly trending to refer to the behaviors of both yt and zt.

2The process zt is presented as an illustration of extensions of the local linear trend framework. Other alternatives

exist that involve piecewise linear deterministic trends with or withour random shifts in the slope.
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3 Cointegration tests

In this section, we derive the distributions of test statistics when the process exhibits a weak trend

and show that Proposition 3.1 of Demetrescu et al. (2009) which justifies their combination of tests

also holds here. The null hypothesis is that of Π in (1) being of rank at most q < p, and we allow

for different models for deterministic terms. We assess the robustness of the test statistics in the

presence of deterministic misspecification. We therefore do not treat deterministic specification as

part of a composite null that would also include the rank of cointegration. Trends are seen as a

nuisance for inference on cointegration.

If the modeler assumes that the DGP exhibits no deterministic components, then reduced rank

regression of ∆yt on yt−1 corrected for the lagged differences leads to computing the likelihood

ratio (LR) test statistic

−2 logQ (H (q) |H (p)) = −T
p∑

i=q+1

log
(

1− λ̂i
)

(8)

where the eigenvalues λi are estimated as solutions to the problem
∣∣λS11 − S10S

−1
00 S01

∣∣ = |S (λ)| =

0, with Sij = T−1
∑T
i=1RitR

′
jt, Rit = Zit −Mi2M

−1
22 Z2t, Mij = T−1

∑
T
i=1ZitZ

′
jt, Z0t = ∆yt,

Z1t = yt−1 and Z2t is made of the stacked lagged differences of ∆yt. We define the statistic in (8)

as LR for the hypothesis H0 : rk (Π) ≤ q under model M that is given by (1) and (2) with Ψ = 0.

Alternatively, the modeler may wish to use another of the LR statistics that have been proposed

by S. Johansen to achieve robustness against Ψ 6= 0. The two main methods consist in (i) also

including a constant in Z2t, which provides the statistic LRµ, or (ii) including both a constant

and a linear trend in Z2t, thus yielding LRτ . Then LRµ should be robust to Ψ = (µ, ψ) , ψ = 0

(model Mµ) and LRτ against the presence of a linear trend (Mτ ). As is well known, deterministic

terms lying within or outside the cointegration space impact processes differently. Hence the

models which specify that, in the error correction form, the drift (model M∗µ) or the trend (M∗τ )

are restricted to the cointegration space. These lead to the statistics LR∗µ, or LR∗τ respectively, for

which, Z1t is augmented of a constant, or a linear trend; Z2t contains no deterministic terms, or a

constant.

Let the (p− q)-variate diffusion, for r ∈ [0, 1] ,

G (r) = V (r) +

 0(p−q−1)×1(
ψ
′
β⊥

CΩ′C′ψβ⊥

)−1/2

r

 (9)

where V (r) is a standard Brownian motion of dimension (p− q) and the notation ψβ⊥ refers to

the decomposition ψ = ψβ + ψβ⊥ alongside the two orthogonal complements: ψβ = ββ′ψ and

ψβ⊥ = β⊥β
′
⊥ψ. Let subscripts µ and τ denote correction for a mean, or a mean and trend,

i.e. Vµ = V (r) −
∫ 1

0
V (u) du and Vτ (r) = V (r) − av − bvr where av,bv are the coefficients of
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the correction of V for a constant and a trend. Augmented vectors are V∗ = (V′ (r) : r) ′, with

corresponding mean or trend correction, e.g. V∗µ =
(
V′µ (r) : r − 1/2

) ′. We also let Jψα⊥ (r) =

(α′⊥Ωα⊥)
−1/2

α′⊥Kψ,Σ (r) = V (r) + (α′⊥Ωα⊥)
−1/2

α′⊥ψr; J(Γψ)α⊥
follows a similar definition.

When ψβ 6= 0 we project β onto the space spanned by the trend and let ξ = β′ψβ .We then define the

(p− q + 1) dimensional standard Brownian motion U =
(
Σ′ξα

′
⊥Σ

00
α⊥Σξ

)−1/2

Σ′ξα
′
⊥Σ

1/2
00 W (r)

where Σξ is such that (Σ0βξ⊥)⊥ = α⊥Σξ. Finally, we let Iψα⊥
(r) = U (r)+

(
Σ′ξα

′
⊥Σ

00
α⊥Σξ

)−1/2

Σ′ξα
′
⊥ψr.

We are now ready to state our main result.

Proposition 1 Under the assumption that the DGP is generated as (1) and (2), with y0 = 0, the

asymptotic distributions of the Likelihood Ratio test statistics are given by

if ψβ = 0

LR⇒ tr

{∫ 1

0

dJψα⊥G′
[∫ 1

0

GG′
]−1 ∫ 1

0

GdJ′ψα⊥

}
,

LRµ ⇒ tr

{∫ 1

0

dV G′µ

[∫ 1

0

GµG′µ

]−1 ∫ 1

0

GµdV
′

}
,

if ψβ 6= 0, and q > 1, LR and LRµ tend to the sum of the p − q smallest eigenvalues of the

(p− q + 1)-dimensional matrices 0

ξ
′
Σβ0

′ + ∫ dIψα⊥G∗′

(∫ G∗G∗′
)−1

∫ G∗dI′ψα⊥ +

 0

ξ
′
Σβ0


 0

ξ
′
Σβ0

′ + ∫ dU G∗′µ

(∫ G∗µG∗′µ

)−1
∫ G∗µdU

′ +

 0

ξ
′
Σβ0



and for all values of ψβ

LR∗µ ⇒ tr

(∫ 1

0

dJ(Γψ)α⊥
G∗′

[∫ 1

0

G∗G∗′
]−1 ∫ 1

0

G∗dJ′(Γψ)α⊥

)
,

LR∗τ ⇒ tr

(∫ 1

0

dV V∗′
[∫ 1

0

V∗V∗′
]−1 ∫ 1

0

V∗dV′

)
,

LRτ ⇒ tr

{∫ 1

0

dV V′τ

[∫ 1

0

VτV
′
τ

]−1 ∫ 1

0

VτdV
′

}
.

Corollary 2 Under the assumptions of Proposition 1, then whether ψβ = 0 or not, as ‖ψ‖ → 0

the asymptotic distributions of LR, LRµ and LR∗µ tend to their null distributions under correct

specification of the deterministic components.

Proposition 1 shows that the asymptotic distributions of LRτ and LR∗τ do not depend on ψ (as

in Nielsen and Rahbek, 2000). By contrast LR, LRµ and LR∗µ lack robustness to the presence of a
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local trend, i.e. ψ 6= 0 : their distributions no longer depend only on the number of common trends

p − q irrespective of the parameters of deterministic components. When ψβ = 0, so ψβ⊥ 6= 0,

misspecification impacts through the definition of the diffusion G. For instance, in the case of the

DGP considered in the simulations below (Section 4, experiment A) with ψβ = 0 and ψβ⊥=ψi (i

is a vector consisting of zeros in sp (β) and ones in sp (β⊥)), the coefficient of the deterministic

trend component in G is
(
ψ
′
β⊥

CΩC′ψβ⊥

)−1/2

=
√
ψ2 (p− q). Deterministic misspecification (in

the form of a local trend) impacts the probability of rejection under the null.

Under models M, Mµ and M∗µ, and when ψβ = 0 in the DGP, i.e. what Perron and Campbell

(1993) labeled “deterministic” cointegration and which can be treated using Johansen (1991), the

test statistics have asymptotic distributions which are expressed as (mathematical) traces that

are comparable to those under correct specification – although they now depend on the nuisance

parameters ψβ⊥ and ψα⊥ . In the presence of “stochastic” cointegration, when the linear trend is

not entirely lying in sp (β⊥): the systems under M and Mµ present p − q + 1 asymptotically zero

eigenvalues (Proposition 3.1 of Demetrescu et al. (2009) states this result for model Mµ in the

presence of a non-local trend); under the null of at most q cointegration relations, the statistic for

a q − 1 rank has a distribution that can be expressed through a trace statistic.3 Under the null of

cointegration rank equal to q, the asymptotic distribution depends on the magnitude of ψ in the

directions of β and α⊥. Due to the complicated distributions which result, we observe the rejection

rates via a Monte Carlo experiment in Section 4. Tests that account for the non-similarity of the

test statistics with respect to ψ can in principle be obtained using either (i) Bonferroni corrections

obtained by simulating the asymptotic distributions for a range of ψ; or (ii) a median estimator

for ψ by minimizing the distance between the observed statistic and the median of the asymptotic

distribution (see Stock, 1991, and Andrews, 1993). We do not consider these options in the paper

for the combination approach of Demetrescu et al. (2009) where the tests involving LRµ use critical

values computed under the null that ψ = 0.

The proposition also shows that short run dynamics (when Γ 6= Ip) may affect the asymptotic

distributions through two channels: one is through the definition of the matrix C which appears in

the definition of G; this concerns models M, Mµ and M∗µ when ψβ⊥ 6= 0. Interestingly Γ also plays

a role in the asymptotic distribution of LR∗µ unless Γψ lies in the space spanned by α – which is

3It is possible to modify the LR test statistic by regularization (a form of shrinkage, or ridge regression) where

the eigenvalue problem is modified to∣∣∣λ (S11 +R′R
)
− S10S

−1
00 S01

∣∣∣ = 0 (10)

with appropriate choice of R. The matrix R has to be specified under the null for the rank of β and the space

it spans; it involves estimating ψβ and rotating the solutions to (10) away from the space spanned by ξ. For a

discussion of Regularized Reduced Rank Regression, see Dobrev and Schamburg (2012). We do not consider this

approach here as it turns out that the LR statistics exhibit robustness to ψβ 6= 0.
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the case if the common stochastic trends exhibit no short run dynamics, i.e. α′⊥∆yt = εt.

Corollary 2 shows that, no matter whether cointegration is deterministic or stochastic, if we let

the trend coefficient tend to zero, the asymptotic distributions of the test statistics tend to those

under the null for a correctly specified model.

Moreover, because of the difficulty associated with choosing the correct deterministic speci-

fication for the Likelihood Ratio test, H. Lütkepohl and P. Saikkonen have proposed in a series

of papers (Lütkepohl and Saikkonen, 2000, L&S henceforth, and Saikkonen and Lütkepohl, 1999,

2000a, 2000b) an alternative Lagrange-Multiplier test. This LM test consists in estimating Ψ under

the null hypothesis of q cointegrating relations, then detrending yt and testing for cointegration.

We show in the Appendix, Section 7.2, that the procedure is robust to local trends.

Finally, the analytical results presented above also apply to the weak broken trend in the process

zt: the cointegration tests LRµ, LRτ and LR∗τ applied to zt follow the same distribution as when

applied to yt in Proposition 1, as the following corollary shows.

Corollary 3 Define the process zt as (6) where xt satisfies the assumptions of Proposition 1,

∆δt = qtνt, δ0 = 0, qt is a diagonal matrix with diagonal that follows an i.i.d. Bernoulli
(
T−1/2ψ

)
,

ψ ∈ Rp and νt is i.i.d normal with unit expectation and variance-covariance Ω. Then the asymptotic

distributions of the test statistics LRµ, LR
∗
τ and LRτ are given by Proposition 1.

The proof of the corollary follows the same lines as that of Proposition 1 and is omitted in the pa-

per. It relies on (7) and the fact that δt = ψt/
√
T+op

(√
T
)

and
(
T−3/2

∑T
t=1 δt, T

−5/2
∑T
t=1 tδt

)
m.s.→

ψ (1/2, 1/3).4 It follows that the procedure recommended by Demetrescu et al. also holds for a

wider array of trending processes.

4 Monte Carlo

We observe the robustness of the tests via a Monte Carlo experiment where we compute the trace

statistic of the LR test over 20,000 replications (computations were performed using Ox version

6.00, see Doornik, 2007; the code is available from the author’s website). We consider three sets of

experiments: first, a simple one based on a VAR(1) to assess the individual tests in the presence

of a local trend which may or not be orthogonal to the cointegrating vector. We then consider the

4The proof follows from

T−1/2

(
E

[
T−1

T∑
t=1

δt

]
,Var

[
T−1

T∑
t=1

δt

])
→ ψ

(
1

2
,
σ2
ν

3

)
,

and

T−1/2

(
E

[
T−2

T∑
t=1

tδt

]
,Var

[
T−2

T∑
t=1

tδt

])
→ ψ

(
1

3
,

2σ2
ν

15

)
.
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Demetrescu et al. joint testing procedure and compare it with the Lagrange-Multiplier technique

of Lütkepohl and Saikkonen. Second, we extend the analysis to consider the more realistic VAR(2)

DGP of Toda (1994, see Section 7.4 of the Appendix) considered by Demetrescu et al. and many

authors. Finally, we also evaluate how the techniques fare in the presence of a weak Bernoulli

trend.

4.1 LR tests without short run dynamics

4.1.1 Simulation setting

In the first set of simulations, we do not consider the effect of short-run dynamics and set Ω =

Ip, k = 1 in (1). We let, for a cointegration rank q, the vectors β = −α =
(
Iq : 0q×(p−q)

)′
where Iq is the q dimensional unit matrix and 0m×n a (m× n)-matrix of zeros. Then Π =

diag(−Iq,0(p−q)×(p−q)) and we choose α⊥ = β⊥ =
(
0(p−q)×q : I(p−q)

)′
and C = β⊥ (α′⊥β⊥)

−1
α′⊥ =

diag
(
0q×q, I(p−q)

)
. Hence, the process xt consists of p− q independent random walks and q white

noises. We simulate three different experiments: pure deterministic cointegration, pure stochastic

(non-deterministic) cointegration and a hybrid, as in

A : ψ = ψ
(
0′q : 1′p−q

)′
(deterministic cointegration)

B : ψ = ψ
(
1′q : 0′p−q

)′
(pure stochastic cointegration)

C : ψ =ψ1′p

for ψ ∈ [0, 10] , with 1(p−q) a vector (1 : 1 : ...)
′

of dimension p−q. Hence, in experiment A, ψβ = 0

and ψβ⊥ = ψα⊥ 6= 0; in B, ψβ 6= 0 and ψβ⊥ = ψα⊥ = 0 and in C, ψβ and ψβ⊥ are both nonzero.

In this setting, the coefficient of the trend in G in (9) is
(
ψ
′
β⊥

CΩC′ψβ⊥

)−1/2

=
√
ψ2 (p− q) in

experiments A and C, and 0 in B. We show in Section 7.1 of the Appendix that a univariate

test for the presence of a deterministic trend has 50% power when τ/σ ≈ 2T−1/2, so the values of

interest are here for ψ
√
p− q ∈ (0, 1) .

As Nielsen (1997) and Doornik (1998) point out, there exist several ways to compute the LR

statistics that are equivalent asymptotically but differ numerically in finite samples; this issue is

relevant here since localizing parameters depend on the sample size. We therefore compare two

computational techniques: the first involves solving numerically the eigen problem |S (λ)| and

computing the statistics as −T
∑p
i=q+1 log (1− λi) where the eigenvalues are ordered decreasingly

λ1 > λ2 > ... > λp; the second consists in computing a Cholesky decomposition of S−1
11 into PP ′

and obtaining the trace of PS10S
−1
00 S10P

′. Nielsen (1997) shows that first technique converges

faster to the asymptotic distribution, unreported simulations show that it also the case in the

presence of weak trends, hence we use it to compute the results.
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4.1.2 Individual LR tests

We report in Table 1 the rejection probabilities of the null of q cointegrating relations out of

p = 6 variables at a 5% nominal size (results for other sizes are comparable). In order to reduce

Monte Carlo and finite sample variability, we compute the critical values under the corresponding

null using the distribution of xt. This allows to focus specifically on robustness with respect to

the local trend although it does not appear to affect our results.5 In the simulations, we let the

sample sample vary from 100 to 1000 but with very little impact on the conclusions. As discussed

previously and under the simulation specifications, the t-test for the null of no drift in a differenced

random walk model has an approximate 50% rejection probability at the 5% nominal level under

the alternative that ψ = 2. Hence values of ψ as large as 5 should be detected by the modeler.

As expected from Proposition 1, LR∗τ and LRτ are robust to local trends in finite samples. The

table shows that the effect of trends orthogonal to the cointegrating space starts affecting LR∗τ for

values of ψ
√
p− q reaching the value of 5.

Since robustness is understood here as rejection frequencies that remain close to the nominal

size, non robustness can arise with the test being conservative or liberal. If the null is under (over)

rejected, the modeler is led to under (over) estimate the cointegration rank. The table shows that

LR, LRµ are inconsistent in all experiments even for low values of ψ. By contrast, LR∗µ remains

conservative in the presence of a local trend as in Demetrescu at al. We omit for brevity the

situation where q = 0, i.e. in the absence of cointegration. Simulations show that in experiment

A, the pattern follows from the other cases considered: LRµ is more robust and LR and LR∗µ reject

even more. Clearly A and C coincide in this case. Also, experiment B then implies that ψ = 0

since β⊥ = Ip.

The simulation experiment argues for the use of LRµ in the combination of tests proposed by

Demetrescu et al., and against the use of the either LR∗µ or LR.

4.2 Combined LR and LM tests

We now assess the implication of the analysis above for the combination of LR tests. Table 2 reports

the success rate in correctly choosing the rank of cointegration via either the joint LRµ ∩ LR∗τ test

or the LM test. We use the standard sequential testing procedure starting with zero cointegration

rank. Critical values are computed for the individual tests for xt using the same sample size:

they are close to the asymptotic values reported in MacKinnon et al. (1999) and Lütkepohl and

Saikkonen (2000). The conclusions are similar when using the asymptotic critical values. For

5A feasible alternative method would consist in using the bootstrap proposed by Cavaliere et al. (2012). We find

in the experiment that the simulated critical values are very close to the asymptotic values reported by MacKinnon,

Haug and Michelis (1999).
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comparability with the Toda (1994) DGP below, we set p = 5.

The table shows that whereas the LM more accurately selects the correct rank of cointegration

in large samples (here T = 1, 000), it suffers in small samples: the sequential testing procedure

terminates too soon and the rank of cointegration is underestimated. By contrast, the combined

LR methodology determines the rank, with very reasonable success rate irrespective of the position

of the linear trend and the sample size.

We now consider extending the DGP into two directions (but retain the critical values previously

computed). First, we consider the VAR(2) simulation setting of Toda (1994) used by Demetrescu

et al. (see Section 7.4 of the Appendix). They consider linear trends whose “nonlocal” parameters

are 0.1 (so ψ = 1 or 1.6 for T = 100 or 250) and 0.5 (ψ = 5 or 7.9 for T = 100 or 250). Here we

consider smaller drifts (ψ less than 2). Table 3 records the simulated rejection frequencies of the

combined tests when ψ =ψ1′p (as in Experiment C ). The simulations show that serial correlation

impacts finite sample inference. When ψ = .5, joint testing of LRµ ∩ LR∗τ leads to under selection

when T = 100, but not when T = 1, 000. Comparing the table with those reported in Demetrescu

et al. (their Table 3), we see that the presence of a trend that is local leads to similar accuracy in

selecting the rank of cointegration in finite samples.

By contrast, the presence of short-run dynamics has significant impact on the selected coin-

tegration rank using the LM test. The procedure then terminates too early, even in significantly

large samples. Unreported simulations show that the LM test performs much better when k is

known: the impact of the Akaike Information Criterion for selecting the lag order is non negligible

in this context.

Finally, the lower rows consider apply the tests to the weakly trending process zt (as in Ex-

periment C again) The conclusions are similar except that the procedure performs less well in

finite samples when only one stochastic trend is present: the rank of cointegration is only correctly

selected in 80% of the experiments. To understand how differently a weak Bernoulli trend impacts

the finite sample statistics, Table 4 records the simulated quantiles at probability .95 of the distri-

butions of LRµ and LR∗τ applied to xt, yt and zt for samples of size 100 and 1000. Here ψ =ψ1′p

(Experiment C ) with ψ = 1. The table shows that the LR∗τ quantiles are virtually identical for

all processes. Those for LRµ are larger for yt and zt than for xt, yet they are much less so for zt

than for xt.
6 Hence if the trend is under-specified, there is a small asymptotic property that the

sequential testing strategy terminates too early under model Mµ.

6Note that quite different critical values for LRµ are reported in the literature for low values of p− q.
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5 Application: the Human Origin of Global Warming

We now apply the theoretical results to the vexed issue of the human origin of global warming.

There exists a relatively large literature that debates the time series properties of global surface

temperatures and human factors hypothesized to cause changes in temperatures (measured as

radiative forcing of greenhouse gases, aerosols, and solar insolation, see e.g. Kaufmann, Kauppi

and Stock, 2010). A key question is whether these series are better described as difference or

trend-stationary, so cointegration and/or Granger causality tests can be performed. This literature

originates in Bloomfield and Nychka (1992) but various authors find mixed results depending on

which test is used. Kaufmann, Kauppi and Stock (2006) and Kaufmann and Stern (2002) conclude

that surface temperatures cointegrate with the radiative forcing of human emissions. This finding

was subsequently challenged by Gay, Estrada and Sanchez (2009) who conclude that temperatures

are stationary around a broken deterministic trend. Kaufmann, Kauppi and Stock (2010Kaufmann

et al. (2010)) and Stern and Kaufmann (2013) disagree and confirm their evidence of cointegration

and Granger causality from radiative forcing of human origin to surface temperatures. In a related

study, Beenstock, Reingewertz and Paldor (2012) conclude that cointegration is impossible as

evidence shows anthropogenic radiative forcing to be integrated of order 2 whereas temperature

only contain one unit root. This evidence is challenged by Pretis and Hendry (2012) who show that

the series for radiative forcing exhibits breaks in recent periods due to changes in measurement

methodologies (the dates differ across gases). Stern and Kaufmann (2013) also invoke a similar

argument.

Here, we revisit the issue of cointegration between temperatures and anthropogenic radiative

forcing in the light of our results on tests in the presence of weak trends. Figure 2 presents

the time series7 of Temperature and Radiative Forcing of human origin that are used in Stern

and Kaufmann (2013). The data span 1850-2011. In the figure, the levels of Temperature and

Radiative Forcing were adjusted so their means and ranges match. The series in level present

some long term comovements as well as an overall upward pattern (a linear trend is added to

the graph, the data are scaled so the linear trend in either coincide).8 In light of the stochastic

versus piecewise deterministic trends controversy, a question of debated interest is whether the

processes may cointegrate and present a deterministic trend of small magnitude (whose position

with respect to the potential cointegrating vector is unclear); the latter being subject to potential

shifts occurring, say, over the 1960-1980 period.

To assess the relevance of the weak trend framework, we fit autoregressive models of order 3,

7The series reported here are those of Stern and Kaufmann (2013), HADCRUT4 (Temperature) and RFANTH

(RF ).
8For an explanation of the apparent recent disconnect, see Kaufmann, Kauppi, Mann and Stock (2011).
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AR(3) , to the differences in Temperature and RF.9 The drifts are not significant, with t-values of

1.06 for ∆Temperature and 1.80 for ∆RF, so their associated p-values are 0.29 and 0.07. Hence the

trend is not significant at the 5% level. The p-values are compatible with the local trend framework

and possibly, the presence of a weak broken trend.

We perform a VAR(4) analysis for the levels of Temperature and RF. We follow Stern and Kauf-

mann and consider in addition their data for radiative forcing of natural origin (mostly volcanic and

organic), denoted RFnat. The latter variable is considered stationary, and possibly heteroskedas-

tic. To reduce the dimensionality of the system, we let RFnat enter unrestrictedly. We therefore

estimate 28 parameters (30 when a trend is included) over a sample of 158 observations. Table 5

records the trace statistics for the model with (un)restricted intercepts and trends. Models with

trends conclude to the presence of a unique stochastic trend, whereas Mµ and M∗µ provide weaker

evidence, rejecting the presence of a stochastic trend at the 5% level, but not at the 1%. Joint

testing using LRµ∩LR∗τ hence concludes only at the 1% level to the presence of one cointegration

relation and one stochastic trend.

In this system, under model Mµ, the selected cointegration vector is (with standard deviations

in parentheses):

ct = Temperaturet − 0.71
(0.14)

RF t,

which is recorded in Figure 3. RF t is tested weakly exogenous for the coefficients in the Temperature

equation (at the 1%). A parsimonious multiple equation model for ∆Temperaturet and ∆RF t is

derived10 as

∆Temperaturet = − 0.02
(0.017)

− 0.19
(0.06)

ct−1 − 0.05
(0.014)

RFnat t − 0.27
(0.06)

∆3Temperaturet−1,

∆RF t = 0.003
(0.0017)

+ 0.03
(0.013)

∆Temperaturet−1 + 0.43
(0.07)

∆RF t−1 + 0.30
(0.07)

∆RF t−3,

where ∆3xt = xt−xt−3. Figure 3 presents graphs for the fit of the model. The correlation between

observed and fitted values is 0.54 and 0.63. The null that anthropogenic radiative forcing does

not Granger cause global temperature is tested using a Likelihood Ratio test of the exclusion of ct

in the equation for ∆Temperaturet. The test statistic is 9.8 with associated p-value of 0.002, thus

rejecting long-run Granger non-causality.

This confirms the analysis of Stern and Kaufmann (2013) that human radiative forcing is a

potential source of global warming. Yet, to establish this result formally, further study using

various measures of global temperatures and radiative forcing must be carried out. Also, now that

we have established that a weak trend may be present, statistical analysis of its specific form is

9This is the lag order that ensures that residual are not tested serially correlated.
10Standard specification tests for joint serial correlation and heteroscedasticity do not reject; the p-value of the

test for joint normality is 0.012. The p-value of the LR test of over-identifying restrictions is 0.94.
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warranted. Yet, our previous theoretical and simulation results show that the cointegration testing

procedure of Demetrescu et al. (2009) is reasonably robust to the presence of various forms of

weak trends.

6 Conclusion

In this paper, we have studied the robustness of tests for the rank of cointegration in the VAR

process with respect to misspecified local linear trends. This situation may correspond to data that

exhibit both stochastic and deterministic trends but the latter have a low magnitude that render

them hardly noticeable and possibly insignificant. In this setting we have considered five versions of

the likelihood ratio (LR) test and the Lagrange multiplier (LM) test. The LR with trend (LR∗τ and

LRτ ) and the LM statistics are asymptotically robust to the local trend when testing for the rank

of cointegration in a stochastically cointegrated VAR (from the definition in Perron and Campbell,

1993). By contrast the LR statistic that do not allow for a trend (LR, LRµ and LR∗µ) only exhibit

varying degrees of robustness, the latter also depending on the position of the trend with respect

to the space spanned by cointegrating vectors. If the modeler aims to achieve robustness through

a combination of tests, then as in Demetrescu et al. (2009) where overall rejection occurs if either

test rejects, it is preferable to use one statistic with correct size under in the presence of a trend

(LR∗τ ) and another with is more efficient in the absence of trend but that is conservative when the

trend is not noticeable: LRµ satisfies this requirement. Our results and simulations show that the

recommendation of Demetrescu et al. (2009) also holds in the presence of trends with low impact.

By contrast the LM test tends to underestimate the rank of cointegration in finite samples.

We show also that the weak trend framework applies to more general patterns than the pure

linear trend. Indeed the trend driven by Bernoulli increments yields asymptotically identical dis-

tributions. This type of trend having locally nonzero expected change may represent the broken

trends that are encountered empirically more accurately than the linear deterministic trend. In an

application to the possible human origin of global warming, we find new results reinstating existing

evidence that global temperature cointegrate with and may be Granger caused by anthropogenic

emissions of greenhouse gases. We show in particular that this evidence is robust to the presence

of weak trends, and possibly to breaks caused by changes in measurement.
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7 Appendix

7.1 Power

Consider the random walk with drift process

∆yt = τ + εt

where εi
i.i.d∼ N

(
0, σ2

)
, the t-statistic of τ̂ computed over a sample of t = 1, ..., T observations is

tτ̂ =
τ + εT
σ̂τ̂

where εT = T−1
∑T
t=1 εt and σ̂τ̂ = T−1/2

T−1

∑T
t=1 (εt − εT )

2
. Let η ∼ N (0, 1) so

tτ̂ = T 1/2 τ

σ
+ T 1/2η + op

(√
T
)

The power function for a two-sided test with 0.05 size given by

Pr (|tτ̂ | > 1.96) = Pr
(∣∣∣T 1/2 τ

σ
+ T 1/2η

∣∣∣ > 1.96
)

= Pr
(
T 1/2 τ

σ
+ T 1/2η > 1.96

)
+ Pr

(
T 1/2 τ

σ
+ T 1/2η < −1.96

)
= Pr

(
η > 1.96T−1/2 − τ

σ

)
+ Pr

(
η < −1.96T−1/2 − τ

σ

)
= 1− Φ

(
1.96T−1/2 − τ

σ

)
+ Φ

(
−1.96T−1/2 − τ

σ

)
so the power is approximately 50% if 1.96T−1/2− τ

σ ≈ 0 since Φ
(
−1.96T−1/2 − τ

σ

)
is then negligible.

Using a one-sided test yields similar results.

7.2 Lagrange Multiplier test

The LM test consists in estimating Ψ under the null hypothesis of q cointegrating relations, then

detrending yt into x̃t = yt −
(
µ̃ : ψ̃

)
(1 : t)

′
and testing for ρ∗ = 0 in a feasible version of

α′⊥∆x̃t = ρ∗β
′
⊥x̃t−1 +

k−1∑
i=1

Γ∗,i∆x̃t−i + εx,t.

In the presence of a local trend, ψ̃ is not consistent for ψ since it is an estimator of T−1/2ψ. In

the presence of a local trend, although the estimators of the deterministic components are not

consistent, detrending still proves effective. Indeed, consider the case of the estimator ψ̃ in lemma

(A.3) of Lütkepohl and Saikkonen (2000) (it is µ̃1 in their notation).
√
Tβ′⊥

(
ψ̃ − T−1/2ψ

)
L→

β′⊥CΣB (1) . ψ̃ is in turn used to derive the distribution of the sample moments of

wt = β′⊥x̃t = β′⊥

(
yt − ψ̃t

)
= β′⊥xt − β′⊥T

(
ψ̃ − T−1/2ψ

) t

T

hence the procedure provide the asymptotic distribution as in Lütkepohl and Saikkonen (2000,

Section A.2).
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7.3 Proof of Proposition 1.

7.3.1 Sample Moments

We follow the lines of the proofs Johansen (1991). We first let ψ = ψβ +ψβ⊥ and choose γ orthogonal to β

and ψβ⊥ such that
(
β : γ : ψβ⊥

)
has full rank. When ψβ 6= 0, we also decompose β into βξ and βξ⊥, with

ξ = β′ψβ and ξ⊥ orthogonal to ξ within sp (β) .

T−1/2 (γ : ψβ⊥
)′

y[Tr] ⇒
(
γ : ψβ⊥

)′
Kψ,CΣ (r)

=
(
γ : ψβ⊥

)′
CΣW (r) + (0 : 1)′ r

def
= H (r)

and let also

Hµ (r) =
(
γ : ψβ⊥

)′
CΣ

(
W (1)−

∫ 1

0

W (r) dr

)
+ (0 : 1)′ (r − 1/2)

and Hτ (r) =
(
γ : ψβ⊥

)′
CΣ (W (r)− a− br), where the coefficients are obtained by correcting W (r)

for a constant and a linear trend. Now let the variance-covariance matrices

Var

[
∆xt
β′xt−1

]
=

 Σ00 Σ0β

Σβ0 Σββ

∣∣∣∣∣∣∆xt−1, ...,∆xt−k+1


which satisfy the relations in lemma 10.1 from Johansen (1995) (denoted lemma J-10.1, and we use similar

notation in the following). In the remainder of the appendix, we assume that the process is corrected for

lagged values but, for notational simplicity, do not write it explicitly (this clearly affects the definition

of W). Now recall that Sij is the uncentered sample mean of RitR
′
jt where (R0t : R1t) is (∆yt : yt−1)

corrected for the deterministic terms present in the model under the null (i.e. none under M, a constant

under Mµ and both constant and trend under Mτ ). We consider the models M, Mµ and Mτ in turn, noting

that T−2∑T
t=1

t√
T

t√
T

= 1
3

+ 1
2T

+ 1
6T2 and T−2∑T

t=1

[
t−(T+1)/2√

T

]2
= 1

12
− 1

12T2 . Under the hypotheses,

the DGP rewrites as

M : R0t = T−1/2 (Γψ − αβ′ψβ (t− 1)
)

+ αβ′R1t + ε̂t

= T−1/2Γψ + αβ′x̂t + ε̂t

Mµ : R0t = −T−1/2αβ′ψβ (t− 1− T/2) + αβ′R1t + ε̂µt

= αβ′x̂µt + ε̂µt

Mτ : R0t = αβ′R1t + ε̂τt

= αβ′x̂τt + ε̂τt

where x̂jt, ε̂jt, for j = ∅, µ, τ, are residuals from the corrections of xt, εt for the lags ∆xt−1, ...,∆xt−k+1,

and a constant (j = µ) and possibly a trend also (j = τ). Replacing R1t −ψβT−1/2 (t− 1) with the same,

corrected for a constant and possibly a trend leads to the same limit. Also, T−1/2∑T
t=1 ε̂jt ⇒ ΣW (1) for

j = ∅, µ, τ.)

Hence the following results.

First, under M, the residuals Rit are not corrected, hence, different limits result, depending on whether

ψβ = 0 :
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If ψβ = 0, then S00
p→ Σ00, β

′S11β
p→ Σββ , β

′S10
p→ Σβ0 and(

γ : ψβ⊥
)′

(S10 − S11βα
′)⇒

∫ 1

0
H (r) dK′Γψ,Σ (r)(

γ : ψβ⊥
)′
S10 ⇒

∫ 1

0
H (r) dK′ψ,CΣ (r)

T−1
(
γ : ψβ⊥

)′
S11

(
γ : ψβ⊥

)
⇒
∫ 1

0
HH′dr(

γ : ψβ⊥
)′
S11β = Op (1)

and for ψβ 6= 0, then in the direction β : S00
p→ Σ00, and,

β′S11β = T−1
T∑
t=1

(
β′x̂t−1 + ξ

t− 1√
T

)(
β′x̂t−1 + ξ

t− 1√
T

)′
so

T−1 (βξ)′ S11βξ
P→1

3

(βξ⊥)′ S11βξ⊥
P→ξ′⊥Σββξ⊥

(βξ⊥)′ S11βξ = Op (1)

and the scaling by T−1 leads to an asymptotically singular matrix:

T−1 (βξ : βξ⊥
)′
S11β

(
ξ : ξ⊥

)
→

 1
3

01×(q−1)

0(q−1)×1 0(q−1)×(q−1)


Recalling that Σβ0 = Σββα

′, β′S10 ⇒ Σβ0 + ξ
∫ 1

0
rdK′Γψ,CΣ. Now in the direction β⊥ :

T−1
(
γ : ψβ⊥

)′
(S10 − S11βα

′)⇒
(∫ 1

0
rH (r) dr

)
ξα′(

γ : ψβ⊥
)′
S10 ⇒

∫ 1

0
H (r) dK′ψ,CΣ (r)

T−1
(
γ : ψβ⊥

)′
S11

(
γ : ψβ⊥

)
⇒
∫ 1

0
HH′dr

T−1
(
γ : ψβ⊥

)′
S11β ⇒

(∫ 1

0
rH (r) dr

)
ξ′

also T−1/2
(
γ : ψβ⊥

)′
S11βξ⊥ = op (1) . We note that Kψ,CΣ satisfies the following stochastic differential

equation:

dKψ,CΣ (r) = αβ′ (Kψ,CΣ (r)− ψβr) dr + ΣdW (r)

so
[∫ 1

0
H (r) dK′ψ,CΣ (r)

]
α⊥ =

[∫ 1

0
H (r) dK′ψ,Σ (r)

]
α⊥ and

(
γ : ψβ⊥

)′
S10α⊥ ⇒

∫ 1

0
H (r) dK′ψ,Σ (r)α⊥.

This also applies in all cases below.

Under Mµ, first if ψβ = 0, then S00
p→ Σ00, β

′S11β
p→ Σββ , β

′S10
p→ Σβ0

and also(
γ : ψβ⊥

)′
(S10 − S11βα

′)⇒
∫ 1

0
HµdK

′
0,Σ (r)(

γ : ψβ⊥
)′
S10 ⇒

∫ 1

0
HµdK

′
0,CΣ (r)

T−1
(
γ : ψβ⊥

)′
S11

(
γ : ψβ⊥

)
⇒
∫ 1

0
HµH′µdr(

γ : ψβ⊥
)′
S11β = Op (1)
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When ψβ 6= 0, S00
p→ Σ00,

T−1 (βξ, βξ⊥)′ S11β
(
ξ, ξ⊥

)
→

 1
12

01×q−1

0q−1×1 0q−1×q−1


β′S10 ⇒ Σβ0 + ξ

∫ 1

0

(
r − 1

2

)
dK′0,CΣ (r) and

T−1
(
γ : ψβ⊥

)′
(S10 − S11βα

′)⇒
(∫ 1

0

(
r − 1

2

)
Hµ (r) dr

)
ξα′(

γ : ψβ⊥
)′
S10 ⇒

∫ 1

0
Hµ (r) dW′ (r) Σ′C′ =

∫ 1

0
HµdK

′
0,CΣ (r)

T−1
(
γ : ψβ⊥

)′
S11

(
γ : ψβ⊥

)
⇒
∫ 1

0
HµH′µdr

T−1
(
γ : ψβ⊥

)′
S11β ⇒

(∫ 1

0

(
r − 1

2

)
Hµ (r) dr

)
ξ′

And finally, under Mτ , whether or not ψβ = 0, then S00
p→ Σ00, β

′S11β
p→ Σββ , β

′S10
p→ Σβ0 and(

γ : ψβ⊥
)′

(S10 − S11βα
′)⇒

∫ 1

0
HτdK

′
0,Σ (r)(

γ : ψβ⊥
)′
S10 ⇒

∫ 1

0
HτdK

×′
0,CΣ (r)

T−1
(
γ : ψβ⊥

)′
S11

(
γ : ψβ⊥

)
⇒
∫ 1

0
HτH

′
τdr(

γ : ψβ⊥
)′
S11β = Op (1)

where we denote by K×′0,CΣ (r) the detrended version of K0,CΣ (r) .

We complete the analysis above with the two restricted models M∗µ and M∗τ . Let, under M∗µ, R2t = 1

and under M∗τ : R2t = t−1−T/2. Now, let as before Γψ = (Γψ)α+(Γψ)α⊥with (Γψ)α = α (α′α)
−1
α′Γψ

then

M∗µ : R0t = T−1/2
(

(Γψ)α⊥ − αβ
′ψβ (t− 1)

)
+ αβ′R1t + T−1/2 (Γψ)αR2t + εt

= T−1/2 (Γψ)α⊥ + α
[
β′x̂t +

(
α′α
)−1

α′T−1/2ΓψR2t

]
+ ε̂t

M∗τ : R0t = αβ′R1t − T−1/2αξR2t + εt.

= αβ′x̂µt + ε̂µt

We therefore derive the following properties of the sample moments under linear restrictions of the param-

eters.

First under M∗µ : letting R∗1t = (R′1t : R′2t)
′

and β∗′ =
(
β′ : (α′α)

−1
α′Γψ

)
= (β′ : β2) . We also define

the vectors γ∗′ =
(
[γ : ψβ⊥ ]′ : 0

)
and τ∗′ = (0 : 1) such that (β∗ : γ∗ : τ∗) is of full rank p+ 1, then

(
T−1/2γ∗ : τ∗

)′  y[Tr]

1

⇒ (
T−1/2γ∗ : τ∗

)′  Kψ,CΣ (r)

1

 =

 H (r)

1

 def
= H∗ (r)

if ψβ = 0, then S00
p→ Σ00, β

∗′S∗11β
∗ p→ Σββ + β2β

′
2, β

∗′S∗10
p→ Σβ0 and(

γ∗ :
√
Tτ∗

)′
(S∗10 − S∗11β∗α′)⇒

∫ 1

0
H∗ (r) dK′(Γψ)α⊥

,Σ (r)(
γ∗ :
√
Tτ∗

)′
S∗10 ⇒

∫ 1

0
H∗ (r) dK′ψ,CΣ (r)

T−1
(
γ∗ :
√
Tτ∗

)′
S11

(
γ∗ :
√
Tτ∗

)
⇒
∫ 1

0
H∗ (r) H∗′ (r) dr(

γ∗ :
√
Tτ∗

)′
S11β = op (T )
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and for ψβ 6= 0, then S00
p→ Σ00,

T−1
((
βξ : βξ⊥

)′
: β2
)
S∗11

((
βξ : βξ⊥

)′
: β2
)′ p→

 1
3

01×(q−1)

0(q−1)×1 0(q−1)×(q−1)


and

β∗′S∗10 ⇒ Σβ0 + ξ

∫ 1

0

rdK′ψ,CΣ (r)

with also

T−1
(
γ∗ :
√
Tτ∗

)′
(S∗10 − S∗11β∗α′)⇒ −

∫ 1

0
rH∗ (r) drξ′α′(

γ∗ :
√
Tτ∗

)′
S∗10 ⇒

∫ 1

0
H∗ (r) dK′ψ,CΣ (r)

T−1
(
γ∗ :
√
Tτ∗

)′
S∗11

(
γ∗ :
√
Tτ∗

)
⇒
∫ 1

0
H∗ (r) H∗′ (r) dr

T−1
(
γ∗ :
√
Tτ∗

)′
S∗11β

∗ ⇒
(∫ 1

0
rH∗ (r) dr

)
ξ′

And finally under M∗τ , letting R∗1t = (R′1t : R′2t)
′

and β∗′ = (β′ : ξ) . We also define the matrices γ∗′ =(
[γ : ψβ⊥ ]′ : 0

)
and τ∗′ = (0 : 1) such that (β∗ : γ∗ : τ∗) is of full rank p+ 1, then

T−1/2
(
γ∗ : T−1/2τ∗

)′  y[Tr]

[Tr]

⇒ (γ∗ : τ∗)
′

 Kψ,CΣ (r)

r

 =

 H (r)

r


Hence, if ψβ = 0, S00

p→ Σ00, β
∗′S∗11β

∗ p→ Σββ , β
∗′S∗10

p→ Σβ0 and, letting H∗µ (r) =
(
H′µ (r) : r − 1/2

)′
(
γ∗ : T−1/2τ∗

)′
(S∗10 − S∗11β∗α′)⇒

∫ 1

0
H∗µ (r) dK′0,Σ (r)(

γ∗ : T−1/2τ∗
)′
S∗10 ⇒

∫ 1

0
H∗µ (r) dK′0,CΣ (r)

T−1
(
γ∗ : T−1/2τ∗

)′
S∗11

(
γ∗ : T−1/2τ∗

)
⇒
∫ 1

0
H∗µ (r) H∗′µ (r) dr(

γ∗ : T−1/2τ∗
)′
S∗11β

∗ = (op (T ) : op (T ))′

and for ψβ 6= 0,

(
T−1ξ : ξ⊥

)′
β∗′S∗11β

∗ (T−1ξ : ξ⊥
) p→

 1/12 0

0 ξ′⊥Σββξ⊥


with also(

β′ : T−1/2ξ
)
S∗10 ⇒

[
Σβ0 + ξ

∫ 1

0

(
r − 1

2

)
dK′0,Σ (r)

]
+ ξ

∫ 1

0

(
r − 1

2

)
dK′0,CΣ (r)

T−1/2 (β′ : ξ
)
S∗10 ⇒ ξ

∫ 1

0

(
r − 1

2

)
dK′0,CΣ (r)

hence

T−1
(
γ∗ : T−1/2τ∗

)′
(S∗10 − S∗11β∗α′)⇒ −

∫ 1

0

(
r − 1

2

)
H∗µ (r) ξ′α′dr(

γ∗ : T−1/2τ∗
)′
S∗10 ⇒

∫ 1

0
H∗µ (r) dK′0,CΣ (r)

T−1
(
γ∗ : T−1/2τ∗

)′
S∗11

(
γ∗ : T−1/2τ∗

)
⇒
∫ 1

0
H∗µ (r) H∗′µ (r) dr

T−3/2
(
γ∗ : T−1/2τ∗

)′
S∗11β

∗ ⇒
(∫ 1

0

(
r − 1

2

)
H∗µ (r) dr

)
ξ′
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7.3.2 LR statistic

We turn next to the asymptotic distribution of

|S (λ)| =
∣∣λS11 − S10S

−1
00 S01

∣∣
where the trace statistic is the sum of the p− q smallest solutions to the equation |S (λ)| = 0 (except for

M∗µand M∗τwhich we treat later). The matrix
(
β
(
ξ: ξ⊥

)
: ψ

β⊥
: γ
)

has full rank (when ψβ = 0, ξ = 0 and

ξ⊥ = Iq). Let AT =
(
β
(
T−1/2ξ: ξ⊥

)
:T−1/2ψβ⊥ : T−1/2γ

)
such that we obtain distributions under the

various hypotheses. We provide standardizing matrices at the end of the Section.

Under model M, first if ψβ = 0

∣∣A′TS (λ) AT

∣∣⇒
∣∣∣∣∣∣λ
 Σββ 0

0
∫ 1

0
HH′dr

−
 Σβ0Σ

−1
00 Σ0β 0

0 0

∣∣∣∣∣∣
=
∣∣λΣββ −Σβ0Σ

−1
00 Σ0β

∣∣ ∣∣∣∣λ ∫ 1

0

HH′dr

∣∣∣∣
which has q positive roots given by

∣∣λΣββ −Σβ0Σ
−1
00 Σ0β

∣∣ and p− q zero roots. Now, consider∣∣∣(β :γ : ψβ⊥
)′
S (λ)

(
β :γ : ψβ⊥

)∣∣∣
=

∣∣∣∣∣∣ β′S (λ)β β′S (λ)
(
γ : ψβ⊥

)(
γ : ψβ⊥

)′
S (λ)β

(
γ : ψβ⊥

)′
S (λ)

(
γ : ψβ⊥

)
∣∣∣∣∣∣

=
∣∣β′S (λ)β

∣∣ ∣∣∣(γ : ψβ⊥
)′ {

S (λ)− S (λ)β
[
β′S (λ)β

]−1
β′S (λ)

}(
γ : ψβ⊥

)∣∣∣
where the first factor has no roots:

β′S (λ)β →−Σβ0Σ
−1
00 Σ0β

and, letting ρ = Tλ(
γ : ψβ⊥

)′
S (λ)

(
γ : ψβ⊥

)
⇒ ρ

∫ 1

0

HH′dr

−
(∫ 1

0

H (r) dK′ψ,CΣ (r)

)
Σ−1

00

∫ 1

0

dKψ,CΣ (r) H′ (r)

(
γ : ψβ⊥

)′
S (λ)β = Op (λ)−

(∫ 1

0

H (r) dK′ψ,CΣ (r)

)
Σ−1

00 Σ0β

⇒
(∫ 1

0

H (r) dK′ψ,CΣ (r)

)
Σ−1

00 Σ0β

hence (
γ : ψβ⊥

)′ {
S (λ)− S (λ)β

[
β′S (λ)β

]−1
β′S′ (λ)

}(
γ : ψβ⊥

)
⇒ ρ

∫ 1

0

HH′dr −
(∫ 1

0

H (r) dK′ψ,CΣ (r)

)
Σ−1

00

∫ 1

0

dKψ,CΣ (r) H′ (r)

+

(∫ 1

0

H (r) dK′ψ,CΣ (r)

)
Σ−1

00 Σ0β

[
Σβ0Σ

−1
00 Σ0β

]−1
Σβ0Σ

−1
00

∫ 1

0

dKψ,CΣ (r) H′ (r)

= ρ

∫ 1

0

HH′dr

−
(∫ 1

0

H (r) dK′ψ,CΣ (r)

)[
Σ−1

00 −Σ−1
00 Σ0β

[
Σβ0Σ

−1
00 Σ0β

]−1
Σβ0Σ

−1
00

] ∫ 1

0

dKψ,CΣ (r) H′ (r)
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where Σ−1
00 −Σ−1

00 Σ0β

[
Σβ0Σ

−1
00 Σ0β

]−1
Σβ0Σ−1

00 = α⊥ (α′⊥Ωα⊥)
−1
α′⊥. We note that S10α⊥ = (S10 − S11βα

′)α⊥.

The expression above is therefore equal to

ρ

∫ 1

0

HH′dr −
(∫ 1

0

H (r) dK′ψ,Σ (r)

)
α⊥
(
α′⊥Ωα⊥

)−1
α′⊥

∫ 1

0

dKψ,Σ (r) H′ (r) . (11)

Now for ψβ 6= 0,

∣∣∣A′TS (λ) AT

∣∣∣⇒
∣∣∣∣∣∣∣∣∣λ


1/3 0
∫ 1

0
rH′dr

0 ξ′⊥Σββξ⊥ 0∫ 1

0
rHdr 0

∫ 1

0
HH′dr

−


0 0 0

0 ξ′⊥Σβ0Σ−1
00 Σ′β0ξ⊥ 0

0 0 0


∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣λ
 1/3

∫ 1

0
rH′dr∫ 1

0
rHdr λ

∫ 1

0
HH′dr

∣∣∣∣∣∣ ∣∣ξ′⊥ (λΣββ −Σβ0Σ−1
00 Σ′β0

)
ξ⊥
∣∣

The equation |A′TS (λ) AT | = 0 has, asymptotically, p− q + 1 zero solution and q − 1 positive roots given

by the solutions to∣∣ξ′⊥ (λΣββ −Σβ0Σ−1
00 Σ′β0

)
ξ⊥
∣∣ = 0.

We now let λ = ρT−1, and

N =


1
3

01×(q−1)

∫ 1

0
rH′ (r) dr

0(q−1)×1 0(q−1)×(q−1) 0(q−1)×(p−q)∫ 1

0
rH (r) dr 0(p−q)×(q−1)

∫ 1

0
HH′dr



M =


ξ
′
Σβ0 +

∫ 1

0
rdK′ψ,CΣ

ξ′⊥Σβ0∫ 1

0
HdK′ψ,CΣ

Σ−1
00


ξ
′
Σβ0 +

∫ 1

0
rdK′ψ,CΣ

ξ′⊥Σβ0∫ 1

0
HdK′ψ,CΣ


′

then (
β
(
ξ: ξ⊥

)
:γ : ψβ⊥

)′
S (λ)

(
β
(
ξ: ξ⊥

)
:γ : ψβ⊥

)
= ρN−M + op (1)

M is nonsingular with probability one, and so is N if q = 1.In this case, the test statistic has the same

distribution as

Ttr
{
S−1
11 S10S

−1
00 S01

}
⇒ tr

{
N−1/2MN−1/2

}
.

If q > 1, N is singular and of rank p− q + 1 almost surely. We let

N+ =

 1
3

∫ 1

0
rH′ (r) dr∫ 1

0
rH (r) dr

∫ 1

0
HH′dr

 =

∫  r

H (r)

 r

H (r)

′ dr
M+ =

 ξ
′
Σβ0 +

∫ 1

0
rdK′ψ,CΣ∫ 1

0
HdK′ψ,CΣ

Σ−1
00

 ξ
′
Σβ0 +

∫ 1

0
rdK′ψ,CΣ∫ 1

0
HdK′ψ,CΣ

′

then |ρN−M| = 0 is equivalent to∣∣∣∣∣∣ ρN+ −M+ −
(
Σβ0ξ +

∫ 1

0
rdKΓψ,CΣ :

∫ 1

0
dKψ,CΣH′

)′
Σ−1

00 Σ0βξ⊥

−ξ′⊥Σβ0Σ
−1
00

(
Σ0βξ +

∫ 1

0
rdKΓψ,CΣ :

∫ 1

0
dKψ,CΣH′

)
−ξ′⊥Σβ0Σ

−1
00 Σ0βξ⊥

∣∣∣∣∣∣ = 0
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which, using the formula for the determinant of partitioned matrices, is equal to

∣∣−ξ′⊥Σβ0Σ
−1
00 Σ0βξ⊥

∣∣ ∣∣ρN+ −M++
∣∣ = 0

where

M++ =

 ξ
′
Σβ0 +

∫ 1

0
rdK′ψ,CΣ∫ 1

0
HdK′ψ,CΣ

Ωξ

 ξ
′
Σβ0 +

∫ 1

0
rdK′ψ,CΣ∫ 1

0
HdK′ψ,CΣ

′

with

Ωξ= Σ−1
00 −Σ−1

00 Σ0βξ⊥
(
ξ′⊥Σβ0Σ

−1
00 Σ0βξ⊥

)−1
ξ′⊥Σβ0Σ

−1
00

multiplying

Ωξ

(
Σ0βξ⊥,Σ00 (Σ0βξ⊥)⊥

)
=

 Σ−1
00 Σ0βξ⊥ −Σ−1

00 Σ0βξ⊥
(
ξ′⊥Σβ0Σ

−1
00 Σ0βξ⊥

)−1
ξ′⊥Σβ0Σ

−1
00 Σ0βξ⊥,

Σ−1
00 Σ00 (Σ0βξ⊥)⊥ −Σ−1

00 Σ0βξ⊥
(
ξ′⊥Σβ0Σ

−1
00 Σ0βξ⊥

)−1
ξ′⊥Σβ0Σ

−1
00 Σ00 (Σ0βξ⊥)⊥


=

 0,

(Σ0βξ⊥)⊥


so

Ωξ = (Σ0βξ⊥)⊥
(
(Σ0βξ⊥)′⊥Σ00 (Σ0βξ⊥)⊥

)−1
(Σ0βξ⊥)′⊥

where

Σ0βξ⊥ = αΣββξ⊥

which is of dimension p × (q − 1), so there exists a matrix Σξ such that the orthogonal complement is

p× (p− q + 1)

(Σ0βξ⊥)⊥= α⊥Σξ

and hence

Ωξ = α⊥Σξ

(
Σ′ξα

′
⊥Σ

00
α⊥Σξ

)−1
Σ′ξα

′
⊥

and recall that α′⊥
∫ 1

0
dKψ,CΣH′ = α′⊥

∫ 1

0
dKψ,ΣH′ so M++ rewrites

M++ =

 ξ
′
Σβ0 +

∫ 1

0
rdK′ψ,Σ∫ 1

0
HdK′ψ,Σ

Ωξ

 ξ
′
Σβ0 +

∫ 1

0
rdK′ψ,Σ∫ 1

0
HdK′ψ,Σ

′

Both N+and M++ are nonsingular with probability one. This shows that the equation admits p − q + 1

solutions that decrease to zero at rate T . The distribution of the likelihood ratio test statistic hence

converges to the sum of the p− q smallest eigenvalues of
(
N+
)−1

M++.
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Under model Mµ, when ψβ 6= 0

N+
µ=

 1
12

∫ 1

0

(
r − 1

2

)
H′µ (r) dr∫ 1

0

(
r − 1

2

)
Hµ (r) dr

∫ 1

0
HµH′µdr


=

∫  r − 1/2

Hµ (r)

 r − 1/2

Hµ (r)

′ dr
M++

µ =

 (
ξ
′
Σβ0 +

∫ 1

0

(
r − 1

2

)
dK′0,Σ (r)

)
∫ 1

0
Hµ (r) dK′0,Σ (r)

Ωξ

 (
ξ
′
Σβ0 +

∫ 1

0

(
r − 1

2

)
dK′0,Σ (r)

)
∫ 1

0
Hµ (r) dK′0,Σ (r)

′

The distribution of the likelihood ratio test statistic hence converges to the sum of the p − q smallest

eigenvalues of
(
N+
µ

)−1
M++

µ .

Under Mτ ,if ψβ = 0, or ψβ 6= 0∣∣A′TS (λ) AT

∣∣⇒ ∣∣λΣββ −Σβ0Σ
−1
00 Σ0β

∣∣ ∣∣∣∣λ ∫ 1

0

HτH
′
τdr

∣∣∣∣
which has q positive roots given by

∣∣λΣββ −Σβ0Σ
−1
00 Σ0β

∣∣ . Now consider∣∣∣(β : γ : ψβ⊥
)′
S (λ)

(
β : γ : ψβ⊥

)∣∣∣
=
∣∣β′S (λ)β

∣∣ ∣∣∣(γ : ψβ⊥
)′ {

S (λ)− S (λ)β
[
β′S (λ)β

]−1
β′S (λ)

}(
γ : ψβ⊥

)∣∣∣
where the first factor has no roots as λ→ 0 since β′S (λ)β → −Σβ0Σ−1

00 Σ0β , and,(
γ : ψβ⊥

)′
S (λ)

(
γ : ψβ⊥

)
= ρ

∫ 1

0
HτH

′
τdr −

(∫ 1

0
Hτ (r) dK′0,CΣ (r)

)
Σ−1

00

∫ 1

0
dK0,CΣ (r) H′τ (r)(

γ : ψβ⊥
)′
S (λ)β

= Op (λ)−
(∫ 1

0
Hτ (r) dK′0,CΣ (r)

)
Σ−1

00 Σ0β

⇒
(∫ 1

0
Hτ (r) dK′0,CΣ (r)

)
Σ−1

00 Σ0β

hence (
γ : ψβ⊥

)′ {
S (λ)− S (λ)β

[
β′S (λ)β

]−1
β′S (λ)

}(
γ : ψβ⊥

)
⇒ ρ

∫ 1

0

HτH
′
τdr −

(∫ 1

0

Hτ (r) dK′0,Σ (r)

)
α⊥
(
α′⊥Ωα⊥

)−1
α′⊥

∫ 1

0

dK0,Σ (r) H′τ (r)

Under M∗µ,with A∗T =

(((
T−1/2ξ : ξ⊥

)′
β′ : β2

(
ξ : ξ⊥

))′
: T−1/2

(
γ∗ : T 1/2τ∗

))
, first if ψβ = 0, then

∣∣A∗′T S∗ (λ) A∗T
∣∣

⇒

∣∣∣∣∣∣λ
 Σββ + β2β

′
2 0

0
∫ 1

0
H∗H∗′dr

−
 Σβ0Σ−1

00 Σ′β0 0

0 0

∣∣∣∣∣∣
which has q positive roots given by

∣∣λ (Σββ + β2β
′
2)−Σβ0Σ

−1
00 Σ0β

∣∣ = 0. Now, consider∣∣∣(β∗ : γ∗ :
√
Tτ∗

)′
S∗ (λ)

(
β :γ∗ :

√
Tτ∗

)∣∣∣
=
∣∣β∗′S∗ (λ)β∗

∣∣
×
∣∣∣(γ∗ :

√
Tτ∗

)′ {
S∗ (λ)− S∗ (λ)β∗

[
β∗′S∗ (λ)β∗

]−1
β∗′S∗ (λ)

}(
γ∗ :
√
Tτ∗

)∣∣∣
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where the first factor has no roots as λ→ 0 since β∗′S∗ (λ)β∗ → −Σβ0Σ−1
00 Σ0β and, letting ρ = Tλ(

γ∗ :
√
Tτ∗

)′
S∗ (λ)

(
γ∗ :
√
Tτ∗

)
⇒ ρ

∫ 1

0
H∗H∗′dr −

∫ 1

0
H∗dK′ψ,CΣ (r) Σ−1

00

∫ 1

0
dKψ,CΣ (r) H∗′(

γ∗ :
√
Tτ∗

)′
S∗ (λ)β∗

⇒
∫ 1

0
H∗dK′ψ,CΣ (r) Σ−1

00 Σβ0

hence (
γ∗ :
√
Tτ∗

)′ {
S∗ (λ)− S∗ (λ)β∗ [β∗′S∗ (λ)β∗]

−1
β∗′S∗′ (λ)

}(
γ∗ :
√
Tτ∗

)
⇒ ρ

∫ 1

0
H∗H∗′dr

−
∫ 1

0
H∗dK′ψ,CΣ (r)

(
Σ−1

00 −Σ−1
00 Σβ0

(
Σβ0Σ

−1
00 Σ0β

)−1
Σβ0Σ

−1
00

) ∫ 1

0
dKψ,CΣ (r) H∗′

= ρ
∫ 1

0
H∗H∗′dr −

∫ 1

0
H∗dK′(Γψ)α∗⊥

,Σ (r)α⊥ (α′⊥Ωα⊥)
−1
α′⊥
∫ 1

0
dK(Γψ)α∗⊥

,Σ (r) H∗′

Now, for ψβ 6= 0, S00
p→ Σ00, A∗T =

((
T−1/2ξ : ξ⊥

)′
(β′ : β2)

′
: T−1/2

(
γ∗ : T 1/2τ∗

))
and

∣∣A∗′T S∗ (λ) A∗T
∣∣

⇒

∣∣∣∣∣∣∣∣∣λ

 1/3 0

0 ξ′⊥ (Σββ + β2β
′
2) ξ⊥

 0

0
∫ 1

0
H∗H∗′dr

−

 0 0

0 ξ′⊥Σβ0Σ−1
00 Σ′β0ξ⊥

 0

0 0


∣∣∣∣∣∣∣∣∣

which, as under M admits only q−1 non zero roots. The test statistic has then a distribution which can be

derived in a way similar to that under M. Notice that if the lag order k = 1 so Γ = Ip, then β2 = (β′α)
−1
ξ,

the contribution of β2 only appears in the direction ξ.

Now letting λ = ρT, and D∗T =
(((

ξ : ξ⊥
)′
β′ : β2

(
ξ : ξ⊥

))′
:
(
γ∗ : T 1/2τ∗

))
then∣∣D∗′T S∗ (λ) D∗T

∣∣⇒ 0

is equivalent to

0 =

∣∣∣∣∣∣∣∣∣∣∣∣
ρN∗ −M∗ −

 ξ
′
Σβ0 +

∫ 1

0
rdK′ψ,CΣ∫ 1

0
H∗dK′ψ,CΣ

Σ−1
00 Σ0βξ⊥

−ξ′⊥Σβ0Σ−1
00

 ξ
′
Σβ0 +

∫ 1

0
rdK′ψ,CΣ∫ 1

0
H∗dK′ψ,CΣ

′ −ξ′⊥Σβ0Σ−1
00 Σ0βξ⊥

∣∣∣∣∣∣∣∣∣∣∣∣
⇔ 0 =

∣∣−ξ′⊥Σβ0Σ−1
00 Σ0βξ⊥

∣∣ |ρN∗ −M∗∗|

with

N∗ =

 1
3

∫ 1

0
rH∗′dr∫ 1

0
rH∗dr

∫ 1

0
H∗H∗′dr

 =


1
3

∫ 1

0
rH′dr 1

3∫ 1

0
rHdr

∫ 1

0
HH′dr

∫ 1

0
rHdr

1
3

∫ 1

0
rH′dr 1

3


M∗ =

 ξ
′
Σβ0 +

∫ 1

0
rdK′ψ,CΣ (r)∫ 1

0
H∗ (r) dK′ψ,CΣ (r)

Σ−1
00

 ξ
′
Σβ0 +

∫ 1

0
rdK′ψ,CΣ (r)∫ 1

0
H∗ (r) dK′ψ,CΣ (r)

′

M∗∗ =

 ξ
′
Σβ0 +

∫ 1

0
rdK′ψ,Σ (r)∫ 1

0
H∗ (r) dK′ψ,Σ (r)

Ωξ

 ξ
′
Σβ0 +

∫ 1

0
rdK′ψ,Σ (r)∫ 1

0
H∗ (r) dK′ψ,Σ (r)

′

29



The rank of the (p− q + 2)-square matrix N∗ is p − q + 1 so 0 is eigenvalue of N∗.As N∗is symmetric,

there exists a basis v, such that

N∗= v

 0 0

0 Λ∗

v−1

where Λ∗is the diagonal matrix of eigenvalues of
∫ 1

0
H∗H∗′dr. Hence the problem |ρN∗ −M∗∗| = 0 becomes∣∣∣∣∣∣ρv

 0 0

0 Λ∗

v−1 −M∗∗

∣∣∣∣∣∣ =
∣∣vv−1

∣∣ ∣∣∣∣∣∣ρ
 0 0

0 Λ∗

− v−1M∗∗v

∣∣∣∣∣∣ = 0

this only admits p− q + 1 solutions that coincide with the solutions to∣∣∣∣ρ ∫ 1

0

H∗H∗′dr −
∫ 1

0

H∗ (r) dK′ψ,Σ (r) Ωξ

∫ 1

0

dKψ,ΣH∗ (r)′ (r)

∣∣∣∣
Under M∗τ , with A∗1T =

(((
T−1/2ξ : ξ⊥

)′
β′ : T−1/2ξ

)′
: T−1/2γ∗ : T−1τ∗

)
, first if ψβ = 0, then

∣∣A∗′T S∗ (λ) A∗T
∣∣

⇒

∣∣∣∣∣∣λ
 Σββ 0

0
∫ 1

0
H∗µH∗′µ dr

−
 Σβ0Σ

−1
00 Σ0β 0

0 0

∣∣∣∣∣∣
=
∣∣λ (Σββ)−Σβ0Σ

−1
00 Σ0β

∣∣ ∣∣∣∣λ ∫ 1

0

H∗µH∗′µ dr

∣∣∣∣
which has q positive roots given by

∣∣λΣββ −Σβ0Σ
−1
00 Σ0β

∣∣ . Now, consider∣∣∣(β∗ : γ∗ : T−1/2τ∗
)′
S∗ (λ)

(
β :γ∗ : T−1/2τ∗

)∣∣∣
=
∣∣β∗′S∗ (λ)β∗

∣∣
×
∣∣∣(γ∗ : T−1/2τ∗

)′ {
S∗ (λ)− S∗ (λ)β∗

[
β∗′S∗ (λ)β∗

]−1
β∗′S∗ (λ)

}(
γ∗ : T−1/2τ∗

)∣∣∣
where the first factor has no roots as λ→ 0 since β∗′S∗ (λ)β∗ → −Σβ0Σ−1

00 Σ0β , and(
γ∗ : T−1/2τ∗

)′
S∗ (λ)

(
γ∗ : T−1/2τ∗

)
⇒ ρ

∫ 1

0

H∗µH∗′µ dr −
∫ 1

0

H∗µdK
′
0,CΣ (r) Σ−1

00

∫ 1

0

dK0,CΣ (r) H∗′µ

and
(
γ∗ :
√
Tτ∗

)′
S∗ (λ)β∗

⇒
∫ 1

0

H∗µdK
′
0,CΣ (r) Σ−1

00 Σβ0

hence (
γ∗ :
√
Tτ∗

)′ {
S∗ (λ)− S∗ (λ)β∗

[
β∗′S∗ (λ)β∗

]−1
β∗′S∗′ (λ)

}(
γ∗ :
√
Tτ∗

)
⇒ ρ

∫ 1

0

H∗µH∗′µ dr −
∫ 1

0

H∗µdK
′
0,Σ (r)α⊥

(
α′⊥Ωα⊥

)−1
α′⊥

∫ 1

0

dK0,Σ (r) H∗′µ

we show below that we can use a rotation similar to that of lemma 2 in Johansen (1994) so that the test

is similar with respect to ψβ⊥ .

30



Now, for ψβ 6= 0,

 T−1/2ξ
′

ξ′⊥

β∗′ γ∗′

T−1/2τ∗′



S (ρ/T )



 T−1/2ξ
′

ξ′⊥

β∗′ γ∗′

T−1/2τ∗′





′

⇒ ρ


1/12 0

∫ 1

0

(
r − 1

2

)
H∗′µ dr

0 0 0∫ 1

0

(
r − 1

2

)
H∗µdr 0

∫ 1

0
H∗µH∗′µ dr



−


∫ 1

0

(
r − 1

2

)
dK′0,CΣ (r)

ξ′⊥Σβ0∫ 1

0
H∗µ (r) dK′0,CΣ (r)

Σ−1
00


∫ 1

0

(
r − 1

2

)
dK′0,CΣ (r)

ξ′⊥Σβ0∫ 1

0
H∗µ (r) dK′0,CΣ (r)


′

so let

N∗µ =

 1
12

∫ 1

0

(
r − 1

2

)
H∗′µ dr∫ 1

0

(
r − 1

2

)
H∗µdr

∫ 1

0
H∗µH∗′µ dr


M∗∗

µ =

 ξ
′
Σβ0 +

∫ 1

0

(
r − 1

2

)
dK′0,Σ (r)∫ 1

0
H∗µ (r) dK′0,Σ (r)

Ωξ

 ξ
′
Σβ0 +

∫ 1

0

(
r − 1

2

)
dK′0,Σ (r)∫ 1

0
H∗µ (r) dK′0,Σ (r)

′

As with model M∗µ, N∗µ is not invertible and the problem
∣∣ρN∗µ −M∗∗

µ

∣∣ coincides with the solution to∣∣∣∣ρ ∫ 1

0

H∗µH∗′µ dr −
∫ 1

0

H∗µ (r) dK′0,Σ (r) Ωξ

∫ 1

0

dK0,Σ (r) H∗′µ (r)

∣∣∣∣
Define V =

(
V′γ : V′ψ

)′
with Vγ = [γ′CΩC′γ]

−1/2
γ′CΣW

and Vψ =
[
ψ
′
β⊥

CΩC′ψβ⊥

]−1/2

ψ
′
β⊥

CΣW. V is a standard Brownian Motion. Also, let

G (r) =

 [γ′CΩC′γ]
−1/2

0

0
[
ψ
′
β⊥

CΩC′ψβ⊥

]−1/2

H (r)

= V (r) +

 0[
ψ
′
β⊥

CΩC′ψβ⊥

]−1/2

r

∑
Jψα⊥ (r) =

(
α′⊥Ωα⊥

)−1/2
α′⊥Kψ,Σ (r) = V (r) +

(
α′⊥Ωα⊥

)−1/2
α′⊥ψα⊥r

J(Γψ)α⊥
= V (r) +

(
α′⊥Ωα⊥

)−1/2
α′⊥ (Γψ)α⊥ r

The trace statistic therefore admits the following distributions

LR⇒ tr

(∫ 1

0
dJψα⊥G′

[∫ 1

0
GG′

]−1 ∫ 1

0
GdJ′ψα⊥

)
if ψβ = 0 (12)

Now, let Gµ (r) = G (r)−
∫ 1

0
G (u) du,and Gτ (r) = V (r)−av−bvr where av, bv are coefficients correcting

V for a constant and a trend. Then

LRµ ⇒ tr

(∫ 1

0
dJ0G

′
µ

[∫ 1

0
GµG′µ

]−1 ∫ 1

0
GµdJ

′
0

)
if ψβ = 0

LRτ ⇒ tr

(∫ 1

0

dJ0G
′
τ

[∫ 1

0

GτG
′
τ

]−1 ∫ 1

0

GτdJ
′
0

)
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where J0 = V and for the two restricted hypotheses, whether or not ψβ = 0 does not matter. Consider

first M∗µ, let G∗ = (G′ : r)
′
,

LR∗µ ⇒ tr

(∫ 1

0

dJ(Γψ)α⊥
G∗′

[∫ 1

0

G∗G∗′
]−1 ∫ 1

0

G∗dJ′(Γψ)α⊥

)
.

In the case of M∗τ , let

Υ =


Ip−q−1 0(p−q−1)×1 0

01×(p−q−1) 1 0

0 −
[
ψ
′
β⊥

CΩC′ψβ⊥

]−1/2

1


so Υ′

(
G′µ (r) : r − 1/2

)′
= (V (′r) : r − 1/2)

′
with Υ invertible and define G∗µ = (V (′r) : r − 1/2)

′
such

that

LR∗τ ⇒ tr

∫ 1

0

dJ0

(
Gµ

r − 1/2

)′ [∫ 1

0

(
Gµ

r − 1/2

)(
Gµ

r − 1/2

)′]−1 ∫ 1

0

(
Gµ

r − 1/2

)
dJ′0


= tr

∫ 1

0

dJ0

(
Gµ

r − 1/2

)′
Υ

[∫ 1

0

Υ′
(

Gµ

r − 1/2

)(
Gµ

r − 1/2

)′
Υ

]−1 ∫ 1

0

Υ′
(

Gµ

r − 1/2

)
dJ′0


i.e. whatever the value of ψβ

LR∗τ ⇒ tr

(∫ 1

0

dJ0G
∗′
µ

[∫ 1

0

G∗µG∗′µ

]−1 ∫ 1

0

G∗µdJ
′
0

)

Now for ψβ 6= 0, first model M:
1 0 0

0 [γ′CΩC′γ]
−1/2

0
[
ψ
′
β⊥

CΩC′ψβ⊥

]−1/2

M++


1 0 0

0 [γ′CΩC′γ]
−1/2

0
[
ψ
′
β⊥

CΩC′ψβ⊥

]−1/2


′

=

 ξ
′
Σβ0 +

∫ 1

0
rdK′ψ,Σ∫ 1

0
GdK′ψ,Σ

Ωξ

 ξ
′
Σβ0 +

∫ 1

0
rdK′ψ,Σ∫ 1

0
GdK′ψ,Σ

′

where U (r) =
(
Σ′ξα

′
⊥Σ

00
α⊥Σξ

)−1/2
Σ′ξα

′
⊥Σ

1/2
00 W (r) is a standard Brownian motion. Let also Iα′⊥ψ (r) =

U (r) +
(
Σ′ξα

′
⊥Σ

00
α⊥Σξ

)−1/2
Σ′ξα

′
⊥ψr. Denote then by T (resp. Tµ) the sum of the p − q + 1 smallest

eigenvalues of S (λ) under M (resp. Mµ). It follows that

T⇒ tr



 ξ
′
Σβ0

0

+
∫
dIα′⊥ψ

 r

G

′∫  r

G

 r

G

′−1

×

∫  r

G

 dI′α′⊥ψ
+

 Σ′β0ξ

0





T1 ⇒ tr



 ξ
′
Σβ0

0

+
∫
dI0

 r − 1
2

Gµ

′∫  r − 1
2

Gµ

 r − 1
2

Gµ

′−1

×

∫  r − 1
2

Gµ

 dI′0 +

 Σ′β0ξ

0




and LR (resp. LRµ) coincides with the sum of the p− q smallest eigenvalues of the corresponding random

matrices entering the traces.
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7.4 Simulation setting of Toda (1994)

In the Toda (1994) experiment used by Demetrescu et al., the p-variate xt satisfies x0 = 0 and

xt =

 bIq 0

0 Ip−q

xt−1 + ut, ut = φut−1 + εt, εt
i.i.d.∼ N

0,

 Iq Θ

Θ′ Ip−q

 .

We set p = 5, φ = −.8, b = .5, and

Θ =



(.4 : .2 : .4 : .2) if q = 1 .4 .2 .4

.2 .4 .2

 if q = 2 .4 .2 .4

.2 .4 .2

′ if q = 3

(.4 : .2 : .4 : .2)
′

if q = 4

In the simulations, we let the deterministic trend span the whole space:

yt = ψ
t√
T

(1 : ... : 1)
′
+ xt.
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LR LR∗µ LRµ LR∗τ LRτ

p− q = 1 3 5 1 3 5 1 3 5 1 3 5 1 3 5

Experiment A

ψ = 0 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00

0.1 5.82 17.9 45.9 6.47 18.0 46.5 5.42 4.23 4.68 4.86 4.90 5.10 4.75 4.97 5.15

0.2 7.60 52.7 97.4 9.39 52.8 97.7 5.37 3.20 4.19 4.85 5.01 5.07 4.75 5.02 5.08

0.5 19.2 99.5 100.0 21.0 99.8 100.0 0.78 2.84 4.15 5.08 4.76 4.80 4.97 4.83 4.94

1 66.4 99.7 100.0 70.6 99.9 100.0 0.30 2.96 3.77 5.22 4.77 4.81 5.29 4.84 4.90

1.5 87.8 99.7 100.0 96.0 99.8 100.0 0.17 3.19 3.97 5.37 5.22 5.28 5.40 5.05 5.24

2 90.2 99.6 100.0 97.1 99.9 100.0 0.18 3.06 3.86 4.90 5.05 5.28 4.85 4.87 5.03

3 91.7 99.7 100.0 97.3 99.8 100.0 0.21 3.08 3.60 4.85 5.10 6.19 4.82 4.89 5.21

5 92.6 99.7 100.0 97.6 99.9 100.0 0.19 3.13 3.50 4.94 5.97 10.1 5.08 5.19 5.85

Experiment B

ψ = 0 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00

0.1 19.1 17.0 5.98 20.8 17.3 6.05 0.67 4.40 5.00 4.46 4.67 4.81 4.50 4.84 4.78

0.2 64.4 52.1 10.6 70.9 51.9 10.3 0.36 3.26 4.93 4.44 4.56 5.00 4.45 4.83 4.91

0.5 90.9 99.4 45.8 97.5 99.9 45.6 0.20 3.17 4.32 4.54 4.80 5.10 4.65 5.01 4.97

1 91.6 99.5 97.3 97.7 99.9 97.5 0.13 3.14 4.04 5.28 4.78 4.98 5.12 4.95 4.91

1.5 92.0 99.7 100.0 97.7 99.9 100.0 0.23 2.92 4.04 4.92 4.88 5.18 4.82 4.90 5.19

2 91.8 99.7 100.0 97.5 99.9 100.0 0.16 3.14 3.79 5.25 5.21 4.96 5.03 5.01 4.81

3 91.5 99.6 100.0 97.6 99.9 100.0 0.11 3.12 3.75 5.72 5.59 4.93 5.14 5.04 4.86

5 92.0 99.5 100.0 97.7 99.9 100.0 0.14 2.80 3.71 6.76 5.99 5.18 5.25 4.97 4.96

Experiment C

ψ = 0 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00

0.1 26.3 52.0 61.0 27.3 51.5 62.0 0.40 3.12 4.53 5.21 5.09 5.24 5.21 4.95 5.25

0.2 78.0 98.3 99.7 86.5 99.0 99.7 0.20 2.73 4.21 4.95 5.08 4.91 5.00 4.97 4.98

0.5 90.9 99.6 100.0 97.4 99.9 100.0 0.18 3.25 4.21 4.96 4.97 5.23 5.09 5.03 5.08

1 91.6 99.6 100.0 97.6 99.9 100.0 0.14 2.75 4.26 5.33 5.21 5.39 5.22 4.99 5.28

1.5 92.0 99.6 100.0 97.5 99.8 100.0 0.17 2.63 4.19 5.14 5.41 5.31 5.06 5.06 5.04

2 91.7 99.7 100.0 97.6 99.9 100.0 0.15 3.14 4.08 5.33 5.52 6.02 5.21 5.16 5.23

3 91.8 99.7 100.0 97.5 99.9 100.0 0.19 2.80 4.12 5.97 6.61 7.14 5.46 5.32 5.38

5 92.4 99.6 100.0 97.8 99.9 100.0 0.14 2.78 3.69 7.78 10.7 13.3 5.57 5.93 6.32

Table 1: Simulated finite sample rejection probabilities at the 5% nominal size of the null of q

cointegration relations in the p = 6 dimensional VAR(1). The sample size is set to 100 observations

and the number of Monte Carlo replications is 20,000. Experiments A, B, and C refer to whether

the linear trend lies in the space spanned by β⊥, β or (β, β⊥).
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LRµ∩LR∗τ LM

ψ p− q T = 100 T = 1000 T = 100 T = 1000

Experiment A

0 1 0.92 0.92 0.76 0.95

3 0.92 0.92 0.32 0.95

5 0.93 0.93 0.95 0.95

0.5 1 0.95 0.95 0.76 0.95

3 0.93 0.93 0.32 0.95

5 0.93 0.93 0.95 0.95

1 1 0.95 0.94 0.76 0.95

3 0.94 0.93 0.32 0.95

5 0.94 0.94 0.95 0.95

2 1 0.95 0.95 0.76 0.95

3 0.94 0.94 0.32 0.95

5 0.94 0.93 0.95 0.95

Experiment B

0 1 0.92 0.92 0.76 0.95

3 0.92 0.92 0.32 0.95

5 0.93 0.93 0.95 0.95

0.5 1 0.95 0.95 0.76 0.95

3 0.93 0.93 0.32 0.95

5 0.93 0.93 0.95 0.95

1 1 0.95 0.94 0.76 0.95

3 0.94 0.93 0.32 0.95

5 0.93 0.93 0.95 0.95

2 1 0.95 0.95 0.76 0.95

3 0.94 0.94 0.32 0.95

5 0.93 0.93 0.95 0.95

Experiment C

0 1 0.92 0.92 0.76 0.95

3 0.92 0.92 0.30 0.95

5 0.93 0.93 0.95 0.95

0.5 1 0.95 0.95 0.74 0.95

3 0.93 0.93 0.31 0.97

5 0.93 0.93 0.95 0.94

1 1 0.95 0.94 0.78 0.95

3 0.94 0.93 0.30 0.96

5 0.94 0.94 0.95 0.95

2 1 0.95 0.95 0.77 0.96

3 0.94 0.94 0.32 0.96

5 0.94 0.93 0.95 0.95

Table 2: Proportion of experiments where the rank of cointegration is correctly determined using

the usual sequential testing procedure (starting with zero rank). The number of Monte Carlo

replications is 20,000 and T denotes the sample size. The critical values for the likelihood ratio

tests with unrestricted intercept and restricted trend, LRµ, LR∗τ , and the Lagrange-Multiplier test,

LM, are computed using the finite sample simulation with ψ = 0. The experiments are labeled

as in the text, with trend orthogonal to the cointegration space (A) restricted to lie within the

cointegration space (B) or spanning both (C).
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LRµ∩LR∗τ LM

ψ p− q T = 100 T = 1000 T = 100 T = 1000

Toda (1994) Experiment

0 1 0.90 0.92 0.38 0.17

3 0.60 0.92 0.11 0.00

5 0.93 0.93 0.00 0.00

0.5 1 0.80 0.95 0.38 0.18

3 0.45 0.94 0.11 0.00

5 0.93 0.93 0.00 0.00

1 1 0.80 0.94 0.39 0.18

3 0.46 0.94 0.11 0.00

5 0.92 0.93 0.00 0.00

2 1 0.80 0.95 0.38 0.18

3 0.51 0.93 0.11 0.00

5 0.81 0.93 0.00 0.01

Weak Broken Trend

0 1 0.92 0.92 0.76 0.95

3 0.92 0.92 0.31 0.95

5 0.93 0.93 0.95 0.95

0.5 1 0.79 0.95 0.34 0.96

3 0.92 0.93 0.26 0.92

5 0.92 0.93 0.95 0.95

1 1 0.79 0.95 0.32 0.96

3 0.93 0.93 0.25 0.92

5 0.93 0.93 0.95 0.95

2 1 0.80 0.95 0.32 0.95

3 0.93 0.93 0.25 0.92

5 0.93 0.93 0.95 0.95

Table 3: Proportion of experiments where the rank of cointegration is correctly determined using

the usual sequential testing procedure (starting with zero rank). The number of Monte Carlo

replications is 20,000 and T denotes the sample size. The critical values for the likelihood ratio

tests with unrestricted intercept and restricted trend, LRµ, LR∗τ , and the Lagrange-Multiplier test,

LM, are computed using the finite sample simulation of pure random walks with ψ = 0. The Toda

(1994) experiment allows for short-run dynamics (see section 7.5 of the Appendix) and the weak

broken trend experiment corresponds to the process with cumulated local Bernoulli increments (zt
in Section 2).
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LRµ LR?τ
T p− q xt yt zt xt yt zt
100 1 9.20 45.22 11.91 12.40 12.40 11.71

2 20.36 67.27 23.80 25.88 25.90 25.79

3 35.68 92.14 39.43 43.33 43.35 43.26

4 55.21 126.05 58.60 65.27 65.32 64.97

5 79.14 431.80 82.98 91.26 91.31 91.28

1000 1 9.06 423.42 25.28 12.42 12.25 12.19

2 20.23 575.23 36.22 25.87 25.86 26.16

3 35.16 662.01 50.75 43.03 42.93 42.93

4 53.85 739.91 69.61 64.02 64.04 64.46

5 77.13 3697.70 91.93 89.29 89.10 88.73

∞ 1 8.19 12.52

2 18.11 25.86

3 31.88 42.92

4 49.64 63.87

5 71.44 88.79

Table 4: Monte Carlo quantiles at probability 0.95 for the p-vector with cointegrating rank q.

xt denotes the process without deterministic terms; yt with local trend spanning all dimensions

(Experiment C) and parameter ψ = 1; zt denotes a process with Bernoulli trend spanning all

dimensions and parameter ψ = 1. The number of Monte Carlo replications is 20,000 and p = 5.

The asympotic critical values are from MacKinnon et al. (1999).

H0 : LR∗µ LRµ LR∗τ LRτ

q = 0 31.4 [0.001]∗∗ 27.8 [0.000]∗∗ 34.7 [0.002]∗∗ 28.2 [0.001]∗∗
q ≤ 1 9.4 [0.044]∗ 5.9 [0.015]∗ 7.4 [0.316] 1.4 [0.233]

Table 5: Trace Statistics for the null of q cointegration relations between Temperature and RF. The

data consists of annual observations spanning 1850-2011. Values within square brackets denote the

p-value reported by Oxmetrics 6.30.
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Figure 1: Simulations of processes over T = 250 observations. xt denotes a random walk. yt is the

same random walk with drift ψ/
√
T . zt is the same random walk with a random drift qtvt where

qt
i.i.d.∼ Bernoulli

(
ψ/
√
T
)

and νt
i.i.d.∼ N (0, 1) . In the third column, ‘Linear Trend’ denotes the

difference yt − xt, and ‘Bernoulli Trend’ the difference zt − xt.
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Figure 2: The figure reports the data on global surface temperature (Temperature) and radiative

forcing of human origin (RF ). The observations are annual. Top panel: a linear trend has been

fitted to either variable and both variables have been adjusted so their means and ranges match.

The fitted linear trends therefore match. Bottom panel: the data have not been adjusted.

39



∆Temperature Fitted 

1850 1900 1950 2000

-0.25

0.00

0.25

∆Temperature Fitted ∆Temperature × Fitted 

-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15

-0.25

0.00

0.25

∆Temperature × Fitted 

∆RF Fitted 

1850 1900 1950 2000

-0.05

0.00

0.05
∆RF Fitted ∆RF × Fitted 

-0.01 0 0.01 0.02 0.03 0.04 0.05

-0.05

0.00

0.05

∆RF × Fitted 

ct 

1860 1880 1900 1920 1940 1960 1980 2000 2020

-0.50

-0.25

0.00
ct 

Figure 3: The figure reports output from estimation of a cointegrated VAR for Temperature and

RF. Top panels report the time series and cross plot of observed and fitted series. The bottom

panel records the time series of the estimated cointegrating vector.
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