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Abstract

This paper proposes a Near Explosive Random-Coefficient autoregressive model for asset

pricing which accommodates both the fundamental asset value and the recurrent presence of

autonomous deviations or bubbles. Such a process can be stationary with or without fat tails,

unit-root nonstationary or exhibit temporary exponential growth. We develop the asymp-

totic theory to analyze ordinary least-squares (OLS) estimation. One important theoretical

observation is that the estimator distribution in the random coefficient model is qualitatively

different from its distribution in the equivalent fixed coefficient model. We conduct recursive

and full-sample inference by inverting the asymptotic distribution of the OLS test statistic,

a common procedure in the presence of localizing parameters. This methodology allows to

detect the presence of bubbles and establish probability statements on their apparition and

devolution. We apply our methods to the study of the dynamics of the Case-Shiller index of

U.S. house prices. Focusing in particular on the change in the price level, we provide an early

detection device for turning points of booms and bust of the housing market.
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1 Introduction and motivations

The aim of this paper is to propose a random-coefficient autoregressive model that accommodates

the pricing of assets both when these follow fundamentals and in the presence of bubbles. The

rationale behind our modeling choice comes from standard present value models (see e.g. Campbell

and Shiller, 1987a,b) where the price Pt of a unique asset at time t (or possibly its logarithm)

depends on the expected value of future associated cash flows, Dt+1, discounted using a time varying

pricing kernel Mt+1 as in Pt = Et (Mt+1 (Pt+1 +Dt+1)) . The price can be written Pt = Ft + Bt

where the so called fundamental price Ft is equal to the expected stream of discounted future

cash flows and Bt denotes any process that satisfies Bt = Et (Mt+1Bt+1). There exist solutions to

this equation for which Bt exhibits exponential growth and can be labeled as a bubble, see inter

alia Blanchard and Watson (1982), Abreu and Brunnermeier (2003), and Lee and Phillips (2011).

Under the assumption that Dt is integrated of order 1, West (1987), and Diba and Grossman

(1988) show that Ft is also integrated of the same order. Hence, unit root (or cointegration)

tests have been used for testing that a function, say yt, of asset prices does not exhibit a bubble.

Different approaches have been proposed in a stream of papers by Peter Phillips, Jun Yu and

several coauthors (see inter alia Phillips, Wu and Yu, 2011, and Phillips and Yu, 2009; respectively

PWY and PY henceforth) where they perform recursive Dickey-Fuller tests.1 To increase power,

these authors adapt the critical values to the sample size, with the help of the distributions derived

by Phillips and Magdalinos (2007, PM henceforth) under the alternative of a locally explosive root,

for t = 1, ..., T :

yt = ρ0yt−1 + ηt, (1)

ρ0 = exp

{
φ0
Tα

}
,

with φ0 > 0, α ∈ (0, 1) , and where ηt is weakly dependent with mean zero. When ηt is indepen-

dently and identically distributed (i.i.d.) with mean zero, we refer to model (1) as a Near Explosive

Autoregressive process of order 1 (NEAR(1)) since ρ0 > 1 but ρ0 → 1 as the sample size T in-

creases. The NEAR(1) model requires α < 1 for local explosiveness whereas α ≥ 1 in expression

(1) implies yt behaves as a near unit root process.

Unfortunately, the alternative (1) does not allow for the bursting of the bubble and the collapse

of asset prices as pointed out by Diba and Grossman (1988) and Evans (1991). For this reason,

several authors (such as Evans and PWY) have considered the possibility of regime switching or

the deterministic collapse of bubbles. For instance, in the Phillips-Yu approach the estimation of

the inception and termination of bubbles relies on the assumption that the process experiences

deterministic breaks (or unmodelled regime shifts). To render the appearance and disappearance

of bubbles stochastic, and avoid specifying their frequency, we generalize their approach to a Near

1The literature has also provided several other techniques to test for the presence of a bubble, see Gürkaynak

(2008) for an overview.
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Explosive Random Coefficient autoregressive process, a NERC(1) defined, for t = 1, ..., T as:

yt = ρtyt−1 + ηt, (2)

where ρt is i.i.d. such that its expectation E(ρt) = 1 +O (T−α) and its variance V(ρt) = O (T−α) .

We are specifically interested in the case where E(ρt) lies on the explosive side of unity. We

parameterize:

ρt = exp

{
φ+ λTα/2ut

Tα

}
,

with (φ, λ, α) ∈ R × R+ × (0, 1) and where ut is i.i.d with zero mean and unit variance. The

model we consider is a local-asymptotic approximation to the random coefficient autoregressive

model of Nicholls and Quinn (1982) and Granger and Swanson (1997); it nests the NEAR(1).

Specifying that the autoregressive coefficient is stochastic, we can draw inference on the whole

sample and there is no need to resort to rolling or recursive windows to test the presence of a

bubble and estimate its magnitude; the absence of deterministic breaks avoids the usual trimming

of observations at the beginning or end of the sample. To illustrate the idea, Figure 1 compares a

random draw from the two processes (1) and (2) such that E(ρt) = ρ0 with common ηt. The figure

illustrates the point that inception and collapse of bubbles are possible to model without resorting

to deterministic breaks. In addition, we show in our empirical application that in the NERC(1) ,

the emergence of the bubble relates to the value taken by the stochastic discount factor, so the

model helps improving the structural interpretation of exuberant periods. Also, by a careful choice

of yt in our empirical application, we avoid the issue of negative bubbles pointed out by Diba and

Grossman (1988).

The paper develops the asymptotic theory of the NERC(1) and derives the distribution of

the ordinary least squares (OLS) estimator ρ̂ required in the Phillips-Yu methodology. Although

the NERC(1) model parametrically nests the NEAR(1), its properties differ when V(ρt) 6= 0. In

particular, its asymptotics depend on the value of c = φ+λ2. When the NERC(1) process is weakly

stationary (c < 0) the OLS estimate of ρt converges to a normal distribution, as under the NEAR(1)

with φ0 = c, albeit with a larger variance. This is not surprising since random coefficient models

usually exhibit larger variances than fixed coefficient models. More relevant and interesting, when

the NERC(1) model is not weakly stationary (c ≥ 0) the asymptotics is qualitatively different from

the NEAR(1) in the sense that when λ→ 0, the asymptotic distribution of ρ̂ is not close to that of

the NEAR(1) described by PM. When λ 6= 0, the NERC can generate processes that are stationary

with fat tails or nonstationary with occasional explosive growth: bubbles in yt (however defined)

will eventually burst (as seen in Figure 1) and consecutive bubbles are also possible. Our model

also provides an analytically tractable explanation for the simulation evidence of Evans (1991):

he showed, although in a different setting, that tests for the presence of a bubble have low power

when multiple bubbles are present.

Our choice of local asymptotic parameterization renders ρ̂ consistent (contrary to fixed param-

eter asymptotics, see Hwang and Basawa, 2005). Yet when c ≥ 0, and as it is often the case under
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Figure 1: Panels (a) and (b): Simulated paths of the NEAR(1) and NERC(1) processes. The

NEAR(1) process is defined as yt = ρ0yt−1 + ηt with ρ0 = exp (φ0/T
α) and the NERC(1) as

yt = ρtyt−1 + ηt with ρt = exp
((
φ+ λTα/2ut

)
/Tα

)
, ηt and ut being independent standard

Gaussian white noise. Parameter values are α = 1/2 and (φ, λ) = (.5, .5) and φ0 = .625 so

E (ρt) = ρ0 = 1.028.

local asymptotics, the estimator ρ̂ converges at a rate that does not allow consistent estimation of

the parameters (φ, λ) . We hence provide an inferential approach based on inverting the asymptotic

distribution of ρ̂. The technique does not require the existence of consistent estimators with piv-

otal distributions. It was popularized by Stock (1991) and Andrews (1993) and various forms have

widely been used in the near unit root and weak instrument literatures. In addition, the method

can be performed in real-time since we need not resort to deterministic breaks. The distinctive

asymptotic theory of NERC(1) is useful in that it allows to forecast the evolution (boom) and de-

volution (bust) of the bubble generation process. We evaluate our methodology empirically using

the Case-Shiller index of U.S. house prices: we analyze both the logarithm of the price/rent ratio

and the change in the price level. Analysis based on the latter series in particular helps providing

an early detection device for turning points.

The structure of the paper is as follows. In section 2, we define the random-coefficient au-

toregressive process with local-asymptotic parameterization and derive its asymptotic properties.

Section 3 presents the method of inference that we propose. Section 4 shows how the model can

be used to forecast the probability of booms or busts. A Monte Carlo evaluation of the properties

of the inferential methods is presented in section 5. We apply our methodology in section 6 to the

inference regarding the dynamic properties of U.S. house prices. Proof are collected together with

additional simulations in the appendix. Throughout the paper, b·c denotes the integer part.
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2 The model and its properties

2.1 The Near-Explosive Random Coefficient autoregressive model.

The model we study in this paper belongs to the class of random-coefficient autoregressive (RCA)

models as proposed and studied by Andel (1976), Nicholls and Quinn (1982), McCabe and Tremayne

(1995) and Granger and Swanson (1997):

yt = ρtyt−1 + ηt, t = 1, · · · , T ; (3)

where ηt is assumed to be identically and independently distributed with zero expectation, vari-

ance σ2
η and moment conditions specified in assumption 2 below; ρt is a nonnegative covariance

stationary process that is independent of ηt. The RCA model (3) with

E [max {log |ηt| , 0}] <∞ and E [max {log |ρt| , 0}] <∞ (4)

is known (see Aue, Horváth and Steinebach, 2006) to admit a strictly non-anticipatory stationary

solution if and only if

E [log |ρt|] < 0, (5)

and a covariance stationary solution if

E
[
ρ2t
]
< 1. (6)

Hence, the unit root hypothesis can take several forms: E[ρt] = 1, or E
[
ρ2t
]

= 1, see Granger and

Swanson (1997) for a discussion.2 When E
[
ρ2t
]
> 1, Hwang and Basawa (2005) denote this model

an Explosive Random Coefficient Autoregressive model (ERCA) and study processes such that

both E
[
ρ2t
]
≥ 1 and E[log |ρt|] < 0 (which are strictly stationary but do not possess finite second

moments).3

Here we follow Aue (2008) and deviate from the existing literature on RCA models à la Granger-

Swanson in the sense that we assume that both the expectation and variance of (ρt − 1) are very

close to zero: we model the moments using extensions to standard local-asymptotic frameworks

so that as T →∞ (E [ρT ] ,V [ρT ])→ (1, 0). This framework builds on Bobkoski (1983), Chan and

Wei (1987), Phillips (1987) and the more recent work of Giraitis and Phillips (2006) and PM.

The data generating process (DGP) we consider is formally defined as a triangular array since

the distribution of yt, for t ≤ T, is allowed to depend on the actual sample size T : we parameterize

2Several Lagrange-Multiplier tests of the unit root hypothesis have been proposed in this framework, see Ley-

bourne, McCabe and Tremayne (1996), Hwang and Basawa (2005), Distaso (2008) and Aue and Horváth (2011).
3Also, expression (3) implies that yt exhibits conditional heteroskedasticity: assume ρt ∼ iid

(
ρ, σ2

ρ

)
then

E [yt|yt−1] = ρyt−1, Var [yt|yt−1] = σ2
ρy

2
t−1 + σ2

η

see inter alia Tsay (1987), Yoon (2002), and Hwang and Basawa (2005). These authors, as well as others have also

proposed functional forms that differ from (3) and that belong to the classes of double-autoregressive or bilinear

processes.
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the distribution of ρt to ensure that its realizations take the form of local deviation from a unit

root, with an interest on deviations on the explosive side, hence the terminology Near Explosive

Random Coefficient autoregressive model (NERC).

Throughout the paper, we make the following assumptions, where R+,∗ denotes the set of

strictly positive real scalars.

Assumption 1

ρt = exp

{
φ+ λTα/2ut

Tα

}
with ut ∼ i.i.d. (0, 1) ,

where (φ, λ, α) ∈ R× R+,∗ × (0, 1) , and where ut and ηt are mutually independent.

Assumption 2 y0 = op
(
Tα/2

)
and

E |ηt|ν <∞ for ν ≥ 2

α
;

E |ut|ω <∞ for ω ≥ 2

α
.

Assumption 1 implies that the parameters φ and λ2 play similar roles in determining the mag-

nitude of E [ρt] = exp
{(
φ+ 1

2λ
2
)
/Tα

}
. Also V [ρt] = exp

{(
2φ+ λ2

)
/Tα

} (
exp

{
λ2/Tα

}
− 1
)

=
λ2

Tα +O
(
T−2α

)
, so ρt admits the following stochastic expansion:

ρt = 1 +
φ+ 1

2λ
2

Tα
+

λ

Tα/2
ut +

λ2

2Tα
(
u2t − 1

)
+Op

(
T−2α

)
. (7)

Assumption 2 ensures that the assumption (4) from Aue et al. (2006) is satisfied. It also implies

that a strong approximation is possible, see Csörgõ and Horváth (1993) and PM, according to

which we can construct an expanded probability space with standard Brownian motions W , B

such that, as T →∞, sups∈[0,T 1−α]

∣∣∣T−α/2∑bsTαct=1 ut −Ws

∣∣∣ = oa.s. (1) ;

supr∈[0,T 1−α]

∣∣∣T−α/2σ−1η ∑brTαc
t=1 ηt −Br

∣∣∣ = oa.s. (1) .
(8)

In order to map the values of (φ, λ) corresponding to different properties of yt, we define the

following subsets of R× R+ :

Sw =
{

(φ, λ) ∈ R× R+, φ+ λ2 < 0
}

;

Ss = {(φ, λ) ∈ R× R+, φ < 0} .

The conditions (5) and (6) for strict and weak stationarity correspond respectively to (φ, λ) ∈ Ss
and (φ, λ) ∈ Sw. We also define the subset Ss\w = Ss\Sw of processes that are strictly stationary

yet non weakly so. Using the results of Kesten (1973) and Goldie (1991) applied by Lux and

Sornette (2002) to periodically collapsing bubble, the distribution of yt for (φ, λ) ∈ Ss\w with

λ > 0 can be shown to be characterized by a power law, in the sense that there exist τ > 0

6
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Figure 2: Values of (φ, λ) ∈ R × R+ belonging to the subsets Sw and Ss\w which correspond

respectively to yt being weakly stationary and strictly yet non weakly stationary. The figure also

reports whether E[ρt] > 1 and E
[
ρ2t
]
> 1.

such that Pr (|yt| > a) ∼ τa−
√
−2φ/λ as a → ∞. Hence moments4 of yt exist up to the order

√
−2φ/λ − 1 ≤

√
2 − 1. Hence (φ, λ) ∈ Ss\w implies that the process is not characterized by

temporary explosive behavior (as when E
[
ρ2t
]
> 1) but instead by large deviations caused by the

fat tailed nature of the stationary distribution. Yet, fat tails can generate processes which appear

to exhibit temporary bubbles (see the appendix, section F).

Notice the condition E [ρt] < 1⇔ φ+ 1
2λ

2 < 0 differs from those defining Sw and Ss as

E [log |ρt|] ≤ E [ρt] ≤ E
[
ρ2t
]
,

where both equalities hold if and only if λ = 0, i.e. in the moderately explosive processes of PM

and PY. The difference here is that ρt ∈ [0,∞): the autoregressive coefficient is allowed over time

to enter the mean reversion region (0, 1), to be close to unity and to lie on the explosive side (1,∞).

We show in Figure 2 which values of (φ, λ) belong to the various subsets.

The model we propose deviates non-trivially from that of Aue (2008, Aue henceforth) in that we

allow for a greater role played by the stochastic variation in ρt. In his setting E [ρt]− 1 = O (T−α)

with α ∈ (1/2, 1) , and V [ρt] = o
(
T−1

)
which implies that V [ρt] lies in a tighter neighborhood

of unity and so does not asymptotically impact5 the tail distributions or explosiveness of yt. In

his framework, the asymptotic distributions of the least-squares estimator of the AR(1) regression

parameter coincide with PM. Our assumptions extend Aue (2008) to the situation where V [ρt] lies

further away from zero6 and we show that this affects significantly the asymptotic distributions.

4See theorem 1 in Lux and Sornette (2002) where the moment conditions are satisfied under our assumption 2.
5For Aue, conditions E

[
ρ2t

]
< 1 and E [ρt] < 1 are asymptotically equivalent so Ss\w = ∅.

6We rule out the assumption of fixed (non-local) parameterization, α = 0.
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Accordingly with PY, we restrict α < 1 to ensure that ρt is sufficiently away from unity for yt to

exhibit properties distinctively different from those of a random walk (in a sense that will become

clear).

An empirical analysis of the ERCA model with E [ρt] > 1 and non-local parameters (α = 0)

was made by Charemza and Deadman (1995) in the context of periodically collapsing bubbles (see

also, Aue and Horváth, 2011, and Wang and Gosh, 2009). We show here that, following the recent

work by P. C. B. Phillips and his coauthors, the introduction of a local-asymptotic framework

yields benefits. We present simulated paths of the NERC process in section F of the appendix.

2.2 Asymptotic distribution

The first step of our analysis is to provide a Functional Central Limit Theorem (FCLT) for the

NERC model. For this we define, for (φ, λ) ∈ R× R+ and r ∈ R+, the stochastic integral of a

geometric Brownian motion as the diffusion:

Kφ,λ (r) =

∫ r

0

exp {(r − s)φ+ λ (Wr −Ws)} dBs. (9)

The FCLT follows.

Proposition 1 Let the process yt be defined for t ≥ 0 by (3) under assumptions 1 and 2. Then,

for r ∈
[
0, T 1−α] and as T →∞,

T−α/2ybrTαc ⇒ σηKφ,λ (r) .

Corollary 2 Proposition 1 also holds when α = 1, so T−1/2ybrTc ⇒ σηKφ,λ (r) for r ∈ [0, 1] .

Throughout the paper, asymptotic behaviors depend on the sign of log E
[
ρ2t
]

= 2T−α
(
φ+ λ2

)
so we define

c = φ+ λ2, (10)

which extends the role played by φ in PM. Proposition 1 shows that several cases arise depending

on whether the distribution of Kφ,λ (r) remains bounded. Indeed, Kφ,λ (r) ∼ N
(
0,
∫ r
0
e2csds

)
and it

reduces when λ = 0 to the Ornstein-Uhlenbeck diffusion considered in PM. Since E [yT ] = 1+o (1) ,

the magnitude of yT is similar to that which PM obtain when c ≤ 0: denoting by sd the standard

deviation,

sd (yT ) =


O
(
T
α
2

)
, if c < 0;

O
(
T

1
2

)
, if c = 0;

O
(
Tα/2ecT

1−α
)
, if c > 0,

(11)

where c differs from φ when λ 6= 0. The latter expression shows that when c > 0, the process

exhibits explosiveness in its second moment as pointed out by Hwang and Basawa (2005). Clearly

Corollary 2 and expression (11) together imply that, as is the case for the NEAR(1) model, explosive

patterns may only arise if α < 1; this is the case we consider in the paper.
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3 Inference

This section delineates a methodology for drawing inference on the parameters (φ, λ) of the

NERC(1) . In the spirit of PY and PWY, we first derive the distribution of the ordinary least-

squares (OLS) ρ̂, which is the estimator originally proposed by Quinn and Nicholls (1980). Since

alternative quasi-maximum likelihood estimators are known to present consistency issues in the

ERCA (i.e. when α = 0, see Berkes et al., 2009), we then propose to draw inference on (φ, λ) using

solely the distribution of ρ̂.

3.1 Least Squares Estimator

We now consider the distribution of the OLS estimator ρ̂ in the regression of yt on yt−1. The

expansion (7) implies that, as T →∞,

yt =
(
E (ρt) + λT−α/2ut +Op

(
T−α

))
yt−1 + ηt.

Hence, letting Syyu =
∑T
t=1 y

2
t−1ut, Syη =

∑T
t=1 yt−1ηt and Syy =

∑T
t=1 y

2
t−1, the OLS estimator

satisfies

ρ̂− E (ρt) = λT−α/2
Syyu
Syy

+
Syη
Syy

+Op

(
T−3α/2

)
, (12)

and its asymptotic distribution is driven by the the sum with higher magnitude between T−α/2Syyu

and Syη. For this analysis, we introduce the following random variables:

VT 1−α =

∫ T 1−α

0

e2(φr+λWr)dWr, ZT 1−α =

∫ T 1−α

0

e2(φr+λWr)dr,

XT 1−α =

∫ T 1−α

0

e−(φr+λWr)dBr , YT 1−α =

∫ T 1−α

0

eφr+λWrdBr.

Let a tilde denote the centered random variable scaled by its standard deviation (e.g. ṼT 1−α =

(V [VT 1−α ])
−1/2

(VT 1−α − E [VT 1−α ])). We show in the appendix that, as T → ∞, ṼT 1−α , X̃T 1−α ,

ỸT 1−α and Z̃T 1−α converge weakly to random variables V, X, Y, and Z: the variables X,Y and

V are standard normal and Z is a random variable with zero expectation and unit variance.7 In

addition Z does not correlate with V. We can now provide the weak convergence of the sample

moments:

Lemma 3 Let the process yt be defined for t ≥ 0 by (3) under assumptions 1 and 2, then as

T →∞ :

· if c < 0,

T−(1+α)Syy
p→
σ2
η

2c
, T−

1+α
2 Syη

L→ N

(
0,
σ2
η

2c

)
, T−

1+2α
2 Syyu

L→ N

(
0,

12σ2
η

c2

)
;

7Matsumoto and Yor (2005), theorem 7.4, show how the distribution of Z can be expressed (for some values of

the parameters) in terms of transforms of Brownian motions involving a Gamma variable.

9



· if c ≥ 0 and for x ∈ {u, η}, there exist (µx, φxT ) functions of (φ, λ) such that

T−α/2φuTSyy ⇒
σ2
η

µu
√
c+ 2λ2

X2Z, φηTSyη ⇒
σ2
η

µη
XY, φuTSyyu ⇒

σ2
η

µu
X2V,

with φuT /φ
η
T = o

(
e−2λ

3T 1−α
)

.

The lemma implies the following: (i) when c < 0, i.e. when the process is weakly stationary,

then both Syyu and Syη impact the asymptotic distributions; but (ii) when λ 6= 0 and c ≥ 0

Syyu dominates. This setting differs markedly from that of Aue where the variance of ρt is of

lower magnitude so Syη is the dominant term in the expansion (12). It also differs from the fixed-

asymptotics framework of Hwang and Basawa (2005) where the ratio Syyu/Syy is not premultiplied

by T−α/2 and hence diverges: the OLS estimator is inconsistent there. This is not the case here

as the following theorem shows.

Theorem 4 Let the process yt be defined for t ≥ 0 by (3) under assumptions 1 and 2, with λ 6= 0.

Letting c = φ+ λ2, the OLS estimator ρ̂ in the regression of yt on yt−1 then satisfies as T →∞ :

if c < 0, T
1+α
2 (ρ̂− E [ρt])⇒ N

(
0, 3λ2 − 2c

)
,

if c ≥ 0, Tα (ρ̂− E [ρt])⇒ λ
√
c+ 2λ2

V

Z
.

This theorem presents several key differences from the existing literatures on near unit roots and

random coefficients when c ≥ 0. When c < 0, the asymptotic distribution of the OLS estimator

ρ̂ − E [ρt] is comparable to the results of PM and Aue that T
1+α
2 (ρ̂− ρ) ⇒ N

(
0,−2φ+ λ2

)
:

the presence of the stochastic root does not affect the asymptotic normality of ρ̂ or the rate of

convergence; the only difference is that the asymptotic variance is increased by λ2.

By contrast, when c ≥ 0 the results are new. Here the OLS estimator converges more slowly

than under the constant parameter AR(1) : it does not achieve the Op
(
T−1

)
of unit root processes

or the exponential rate of PM where (2φ)
−1
TαeφT

1−α
(ρ̂− ρ) tends to a standard Cauchy variable.

Convergence can be arbitrarily slow here if α is close to zero: the limit α→ 0 corresponds to the

fixed-asymptotics of Hwang and Basawa (2005) where the estimator is shown to be inconsistent.

Also, the limiting distribution is expressed, as in PM or Aue, as the ratio of two uncorrelated

random variables. Yet, Z is not standard normal (although it has zero expectation and unit

variance). This implies that V/Z does not define a Cauchy variable contrary to the limiting

distribution in PM.

Theorem 4 shows that ρ̂ allows to estimate φ+ λ2/2 consistently when c < 0 since

Tα (ρ̂− 1) = φ+
1

2
λ2 +Op

(
T−

1−α
2

)
.

This is not the case for c ≥ 0 as the convergence of ρ̂ is then too slow.

The theorem also shows that under the NERC model, the unit root problem does not exist

when c ≥ 0 since the asymptotic distribution does not show the usual knife-edge problem as c

10



tends to zero from above (see Berkes et al., 2009, for a discussion). This may pose difficulties as

the following corollary shows.

Corollary 5 Under the assumptions and conditions of Theorem 4, define the test statistic τ0,T for

the null H0 : (φ, λ) = (φ0, λ0) as

τ0,T =

{
T

1+α
2 (ρ̂− EH0

(ρt)) , if c0 < 0;

Tα (ρ̂− EH0
(ρt)) , if c0 ≥ 0.

where c0 = φ0 + λ20. Then under H1 : (φ, λ) = (φ1, λ1) 6= (φ0, λ0) and, as T →∞,

τ0,T =
H1

 Op

(
T

1−α
2

)
, if c0 < 0;

Op (1) , if c0 ≥ 0.

The corollary shows that the test based on the OLS estimator is asymptotically powerful when

the null implies that the process is weakly stationary. Yet the test statistic does not diverge

asymptotically (so the test has low asymptotic power) when the null implies that yt is not weakly

stationary. This holds irrespective of the alternative hypothesis. The corollary sheds light on the

reason why the simulations of Evans (1991) and Charemza and Deadman (1995) show that the

Dickey-Fuller test has low power in the presence of periodically collapsing bubbles.8

In addition Theorem 4 shows that the distribution of τ0,T , as defined in the corollary, does not

depend on the nuisance parameter σ2
η. This is a key feature. Indeed, the OLS estimator is less

efficient than the quasi-maximum likelihood estimators (QMLE) of the expectation and variance

of ρt that have been proposed e.g. by Quinn and Nicholls (1981). Yet the QMLE does not exist

in closed form and requires a consistent estimator of σ2
η. Berkes et al. (2009) show that in the

fixed-parameter explosive model (i.e. α = 0 and c > 0) the QMLE of σ2
η is inconsistent. The

estimator suggested by Schick (1996) could be used in combination with other estimators, see

e.g. Aue and Horvath, (2012) or Hwang and Basawara, (2005). However, the properties of the

estimator of Schick are still unknown for the ERCA model. For this reason, we propose in the

next subsection an alternative methodology that is feasible although it relies on an underidentified

parameterization.

3.2 Inference using Grid Testing

The DGP we consider uses a local-asymptotic parameterization and Theorem 4 shows that con-

sistent estimation of the localizing parameters (φ, λ) may be unfeasible when c ≥ 0.9 To conduct

inference, we resort hence to the technique which is now standard under local asymptotics and

consists in inverting a test statistic. There exists a significant literature where such an approach is

8This is not the only such case in the literature, indeed the locally best invariant Lagrange-Multiplier test of

Leybourne et al. (1996) was also shown not to be consistent under the unit root hypothesis against explosive

alternatives (see Nagakura, 2009).
9Hence, we do not consider the nonlinear Kalman or particle filters.
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used for inference in the near-unit root framework (originating in Stock, 1991).10 Instead of focus-

ing on point estimation, inference consists, here, in constructing asymptotically valid confidence

sets for the parameters of interest.

The technique relies on introducing a scalar function τθ,T of y1, ..., yT (a test statistic) that

satisfies

τθ,T ⇒ Dθ, (13)

where θ = (φ, λ)
′ ∈ Θ denote the parameters of interest, here θ = (φ, λ) and Dθ denotes a

distribution that depends on θ. Under the null H0 : θ = θ0, Stock (1991) constructs asymptotic

(1− ω) % confidence sets as Θω ⊂ Θ consisting of the values θ0 which are not rejected at the

ω% significance level by the limit of τθ0,T as T → ∞. The finite sample corrections of Andrews

(1993) and Hansen (1999) have been shown by Mikusheva (2007, see also 2012) to be uniformly

valid. In this setting, the least rejected parameter θ∗ may constitute a biased estimator of θ but

median-unbiased estimation is feasible under the weak convergence assumption, provided that the

quantile function is monotonic (Stock, 1991, Andrews, 1993). When τ is a Generalized Method

of Moments (GMM) statistic, θ∗ can be seen as the continuously-updated estimator (see Stock,

Wright and Yogo, 2002) and it inherits its properties.

Here we conduct inference under the null

H0 : (φ, λ) = (φ0, λ0) .

Since yt − EH0
[ρT ] yt−1 = (ρt − EH0

[ρT ]) yt−1 + ηt, we use the moment condition:

Cov (yt − EH0
[ρT ] yt−1, yt−1) =

H0

0.

The test we choose for simplicity follows the pseudo Dickey-Fuller autoregression:

yt − EH0
[ρT ] yt−1 = (ρ̂− EH0

[ρT ]) yt−1 + ηt, (14)

and we set τθ,T to be the OLS estimator ρ̂−EH0 [ρT ] scaled by the asymptotic rate given in Theorem

4. Confidence sets are obtained by grid search over all possible values of (φ, λ) and critical values

are obtained by simulation. The variance σ2
η constitutes a scaling parameter that does not affect

the asymptotic distribution of ρ̂ − EH0
[ρT ] so we may fix it to unity. Also, α is not identified

using the method: it constitutes only a scaling parameter since it does not enter the asymptotic

distributions in Theorem 411. In the following, we consider testing against either a one-sided

alternative (rejection in the upper tail) or a two-sided alternative. The least-rejected parameter

values in the two-sided test correspond to an under-identified Method of Moment estimator. The

one-sided test can only be used to construct confidence sets.

10This technique is also common in the context of weak instruments where there exists no fully robust estimation

method, but robust tests can be constructed (see Dufour, 1997, and Staiger and Stock, 1997). For papers that

discuss the mechanics of the inversion of robust tests to form confidence sets, see Andrews and Stock (2005) and

references therein.
11Since α is a scaling parameter it will be fixed as α = 1/2 in the empirical applications.
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Following Phillips (2012) we recognize that as |φ| → ∞ or λ→∞, the asymptotic distribution

of the estimator becomes diffuse so the confidence sets may become empty when the true data

generating process does not present local parameters. Also, Corollary 5 shows that although

we obtain valid asymptotic confidence sets under the null, the asymptotic power is low and the

proposed confidence sets may be too wide: we assess their coverage probabilities by simulation in

section 5.

4 Forecasting

An attractive feature of the model we propose, is that it provides a distributional assumption about

ρt contrary to models where ρt breaks deterministically. As a consequence, we can answer questions

on the probability that a bubble forms, bursts, continues and so on. There exist several ways to

define a bubble and to characterize its timing and magnitude (see e.g. White and Granger, 2011),

but our purpose here is not to provide an extensive characterization. Many definitions of a bubble

imply that the growth rate is greater than some preassigned growth rate over a finite horizon, say

k > 0 periods. This implies that we should be concerned with events such as {yt+k/yt ≥ γ} for

some γ > 0. We define the probability of this event as

Pγt,k ≡ P

(
yt+k
yt
≥ γ

)
. (15)

An example of a question of interest may for instance concern the probability Pyt/yt−kt,k that

over the horizon k > 0, the process grows at least as fast as has been observed over the last k

periods.

We define fc (r) = (ecr − 1) /c for c 6= 0 and f0 (r) = r. The following proposition shows how

the questions above frame into a simple analytic expression using our model.

Proposition 6 Under the assumptions and conditions of Theorem 4, then

(i) for (r, s) ∈
(
0, T 1−α]2 and, as T →∞,

ybTα(r+s)c

ybTαrc
⇒ exp {φs+ λ (Wr+s −Wr)}+

√
f2c (s)

f2c (r)
C,

where C is a standard Cauchy variable, and

(ii) if c ≥ 0 with λ 6= 0, then as (T, r)→ (∞,∞) such that s/r → 0,

PγbTαrc,bTαsc → Φ

(
φs− log γ

λ
√
s

)
,

where Φ denotes the standard normal cumulative distribution function.

The proposition shows that the distribution of the ratio
ybTα(r+s)c
ybTαrc

is driven by the sum of

two random variables which are not independent of each other: (i) the sum of the increment
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Wr+s−Wr which is independent on Wr−s, s ≥ 0 and (ii) a Cauchy variable C. When r →∞ such

that s/r → 0 the scaling factor f2c (s) /f2c (r) tends to zero if c ≥ 0 so the impact of the Cauchy

C vanishes: then probabilities such as PγbTαrc,bTαsc are given by the normal distribution and can

be factored when they relate to non-overlapping events.

For instance the definition of a technical bubble in White and Granger (2011), requires that

there exist t1 < t2 < t3 such that the bubble builds up between t1 and t2, i.e. yt+1/yt > 1 for

t1 ≤ t < t2, and it collapses between t2 and t3 : yt+1/yt < 1 for t2 ≤ t < t3. The proposition shows

that when c ≥ 0, this bubble condition can therefore be written asymptotically as the product of

individual probabilities:12

P1
t1,1...P

1
t2−1,1

(
1− P1

t2,1

)
...
(
1− P1

t3−1,1
)
.

In addition, proposition 6(ii) shows that probabilities such as Pγt,k asymptotically tend to very

simple expressions, where the functional central limit theorem yields normality. A finite sample

approximation based on the asymptotic distributions obtains, for k << t :

Pγt,k ≈ Φ

(
φkT−α − log γ

λ
√
kT−α

)
.

The expression above relies crucially on λ 6= 0; when this is not the case and under the local-

asymptotic approximation, PγbTαrc,bTαsc → 1{φs−log γ≥0}, with 1{·} the indicator function.

Proposition 6 shows how to compute asymptotic probability statements parametrically when

the DGP is known. When the parameters (φ, λ) are unknown, it is possible to use the inference

method we suggested in section 3.2 in order to obtain confidence intervals for the probability

forecasts Pγt,k. As before, let Θω denote an asymptotic (1− ω) % confidence set for (φ, λ) . Then if

all (φ, λ) ∈ Θω satisfy φ+λ2 ≥ 0, we can compute the infimum and supremum of Pγt,k by considering

all parameter combinations in the confidence set. We show an example of this methodology in the

empirical section.

5 Monte Carlo

5.1 Finite Sample Confidence Sets

We now provide a short Monte Carlo evaluation of the finite sample probability coverage of con-

fidence sets. Asymptotic distributions are obtained via simulation, using samples of T = 10, 000

observations. All Monte Carlo distributions are obtained using 10,000 replications. We set α = 1/2

since it is only a scaling parameter that does not affect the asymptotic distribution.

12White and Granger also impose the condition (yt2 − yt1 ) / (t2 − t1) ≤ |(yt3 − yt2 ) / (t3 − t2)| so the collapse is

sharper than the build-up, this event has probability:

1− P
1−(1−yt1/yt2 ) t3−t2t2−t1
t2,t3−t2 .

under the conditions that yt3 ≤ yt2 and yt2 6= 0.
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Probability coverage for a nominal 95% Interval

(a) One-sided test, T = 3, 000 (b) One-sided test, T = 300 (c) Two-sided test, T = 300

λ = 0 0.1 0.2 0.5 1 1.5 2 0 0.1 0.2 0.5 1 1.5 2 0 0.1 0.2 0.5 1 1.5 2

φ Asymptotic Distribution

-0.2 0.97 0.97 0.97 0.93 0.90 0.89 0.89 0.98 0.98 0.98 0.85 0.74 0.69 0.70 0.92 0.92 0.92 0.68 0.72 0.91 0.94

0 0.95 0.90 0.92 0.94 0.93 0.92 0.91 0.95 0.77 0.83 0.87 0.87 0.83 0.78 0.98 0.64 0.64 0.63 0.82 0.90 0.93

0.01 1.00 0.91 0.93 0.94 0.93 0.93 0.93 1.00 0.78 0.84 0.87 0.87 0.83 0.80 1.00 0.63 0.64 0.63 0.82 0.91 0.93

0.05 1.00 0.95 0.95 0.94 0.94 0.94 0.93 1.00 0.86 0.90 0.91 0.91 0.88 0.81 1.00 0.55 0.59 0.64 0.83 0.91 0.93

0.1 1.00 0.95 0.95 0.95 0.94 0.93 0.94 1.00 0.91 0.94 0.93 0.91 0.90 0.86 1.00 0.60 0.68 0.71 0.85 0.90 0.93

0.2 1.00 0.95 0.95 0.95 0.94 0.94 0.94 1.00 0.95 0.95 0.94 0.93 0.92 0.90 1.00 0.83 0.86 0.84 0.87 0.91 0.92

0.3 1.00 0.94 0.95 0.95 0.95 0.95 0.95 1.00 0.95 0.95 0.95 0.94 0.93 0.92 1.00 0.93 0.94 0.92 0.89 0.91 0.92

φ Gaussian Wild Bootstrap

-0.2 1.00 1.00 1.00 0.99 0.99 0.99 0.99 1.00 1.00 1.00 1.00 0.98 0.98 0.98 1.00 1.00 1.00 1.00 0.99 0.02 0.02

0 1.00 0.99 0.97 0.97 0.98 0.99 0.99 1.00 1.00 1.00 0.99 0.97 0.97 0.98 1.00 1.00 1.00 1.00 1.00 0.03 0.02

0.01 1.00 0.98 0.97 0.96 0.98 0.98 0.99 1.00 1.00 1.00 0.99 0.97 0.97 0.98 1.00 1.00 1.00 1.00 1.00 0.03 0.02

0.05 1.00 0.98 0.97 0.95 0.97 0.99 0.99 1.00 1.00 1.00 0.99 0.97 0.97 0.98 1.00 1.00 1.00 1.00 1.00 0.03 0.02

0.1 1.00 0.99 0.96 0.93 0.97 0.98 0.99 1.00 1.00 1.00 0.99 0.96 0.97 0.98 1.00 1.00 1.00 1.00 1.00 0.03 0.02

0.2 1.00 1.00 0.96 0.89 0.96 0.97 0.98 1.00 1.00 1.00 0.99 0.95 0.96 0.97 1.00 1.00 1.00 1.00 0.61 0.04 0.03

0.3 1.00 1.00 0.96 0.85 0.94 0.97 0.98 1.00 1.00 1.00 0.99 0.94 0.96 0.97 1.00 1.00 1.00 1.00 0.25 0.04 0.03

Table 1: Simulated finite sample probability coverage of confidence intervals constructed at a probability of 0.95 using the asymptotic

distribution or that obtained using the Gaussian wild bootstrap. The parameter α = 1/2. The simulated sample size is T = 3, 000 in columns

labeled (a) and T = 300 for columns labeled (b) and (c). The tests are one-sided for (a) and (b) and two-sided for (c). The number of Monte

Carlo replications is 10, 000 and so is the sample size used in computing the asymptotic distribution.
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The method of asymptotic inference introduced by Stock (1991) was modified in Hansen (1999)

who recommended the use of a so called grid bootstrap. Such bootstrap aims at replacing the

use of the asymptotic distribution (13) by the finite-sample bootstrap distribution whose critical

values can be obtained by resampling from the empirical distribution of the error vt ≡ yt −
EH0

[ρT ] yt−1 (which is observed under H0). Indeed vt = (ρt − EH0
[ρT ]) yt−1+ηt exhibits conditional

heteroskedasticity but is serially uncorrelated under the null. Hence, we also consider bootstrap

techniques immune to heteroskedasticity, such as the wild bootstrap.13

We first analyze one-sided (upper tailed) tests. Columns labeled (a) and (b) in Table 1 report

the simulated finite sample (respectively T = 3, 000 and T = 300 observations) coverage probability

of 95% confidence sets constructed using the asymptotic and bootstrap distributions. The tables

show that the coverage is reasonable under the asymptotic distribution when φ > 0 and λ > 0

although it is slightly lower than the nominal 95%. For φ < 0 and the larger values of λ > 0, the

probability coverage is even lower (we only report one value φ = −0.2 as it does not seem to play

an influential role). By contrast, coverage is slightly too wide when c < 0. Finally, when λ = 0, the

test has low power and the coverage rate is inappropriately large, both in small and medium-sized

samples. Notice as shown in our theoretical results that when λ → 0, the distribution exhibits

a nonlinearity: coverage is low for λ > 0 but large when λ = 0. The lower part of the table

reports the coverage probabilities using the wild bootstrap. These lead to wider coverage and low

discriminatory power. Notice the exception of the case λ2 ≈ φ (here for λ = .5 and φ between .2

and .3) in columns labeled (a) in Table 1; this corresponds to a discontinuity in the distribution

of XT 1−α defined in section 3 (see also expression (B.6) in the appendix).

The columns labeled (c) in Table 1 report the corresponding small sample (T = 300) probability

coverage using a two-sided test. Coverage rates using the asymptotic distributions are lower and

the wild bootstrap is inadequate.

5.2 Power

We assess the power of the inference technique to reject the null of a constant autoregressive

coefficient ρt under the alternative that it is random with same expectation. Figures 3, 4 and 5

report the rejection probabilities at the asymptotic nominal size of 10% of the null

H0 : (φ0, 0) vs H1 : (φ, λ) with φ+ λ2/2 = φ0,

so the alternative preserves E [ρt] . Figures 3 and 5 consider upper-tailed and bilateral tests for

α = 1/2. To consider larger values of the parameters (relative to the sample size), we also report

one-sided tests for α = 1/4 in Figure 4. The figures report the power for T = 3, 000 and 300

observations. Left- and right-hand side columns show the same rejection probabilities but where

13Following Davidson and Flachaire (2008), we used the wild bootstrap with standard normal or Bernoulli dis-

tributed corrective factors but only report the former. Given the strong dependence in yt when c ≥ 0, we also

considered the Maximum Entropy bootstrap (see Vinod, 2006) but we do not report it as it is computationally

much slower yet does not improve upon the wild bootstrap here.
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we parameterize the parameter space as (φ, λ) (left) or
(
φ+ λ2, φ+ λ2/2

)
(right). For readability

of the figures, we should stress for the reader that the axes have been rotated between one-sided

and two-sided tests so great care must be taken when comparing the figures.

Starting with Figure 3, rejections probabilities are always larger than 0.5 and increase with

λ. When φ is positive, and λ close to zero the power is at its minimum. This corresponds to

nonstationary processes under either hypothesis. Correspondingly, the right-hand side columns

show that when φ+ λ2 is positive but close to zero and when φ+ λ2/2 is large, then the power is

itself low: the variance of the random coefficient is low but its expectation large. Comparing the

right-hand side panels, we notice that the power does not increase with the sample size. This is

in line with the results of Corollary 5, and confirms the analysis by Evans (1991) that stochastic

bubbles, being non-permanent by nature, can be difficult to detect even when their magnitudes

and the sample size are large.

Turning to Figure 4, where a lower α implies a higher magnitude of the parameters relative to

the sample size, we see that the small sample (T = 300) power is not affected, but that rejection

probabilities drop to zero for large values of λ. We interpret this observation in light of Phillips

(2012) who argues that inverting test statistics can lead to zero power when the distribution

becomes diffuse, as is the case here when λ→∞, i.e. the first and second moments of ρt become

large (upper right-hand side panel).

Finally, the bilateral rejection probabilities presented in Figure 5 show that this test has power

of at least 50% when φ + λ2 > 0. Yet the simulation shows that test is unable to discriminate

between a constant or a random coefficient when the DGP belongs to Ss\w (φ + λ2 < 0 under

the alternative), but is tested nonstationary under the null (φ0 = φ + λ2/2 ≥ 0). In other words,

the bilateral test does not reject the null of an explosive AR(1) under the alternative that it is a

stationary NERC with power law distribution. Interestingly, the one-sided test does.

6 Empirical Application to Housing Prices

6.1 The Data

We now show how the model and results above can be used for the detection of bubbles in asset

prices and their prediction. We follow the examples of PWY and PY and consider U.S. housing

prices. Standard models relate Pt, the price at t, to the cash flow (the rent) Dt+1 it generates

between t and t+ 1 so the ex-post realized return is rt+1 defined as

1 + rt+1 =
Pt+1 +Dt+1

Pt
.

When Dt is integrated of order 1, PY show that when rt varies, there may exist subperiods

where the fundamental price is explosive as opposed to a martingale. In their application, they

test the null that Pt/Dt follows a random walk against a near explosive alternative (NEAR(1)).

Cointegration properties imply that Pt/Dt is expected to be stationary in the absence of bubble.

The upper tailed unit root tests by PY hence consists in testing a null at the boundary of the set
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Figure 3: Upper-tail rejection probabilities at the asymptotic nominal size of 10% corresponding

to the null H0 : (φ0, 0) under the alternative H1 : (φ, λ) with φ+ λ2/2 = φ0. We set the parameter

α = .50. Panels on the left-hand side reproduce those on the right-hand side, but with different

axes where log E (ρt) = φ+ λ2/2 and log E
(
ρ2t
)

= φ+ λ2.
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Figure 4: Upper-tail rejection probabilities at the nominal size of 10% corresponding to the null

H0 : (φ0, 0) under the alternative H1 : (φ, λ) with φ+λ2/2 = φ0. We set α = .25. Panels on the left-

hand side reproduce those on the right-hand side, but with different axes where log E (ρt) = φ+λ2/2

and log E
(
ρ2t
)

= φ+ λ2.
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Figure 5: Bilateral rejection probabilities at the nominal size of 10% corresponding to the null

H0 : (φ0, 0) under the alternative H1 : (φ, λ) with φ+λ2/2 = φ0. We set α = .5. Panels on the left-

hand side reproduce those on the right-hand side, but with different axes where log E (ρt) = φ+λ2/2

and log E
(
ρ2t
)

= φ+ λ2.
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of weakly stationary roots. In the NERC(1) model, the null can imply more general dynamics and

we explore this below.

In addition, we recognize that the NERC may in principle generate downward negative bubbles

which may not be consistent with applying it to Pt/Dt. Hence we also consider the standard

present-value model of Campbell and Shiller (1987):

Pt = Et

[
Pt+1 +Dt+1

1 +Rt+1

]
, (16)

where Et [·] denotes the expectation conditional on information available at time t and Rt+1 is the

stochastic discount factor. We show in the appendix that under the standard assumption that

Dt follows a random walk (driven by the i.i.d. shock ζt) and the simplifying assumption that the

ex-post return is constant and equal to R, the present-value relation (16) then admits the solution

(with minimal number of state variables, see McCallum, 1983):

∆Pt = (1 +R+ δ (Rt −R)) ∆Pt−1 − ζt, (17)

for any δ ∈ [0, 1].14 Assuming Rt iid and uncorrelated with ζt, the dynamics of ∆Pt can be

represented using the NERC(1) model if the expectation and variance of Rt are low. Expressions

(7) and (17) exemplify in particular the parametric similarities.15 Here, a large value of Rt – and

hence a preference for the present in valuing assets – may generate explosiveness in ∆Pt.

In the following, we apply our methodology both to Pt/Dt and ∆Pt where Pt is the seasonally

adjusted monthly Case-Shiller housing market price index maintained by Standard and Poor’s (288

observations from 1987:1 to 2010:12).16 For Dt, we follow PY and use the quarterly rental data

imputed using the method of Davis, Lehnert, and Martin (2008) and linearly interpolated to a

monthly frequency.17 The series is presented in Figure 6: the price exhibits sustained growth over

the 1987-2005 period followed by a sharp collapse. The figure shows that Pt/Dt and ∆Pt both

exhibit patterns similar to those that arise under the NERC model.18

6.2 Inference

We first conduct inference using the whole sample at our disposal. To construct confidence sets,

we perform grid searches using 3,000 uniform draws of the parameters φ ∈ [−1, 1] and λ ∈ [0, 1] ,

setting α = 1/2.

14We are grateful to Kevin Lansing for suggesting the use of ∆Pt to us.
15The purpose of the assumption of constant ex-post returns is to maintain the assumption that ρt is i.i.d. in a

simple way. Extensions to the NERC(1) would allow more realistic models.
16PY use the Composite-10 index, but we use the Composite-30 instead as it provides longer series, but the results

do not significantly differ.
17All the analysis is based on the series in deviation from their first observations. The non-negligible impact of

nonzero origins on inference on nonstationary data is well known and warrants further study in the NERC model.
18RCA models such as (3) have also been used in the literature for the price level or log price of an asset, see e.g.

Leybourne, McCabe and Mills (1996), Gonzalo and Lee (1998).
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Figure 6: The seasonally adjusted monthly Case-Shiller Housing Composite-30 price index for the

United-States (Pt) and rental price (Dt), together with the first-order difference ∆Pt and ratio

Pt/Dt.
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Figures 7 and 8 report on the top row the confidence sets obtained using both upper-tail

(in red disks) and bilateral (in blue squares) tests. We adjust the significance levels to visualize

the impact of right- and left-tail rejection.19 We report in particular conference sets with low

probability coverage to show the set of least rejected parameter values. The bottom rows record

the loci of median estimates. The bottom left panel presents (in red) the parameters which imply a

test statistic whose distance to the median is less than five times the smallest observed distance; it

also records (in black) the locus of parameters corresponding to the 30 (i.e. 1% of parameter values

considered) smallest distances to the medians. These distances are reported in increasing order in

the bottom right panel. Figures 7 and 8 present inference based on ∆Pt and Pt/Dt respectively.

Inference based on ∆Pt and Pt/Dt imply different dynamics so we comment on them in turn.

Figure 7 (∆Pt) shows that upper-tail tests based on the asymptotic distribution lead to confidence

sets that are predominantly within the Ss\w region that correspond to fat-tailed DGPs. Yet, some

of the parameter values close to the limit E
[
ρ2t
]

= 1 cannot be rejected. This is the region for which

our simulations showed that the technique has little power. Hence we also report the confidence

sets based on the two-sided tests: these reject parameter values in Sw and even yield confidence

sets for which not only E
[
ρ2t
]
> 1 but even E [ρt] ≥ 1. This is also reflected by the locus of median

estimates. We see on the bottom left panel that two parameter combinations yield similar distances

from the estimate to the median of the distribution. For clarity, we report in Table 2 the minimum

median-distance estimates, (φ, λ)
+

= (.17, .20) , which fall in the explosive region.

Figure 8 reports inference on Pt/Dt based on the asymptotic distribution. The unilateral

confidence sets are now predominantly close to the frontier between Sw and Ss\w. Again, the low

power against weakly stationary alternative leads us to consider bilateral tests: these together with

the locus of median estimates indicates that Pt/Dt might be strictly stationary with fat tails, the

minimum median distance estimate is (φ, λ) = (−.25, .59) such that c = φ+ λ2 = 0.10.

6.3 Bubble Detection

We now turn to real time detection and prediction using the NERC model. Since it is not possible

to extract the latent i.i.d process ut, we apply grid testing to the recursive methodology suggested

by PY. We specifically ask when the assumption E [ρt] = 1 can be rejected using an upper tailed

test. Here the null is composite in the sense that we test a set of parameter combinations such that

φ + λ2/2 = 0. Specifically, Figure 9, panels (a) and (c), reports the minimum p-values obtained

for 5,000 random draws of φ ∈ [0, 1/2) under the maintained null H0 : φ + λ2/2 = 0. We use the

asymptotic distribution and report minimum p-values as indexed according to the end-of-sample

date on the horizontal axis. The tests are one-sided so rejection of the composite null does not

preclude that the series is strictly stationary but with very fat tails and explosive finite sample

second moments.

19For sets with probabilities above 50%, and only for those, the confidence levels are chosen so that the bilateral

confidence set is part of the unilateral set; hence the reader should therefore consider that the one-sided confidence

set comprises both red disk and blue square parameter combinations.
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Figure 7: The figure reports inferential results on the NERC applied to ∆Pt. The top row records

the confidence sets computed as parameter combinations which are not rejected using the asymp-

totic distribution ot the OLS estimator of ρ̂. Panel (a) : the dots define the 90% 1-sided (red disks)

and 80% 2-sided (blue squares) confidence sets. Panel (b) : the dots define the 10% 1-sided (red

disks) and 20% 2-sided (blue squares) confidence sets. The bottom row refers to the locus of median

estimates (parameters implying ρ̂ is closest to the median of its asymptotic distribution). Panel

(c) : the dots represent the set comprising the 1% parameters for which distance to the median

is smallest (in red) as well as those whose distance is less than five times the smallest observed

distance (in black). Panel (d) : the panel reports the 1% smallest observed distances in increasing

order.
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Figure 8: The figure reports inferential results on the NERC applied to Pt/Dt. The top row

records the confidence sets computed as parameter combinations which are not rejected using the

asymptotic distribution ot the OLS estimator of ρ̂. Panel (a) : the dots define the 90% 1-sided (red

disks) and 80% 2-sided (blue squares) confidence sets. Panel (b) : the dots define the 10% 1-sided

(red disks) and 20% 2-sided (blue squares) confidence sets. The bottom row refers to the locus of

median estimates (parameters implying ρ̂ is closest to the median of its asymptotic distribution).

Panel (c) : the dots represent the set comprising the 1% parameters for which distance to the

median is smallest (in red) as well as those whose distance is less than five times the smallest

observed distance (in black). Panel (d) : the panel reports the 1% smallest observed distances in

increasing order.
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Least Rejected Median Estimate Univariate Confidence Interval at Probability
Test

(φ, λ) = (0, 0)

(φ, λ)
∗

(φ, λ)
+

0.90 0.80 0.10 p-value

Upper-Tailed Tests

∆Pt, ρ̂ = 0.972

(.05, .01)

E [ρ∗t ] = 1.00

p-value : 1.00

(.17, .20)

E
[
ρ+t
]

= 1.01

p-value : 0.50

λ : [0, .99]

φ : [−.50, .24]

λ : [0, .99]

φ : [−.50, .24]

λ : [0, .93]

φ : [−.50, .24]
.95

Pt/Dt, ρ̂ = 1.00

(.51, .02)

E [ρ∗t ] = 1.03

p-value : 1.00

(−.25, .59)

E
[
ρ+t
]

= 1.00

p-value : 0.51

λ : [0, .87]

φ : [−.50, .01]

λ : [0, .84]

φ : [−.50, .01]

λ : [0, .78]

φ : [−.50, .01]
.32

Two-Tailed Tests

∆Pt, ρ̂ = 0.972

(.17, .20)

E [ρ∗t ] = 1.01

p-value : 1.00

(.17, .20)

E
[
ρ+t
]

= 1.01

p-value : 1.00

λ : [0, .99]

φ : [−.50, .22]

λ : [0.01, .99]

φ : [−.50, .22]

λ : [0.01, .99]

φ : [−.50, .22]
.11

Pt/Dt, ρ̂ = 1.00

(−.25, .59)

E [ρ∗t ] = 1.00

p-value : .99

(−.25, .59)

E
[
ρ+t
]

= 1.00

p-value : 0.99

λ : [0, .87]

φ : [−.50, .002]

λ : [0, .84]

φ : [−.50, 0]

λ : [0.01, .83]

φ : [−.50,−.005]
.64

Table 2: The table reports statistics regarding inference on the dynamics of ∆Pt and Pt/Dt using upper-tailed and two-tailed grid testing.

The first two columns report the least rejected and median estimates using the asymptotic distributions of the test statistic. The next three

columns present univariate confidence intervals obtained by projection of the bivariate confidence sets on either one-dimensional parameter

space. The last column records the p-value associated with the test of a pure random walk.
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Timing of the main bubble

Method Inception Burst

∆Pt April 2000 March 2006

Dt/Pt May 2002 Nov 2007

PY Feb 2002 Dec 2007

Table 3: The table report the dates of inception and burst of the main upward bubble as detected

by the NERC(1) model for ∆Pt or Dt/Pt, and as reported by Phillips and Yu (2011), denoted PY.

Despite the large number of parameter combinations which are tested, we do not proceed to a

Bonferroni correction and report, on panels (b) and (d) of the figure, the periods where the null is

rejected at the 5% and 0.5% size respectively. The minimum p-value in the case of Pt/Dt is chosen

much smaller as we follow PY who state that for consistent detection the nominal size must tend

to zero with the sample size.20 We follow PY in interpreting rejection as evidence of a bubble.

The one-sided test for ∆Pt first detects a possible bubble at the 5% significance level in April 2000

and a turning point in March 2006. It also detects a downward bubble for the period October

2007 – November 2008 (with an exception of June 2008). Panel (d) reports the inception and

termination for Pt/Dt (in May 2002 and November 2007). In their work, PY detect a bubble in

house prices that starts in February 2002 and ends in December 2007. Our results based on Pt/Dt

are comparable: we detect a slightly shorter bubble at the 0.5% level (they use 1%). Together with

PY we find here a bubble that bursts slightly after the first evidence of the emerging subprime

crisis (which they date to start in August 2007). Table 3 summarizes the dates of the main upward

bubble detected using ∆Pt and Pt/Dt together with those reported by PY.

Interestingly, the results based in ∆Pt provide new evidence on the bubble: analysis based

on this series provides evidence in changes in growth rates and hence may constitute an early

detection device for turning points. The minimum p-value is much more volatile than for Pt/Dt

and we observe that it first drops early, as soon as April 2000 (although it only settles at low values

in March 2002). Hence there might have been tentative bubbles at play before one properly settled.

In addition, inference based on ∆Pt detects the end of the bubble in March 2006, while the growth

in prices was still positive: this appears to be the turning point in the bubble, before it properly

burst, and we detect a negative bubble over the subprime crisis in late 2007 and throughout 2008.21

6.4 Forecasting

We finally apply our methodology to forecasting the probability of growth of the variable of interest.

We recursively compute the minimum Pyt/yt−kt,k , i.e. minimum probabilities that growth over a

20Although our choices of significance levels seem ad hoc here, this should not concern us too much as they are

based on the observation of a sharp drop in the minimum p-value. We leave considerations on the appropriate choice

of significance level to further research.
21To the exception of June 2008: on the 11th, the Securities and Exchange Commission unveiled its comprehensive

reform of credit ratings.
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Figure 9: The figure reports the ouput from detection of explosive behavior in ∆Pt and Pt/Dt.

The maximum p-values are computed as the maximum obtained over the asymptotic distributions

corresponding to 5,000 uniform draws of the parameters (φ, λ) such that φ+λ2/2 = 0, i.e. E [ρt] = 1.

The test statistics are the scaled recursive OLS estimator estimated over the sample until the

dates on the horizontal axis, with a minimum of 24 observations. Tests are one-sided. Panel (a)

corresponds to inference based on ∆Pt. The p-values are reported on the left axis, together with

a scaled series of ∆Pt. Panel (b) : The shaded areas refer to periods where the composite null

E [ρt] = 1 is rejected at the 5% significance level. Panels (c) and (d) report the equivalent of

panels (a) and (b) for the series of Pt/Dt, the significance level is 0.5%.

28



forecast horizon of k = 1, 6, or 12 months will be as high as that observed over the latest k periods.

The minimum probabilities are obtained over the set of parameters (φ, λ) such that c = φ+λ2 ≥ 0.

We only consider parameter sets which constitute the nominal 50% or 90% asymptotic confidence

set.22 The confidence sets for these minimum probabilities are reported in figures 10 and 11.

Minimum probability forecasts relating to ∆Pt are volatile and only nonzero at the beginning

and end of the sample; they do not appear easily interpretable and somewhat inaccurate. By

contrast, those relating to Pt/Dt are interesting: Figure 11 records three periods where minimum

probabilities are strictly positive in the 50% confidence set. The first period (1991-early 1992)

corresponds to decreasing or stable Pt/Dt ratio. The second starts in January 2000 and its duration

depends on the horizon considered. The bottom panel in the figure shows that this corresponds to

the period where the growth in Pt/Dt started accelerating, before subsiding until the third period

(March 2004 - February 2006) where growth picked up. The latter period only appears when

considering the narrower confidence set (50%) and ends too late at longer horizons.

7 Conclusion

The paper proposes a local asymptotic model that builds on random coefficient autoregressive

processes and shows how this NERC model can be applied to the modelling of asset prices.

We show that the process generated by a NERC converges towards the stochastic integral of a

geometric Brownian motion. We also derive the asymptotic distributions of OLS estimators of the

first-order autocorrelation coefficient. We then provide a technique of inference on the parameters

of the process based on inverting a test statistic.

As with some existing models for bubbles, the presence of a random coefficient introduces

flexibility in the modelling of multiple bubbles. Here, bubbles may – or not – appear, and by

avoiding regime switching, we do not imply that they periodically do. Instead, their emergence

depends on the values taken by a latent process that relates to the stochastic discount factor.

The generalization we propose presents benefits that are similar to the univariate locally explosive

AR(1) with breaks of Phillips, Wu and Yu (2011), while allowing for full-sample inference. Also

the flexible model we propose allows the so-called bubbles either to reflect nonstationary behavior

or be caused by large deviations within a strictly stationary model.

Under the NERC DGP, it is also possible to provide density forecasts and hence to establish

statements on the probability of bubbles. Finally, we apply our methodology to U.S. data on house

prices and show how our method compares to the existing literature. In particular, we show how

a simple model for the change in prices can help anticipating turning points in bubble dynamics.

Possible extensions of the model we propose comprise considering multivariate models where a

unique latent process may be causing bubbles that spill over into different markets (as in Phillips

and Yu, 2011). This might require relaxing the assumption that ut is i.i.d. In turn, it would

22Minimum probabilities based on the 10% to 50% confidence sets are almost identical, and so are those in the

80%-99% range.
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Figure 10: The figure reports the estimated minimum probabilities P (yt+k/yt ≥ yt/yt−k) computed

under the asymptotic distribution under the null. The minimum is computed over 5,000 draws

of parameters (φ, λ) such that c = φ + λ2 ≥ 0 and (φ, λ) belong to the set of parameters in the

nominal 90% (in blue) or 50% (in red) confidence set (under the asymptotic distribution). All

panels correspond to the case where the series of interest, yt, is ∆Pt. Each panel reports a different

horizon: k = 1 (top panel), 6 (middle) or 12 months (bottom).

be possible to filter out an estimate of the latent process ut or the stochastic discount factor.

Alternatively, our model allows simply to postulate and test a candidate variable for ut.

30



90% CS 50% CS 

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010

0.5

1.0 horizon k=1 90% CS 50% CS 

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010

0.5

1.0
horizon k=6

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010

0.5

1.0
horizon k=12

Pt  / Dt 

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010

1.5

2.0

2.5
Pt  / Dt 

Figure 11: The figure reports the estimated minimum probabilities P (yt+k/yt ≥ yt/yt−k) computed

under the asymptotic distribution under the null. The minimum is computed over 5,000 draws

of parameters (φ, λ) such that c = φ + λ2 ≥ 0 and (φ, λ) belong to the set of parameters in

the nominal 90% (in blue) or 50% (in red) confidence set (under the asymptotic distribution).

All panels correspond to the case where the series of interest, yt, is Pt/Dt. Each panel reports a

different horizon: k = 1 (top panel), 6 (middle) or 12 months (bottom).

Appendix

A Proof of proposition 1

We have, given y0, and setting
∏−1
j=0 ρj≡ 1

yt =

t−1∏
j=0

ρt−j

 y0 +

t−1∑
i=0

i−1∏
j=0

ρt−j

 ηt−i

=

(
t∏
i=1

ρi

)
y0 +

t∑
i=1

 t∏
j=i+1

ρj

 ηi

= exp

{
tT−α/2φ+ λSt

Tα/2

}
y0 +

t∑
i=1

exp

{
(t− i)T−α/2φ+ λ(St − Si)

Tα/2

}
ηi.
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We evaluate the increment yt − y0 using the blocking method of Phillips and Magdalinos (2004,

2007). Letting, for t = 1 to T , t = bjTαc + k (bxc denoting the integer part of x) for j =

0, · · · ,
⌊
T 1−α⌋− 1, and k = 1, · · · , bTαc, and letting k = bpTαc for some p ∈ [0, 1], we can write

1

Tα/2
(ybjTαc+bpTαc − y0)

=
1

Tα/2

(
exp

{
bjTαc+ bpTαc

Tα
φ+ λ

SbjTαc+bpTαc

Tα/2

}
− 1

)
y0

+ ση

bjTαc+bpTαc∑
i=1

exp

{
bjTαc+ bpTαc − i

Tα
φ+ λ

SbjTαc+bpTαc − Si
Tα/2

}
ηi√
σ2
ηT

α

=
1

Tα/2

(
exp

{
bjTαc+ bpTαc

Tα
φ+ λ

SbjTαc+bpTαc

Tα/2

}
− 1

)
y0

+ ση

∫ j+p

0

exp

{
bjTαc+ bpTαc − bsTαc

Tα
φ+ λ

SbjTαc+bpTαc − SbsTαc
Tα/2

}
dBTα(s),

using Proposition A1 in Phillips and Magdalinos (2004) in the last equality, where

BTα(s)≡ 1

σηTα/2

bsTαc∑
i=1

ηi. (A.1)

When applying the Functional Central Limit Theorem (FCLT) to the process S̃T defined by

S̃T (s)≡T−α/2SbsTαc (0 ≤ s ≤ 1), we obtain that S̃T converges in distribution, as T → ∞, to

a Brownian motion (BM) on [0, 1] that we denote by W .

The FLCT also implies that the process BTα defined in (A.1) converges in distribution, as T →∞,

to a BM on [0, 1], say B, which, by assumption on the sequences (ui) and (ηj), is independent of

W .

Then we can deduce, using e.g. Theorem 8.3.1 in Liptser and Shiryaev (1989), that∫ j+p

0

exp

{
φ
bjTαc+ bpTαc − bsTαc

Tα
+ λ

SbjTαc+bpTαc − SbsTαc
Tα/2

}
dBTα(s)

converges, as T →∞, to∫ r

0

exp {φ(r − s) + λ (Wr −Ws)} dBs, with r = j + p.

Corollary 2 follows since the proof above also holds when α = 1. �

B Proof of Theorem 4

We have, as T →∞,

yt =
(
E (ρt) + λT−α/2ut +Op

(
T−α

))
yt−1 + ηt.

Then the OLS estimator given by ρ̂ =

∑T
t=1 yt−1yt∑T
t=1 y

2
t−1

satisfies

ρ̂− E (ρt) = λT−α/2
∑
t y

2
t−1ut∑

t y
2
t−1

+

∑
t yt−1ηt∑
t y

2
t−1

+Op

(
T−3α/2

)
. (B.2)
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This shows that the asymptotic distribution of the estimator is driven by the term with higher

magnitude between T−α/2
∑
t

y2t−1ut and
∑
t

yt−1ηt.

So we need to study the three sums appearing in the expression of the OLS estimator. Throughout

we assume y0 = 0 without loss of generality as our assumption that y0 = op
(
Tα/2

)
implies it is

neglible compare to ybrTαc for 0 < r < T 1−α.

Recall that c = φ+ λ2. We will consider different cases depending on the sign of c.

B.1 Case c < 0

Proposition 1 gives T−α/2ybrTαc ⇒ Kφ,λ (r) ∼ N

(
0,
e2cr − 1

2c
σ2
η

)
;

for c < 0, we can write K∗φ,λ(r) = ecrK∗φ,λ (0) + Kφ,λ (r). Hence K∗φ,λ(r) ∼ N
(

0,−σ
2
η

2c

)
and is

stationary. We can deduce, via the Law of Large Numbers (LLN), that

1

T 1+α

T∑
t=1

y2t ⇒ E[K∗φ,λ(r)2] =
−σ2

η

2c

and that

T−
1+α
2

T∑
t=1

yt−1ηt ⇒ N

(
0,−

σ4
η

2c

)

The result concerning
∑T
t=1 y

2
t−1ut similarly follows. Indeed, define the martingale difference se-

quence ξt = T−
1+2α

2 y2t−1ut which admits conditional variance satisfying

T∑
t=1

Et−1
(
ξ2t
)

=
1

T 1+2α

T∑
t=1

y4t−1 ⇒
3σ4

η

4c2
,

using the consistency of the empirical estimator of the kurtosis. A martingale analogue of the

Lindeberg condition (see e.g. Pollard, 1984) ensures then that

T−
1+2α

2

T∑
t=1

y2t−1ut ⇒ N

(
0,

3σ4
η

4c2

)
.

B.2 Case c ≥ 0

The proof follows the main schemata given in Phillips & Magdalinos (2004); hence we keep their

notation to help the reader, and set T = n,

κn = nα
⌊
n1−α

⌋
and q = n1−α −

⌊
n1−α

⌋
,

Sample variance We first consider the sample variance of yt and show the following.
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Lemma 7 Define

φn1−α =

{
e2cn

1−α
−1

2c , if c 6= 0;

n1−α, if c = 0;

ψn1−α =


1

2
√

(c+2λ2)(c+λ2)
e2(c+λ

2)n1−α
, if c 6= 0;

e2λ
2n1−α

2
√
2λ2

, if c = 0;

and ϕn1−α =


1

2(φ−λ2) , if λ2 − φ < 0;√
n1−α, if λ2 − φ = 0;

e(λ
2−φ)n1−α
√

2(λ2−φ)
, if λ2 − φ > 0.

Then, as n→∞,

σ−2η n−2αψ−1n1−αϕ
−2
n1−α

n∑
t=1

y2t ⇒ X2Z,

where the random variables X and Z are defined, respectively, by

σ−1η
ϕ−1bn1−αc

nα/2

bκnc∑
i=1

exp

(
− φ

nα
i− λ

nα/2
Ui

)
ηi ⇒ X ∼ N (0, 1) .

and

ψ−1bn1−αc

(∫ bn1−αc

0

e2φs+2λWsds

)
⇒ Z,

with mean 0 and unit variance.

Proof of Lemma 7.

We write

1

n2α

n∑
t=1

y2t =
1

n2α
U1n +

1

n2α
U2n +Op

(
1

nα

)
, (B.3)

with

U1n≡
bn1−αc−1∑

j=0

bnαc∑
k=1

y2bnαjc+k,

and U2n≡
n∑

t=bκnc

y2t .

Note that the index of the last summation term in the definition of U1n, given by bκn − nαc+bnαc,
is bounded by bκnc − 1 ≤ bκn − nαc+ bnαc ≤ bκnc.

The study of U1n leads to the following result.

As n→∞,

σ−2η n−2αψ−1bn1−αcϕ
−2
bn1−αcU1n ⇒ X2Z, (B.4)
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where the random variables X and Z are defined in Lemma 7.

Proof of (B.4).

Notice that

yk =

k−1∑
i=0

exp

 φ

nα
i+

λ

nα/2

t∑
j=k−i+1

uj

 ηk−i

=

k∑
i=1

exp

(
φ

nα
(k − i) +

λ

nα/2
(Uk − Ui)

)
ηi with Ui≡

i∑
j=1

uj

= exp

(
φ

nα
k +

λ

nα/2
Uk

) k∑
i=1

exp

(
− φ

nα
i− λ

nα/2
Ui

)
ηi,

so

t∑
k=1

y2k =

t∑
k=1

exp

(
2φ

nα
k +

2λ

nα/2
Uk

)[ k∑
i=1

exp

(
− φ

nα
i− λ

nα/2
Ui

)
ηi

]2

=

t∑
k=1

exp

(
2φ

nα
k +

2λ

nα/2
Uk

)

×

[
t∑
i=1

exp

(
− φ

nα
i− λ

nα/2
Ui

)
ηi −

t∑
i=k+1

exp

(
− φ

nα
i− λ

nα/2
Ui

)
ηi

]2

=

(
t∑

k=1

exp

(
2φ

nα
k +

2λ

nα/2
Uk

))[ t∑
i=1

exp

(
− φ

nα
i− λ

nα/2
Ui

)
ηi

]2
+Rt

where

Rt =

t∑
k=1

exp

(
2φ

nα
k +

2λ

nα/2
Uk

)[ k∑
i=1

exp

(
− φ

nα
i− λ

nα/2
Ui

)
ηi

]2

−

(
t∑

k=1

exp

(
2φ

nα
k +

2λ

nα/2
Uk

))[ t∑
i=1

exp

(
− φ

nα
i− λ

nα/2
Ui

)
ηi

]2
.

Therefore we obtain

U1n =

bκnc∑
k=1

exp

(
2φ

nα
k +

2λ

nα/2
Uk

)bκnc∑
i=1

exp

(
− φ

nα
i− λ

nα/2
Ui

)
ηi

2

+Rbκnc. (B.5)

Let us study the three elements given in this last equation (B.5).

We start by showing that n−2αψ−1bn1−αcϕ
−2
bn1−αcRbκnc is negligible w.r.t. ψ−1bn1−αcϕ

−2
bn1−αcn

−2α (U1n + U2n).
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Indeed, writing Rt = R1t − 2R2t with

R1t =

t∑
k=1

[
t∑

i=k+1

exp

(
φ

nα
(k − i)− λ

nα/2
(Uk − Ui)

)
ηi

]2

R2t =

(
t∑
i=1

exp

(
− φ

nα
i− λ

nα/2
Ui

)
ηi

)
×

t∑
k=1

t∑
i=k+1

exp

(
φ

nα
(2k − i) +

λ

nα/2
(2Uk − Ui)

)
ηi

≡

(
t∑
i=1

exp

(
− φ

nα
i− λ

nα/2
Ui

)
ηi

)
×R2t,

then, on one hand,

n−2α ψ−1bn1−αcϕ
−2
bn1−αcR1bκnc = ψ−1bn1−αc

∫ bn1−αc

0

(
σηϕ

−1
bn1−αc

∫ bn1−αc

r

eφ(r−s)+λ(Wr−Ws)dBs

)2

dr+op (1)

uniformly, and since we have

E

(∫ bn1−αc

r

eφ(r−s)−λ(Wr−Ws)dBs

)2

=

∫ bn1−αc

r

e2(φ+λ
2)(r−s)ds

=
1− e−2(φ+λ

2)(bn1−αc−r)

2 (φ+ λ2)
= O (1)

uniformly in r ≤ n1−α, we obtain

n−2αψ−1bn1−αcϕ
−2
bn1−αcR1bκnc = Op (1)×O

(
ψ−1bn1−αc

∫ bn1−αc

0

dr

)
= Op

(⌊
n1−α

⌋
ψ−1bn1−αc

)
.

On the other hand, we have n−αψ−1bn1−αcR2bκnc = Op

(⌊
n1−α

⌋
ψ−1bn1−αc

)
, so it comes

n−2αψ−1bn1−αcϕ
−2
bn1−αcR2bκnc = Op

(
n1−3/2αψ−1bn1−αcϕ

−1
bn1−αc

)
,

hence the result concerning Rbκnc.

Now let us look at the second element on the RHS of equation (B.5). We can write it as

1

nα/2

bκnc∑
i=1

exp

(
− φ

nα
i− λ

nα/2
Ui

)
ηi = ση

∫ bn1−αc

0

e−φn
αs−λWnαsdBnα (s) + op (1) ,

Bnα being defined in (A.1).

When λ2 < φ, it admits limit ση

∫ ∞
0

e−φs−λWsdB(s).

When λ2 ≥ φ, the stochastic integral is not defined, but since
∫ bn1−αc
0 e−(φs+λWs)dBs is normally

distributed, it will be enough to scale it by its standard deviation, using that

V

[∫ bn1−αc

0

e−(φs+λWs)dBs

]
=


e
2(λ2−φ)bn1−αc−1

2(λ2−φ) , if λ2 > φ;⌊
n1−α

⌋
, if λ2 = φ;

1−e−2(φ−λ2)bn1−αc
2(φ−λ2) , if λ2 < φ.

(B.6)
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Hence we obtain that

σ−1η ϕ−1bn1−αcn
−α/2

bκnc∑
i=1

exp

(
− φ

nα
i− λ

nα/2
Ui

)
ηi ⇒ X ∼ N (0, 1) .

Finally, let us look at the first element on the RHS of (B.5). We have

ψ−1bn1−αcn
−α
bκnc∑
k=1

exp

(
2φ

nα
k +

2λ

nα/2
Uk

)
= ψ−1bn1−αc

(∫ bn1−αc

0

e2φs+2λWsds − φbn1−αc

)
+op (1) ,

ψ−1bn1−αcφbn1−αc tending to 0 as n→∞.

Note that the expectation of

∫ bn1−αc

0

e2(φs+λWs)ds is given by

φbn1−αc≡ E

[∫ bn1−αc

0

e2φs+2λWsds

]
=

∫ bn1−αc

0

e2csds =

{
e2cbn

1−αc−1
2c , if c 6= 0;

bn1−αc, if c = 0;

and that the rate ψbn1−αc comes from the second moment of

∫ bn1−αc

0

e2(φs+λWs)ds.

Indeed, straightforward computations lead, for c ≥ 0, to

E

(∫ bn1−αc

0

e2(φs+λWs)ds

)2
 = E

[(∫ bn1−αc

0

∫ bn1−αc

0

e2φ(s+r)+2λ(Ws+Wr)dsdr

)]

=

∫ bn1−αc

0

∫ bn1−αc

0

e2φ(s+r)+2λ2(s+2min(r,s)+r)dsdr

=

∫ bn1−αc

0

e2cr
∫ r

0

e2(c+2λ2)sdsdr +

∫ bn1−αc

0

e2(c+2λ2)r

∫ bn1−αc

r

e2cs+2(c+2λ2)rdsdr

=

 e
4(c+λ2)bn1−αc
4(c+2λ2)(c+λ2) −

e2cn
1−α

2c(c+2λ2) + 1
4c(c+λ2) = e

4(c+λ2)bn1−αc
4(c+2λ2)(c+λ2) +O

(
e2cn

1−α
)
, if c 6= 0;

e4λ
2bn1−αc

8λ4 +O
(
n1−α

)
, if c = 0.

Now, Matsumoto and Yor (2005), Theorem 7.4, implies that

(∫ bn1−αc
0 e2(φs+λWs)ds

)2

divided

by its expectation converges weakly to a random variable as n → ∞. The continuous mapping

theorem implies that the square root thereof also admits a weak limit. Hence there exists Z with

unit variance and zero expectation such that

ψ−1bn1−αc

(∫ bn1−αc

0

e2(φs+λWs)ds− φbn1−αc

)
⇒ Z.

The result of (B.4) follows. �

Let us now consider the second term U2n in equation (B.3). We have

1

n2α
U2n =

1

n2α

n−[κn]∑
j=0

y2j+[κn]
=

∫ q

0

(
1

nα/2
y[κn]+[nαp]

)2

dp+Op
(
n−2α

)
,
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where, for all j = 0, ...,
⌊
n1−α

⌋
− 1, as n→∞,

n−α/2y[naj]+[nαp] ⇒ ση

∫ j+p

0

eφ(j+p−s)+λ(Wj+p−Ws)dBs

= σηe
φ(j+p)+λWj+p

∫ j+p

0

e−φs−λWsdBs.

Then it comes

1

n2α
U2n =

∫ q

0

e
2φ(bn1−αc+p)+2λWbn1−αc+p

(
ση

∫ bn1−αc+p

0

e−φs−λWsdBs

)2

dp+ op (1)

=

(
ση

∫ bn1−αc+q

0

e−φs−λWsdBs

)2 ∫ q

0

e
2
(
φ(bn1−αc+s)+λWbn1−αc+s

)
ds+ op (1)

=

(
ση

∫ bn1−αc+q

0

e−φs−λWsdBs

)2

×

(∫ bn1−αc+q

0

e2(φs+λWs)ds−
∫ bn1−αc

0

e2(φs+λWs)ds

)
+ op (1) ,

hence

U2n =

(
ση

∫ n1−α

0

e−φs−λWsdBs

)2 ∫ n1−α

0

e2(φs+λWs)ds (B.7)

− 1

n2α

 ∫ n1−α

0
e−φs−λWsdBs∫ bn1−αc

0
e−φs−λWsdBs

2

U1n + op (1) . (B.8)

Combining (B.3), (B.4), (B.7), and the asymptotic equivalence ψ−1n1−αψbn1−αc = 1 + o (1) allows to

conclude to Lemma 7.

Sample covariances Now consider the covariance terms.

Lemma 8 We have, as n→∞,

σ−2η n−αϕ−1n1−αφ
−1
n1−α

n∑
t=1

yt−1ηt ⇒ XY,

and

σ−2η ϕ−2n1−αχ
−1
n1−αn

−3α/2
n∑
t=1

y2t−1ut ⇒ X2V,

where X ∼ N(0, 1), Y ∼ N (0, 1), V ∼ N(0, 1),

and with (ϕn1−α , φn1−α) defined in lemma 7, and

χn1−α =
e2(c+λ

2)n1−α

2
√
c+ λ2

.
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Proof of Lemma 8.

Note that

V

(∫ n1−α

0

eφs+λWsdBs

)
= E

(∫ n1−α

0

eφs+λWsdBs

)2


= E

[∫ n1−α

0

e2φs+2λWsds

]
= φn1−α ,

using in this last equality the computation of φn1−α made in the proof of Lemma 7.

So we have

φ−1n1−α

∫ n1−α

0

eφs+λWsdBs ⇒ Y ∼ N (0, 1) .

Hence we can write

ϕ−1n1−αφ
−1
n1−α

nα

n∑
t=1

yt−1ηt =

(
σηϕ

−1
n1−α

∫ n1−α

0

e−(φs+λWs)dBs

)(
σηφ

−1
n1−α

∫ n1−α

0

eφr+λWrdBr

)
+In,

where In can be shown to be negligible, referring to Phillips and Magdalinos (2004). Then

σ−2η ϕ−1n1−αφ
−1
n1−αn

−α
n∑
t=1

yt−1ηt ⇒ XY.

Now let us consider
∑n
t=1 y

2
t−1ut. It can be expressed as

n−1∑
t=0

y2t ut+1 =

n−1∑
t=1

exp

(
2φ

nα
t+

2λ

nα/2
Ut

)[ t∑
i=1

exp

(
− φ

nα
i− λ

nα/2
Ui

)
ηi

]2
(Ut+1 − Ut)

=

(
n−1∑
k=1

exp

(
2φ

nα
k +

2λ

nα/2
Uk

)
(Uk+1 − Uk)

)[
n∑
i=1

exp

(
− φ

nα
i− λ

nα/2
Ui

)
ηi

]2
+R∗t , (B.9)

where

R∗t =

n−1∑
t=0

exp

(
2φ

nα
t+

2λ

nα/2
Ut

)[ t∑
i=1

exp

(
− φ

nα
i− λ

nα/2
Ui

)
ηi

]2
(Ut+1 − Ut)

−

(
n−1∑
k=1

exp

(
2φ

nα
k +

2λ

nα/2
Uk

)
(Uk+1 − Uk)

)[
n∑
i=1

exp

(
− φ

nα
i− λ

nα/2
Ui

)
ηi

]2
≡R∗1t − 2R∗2t,
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with

R∗1t =

t∑
k=1

[
t∑

i=k+1

exp

(
φ

nα
(k − i)− λ

nα/2
(Uk − Ui)

)
ηi

]2
(Uk+1 − Uk)

R∗2t =

t∑
i=1

exp

(
− φ

nα
i− λ

nα/2
Ui

)
ηi

×
t∑

k=1

t∑
i=k+1

exp

(
φ

nα
(2k − i) +

λ

nα/2
(2Uk − Ui)

)
ηi (Uk+1 − Uk)

=

t∑
i=1

exp

(
− φ

nα
i− λ

nα/2
Ui

)
ηi ×R

∗
2t.

The proof follows then the same line as for Rt (in the proof of (B.4)).

Finally, let us look at the summation (B.9).

Notice that

E

(∫ n1−α

0

e4(φr+λWr)dr

)
=
e4(c+λ

2)n1−α

4(c+ λ2)
− 1

4(c+ λ2)
= χ2

n1−α +O(1).

Again, we will use a Lindberg Condition, this time regarding

ζk+1≡n−α/2χ−1n1−α exp

(
2φ

nα
k +

2λ

nα/2
Uk

)
(Uk+1 − Uk) ,

which admits conditional variance such that
n−1∑
k=1

Ek
[
ζ2k+1

]
= n−αχ−2n1−α

n−1∑
k=1

exp

(
4φ

nα
k +

4λ

nα/2
Uk

)

= χ−2n1−α

∫ n1−α

0

e4(φr+λWr)dr + op (1)

= Op (1) .

It follows that

n−1∑
k=1

exp
(

2φ
nα k + 2λ

nα/2
Uk

)
χn1−α

Uk+1 − Uk
nα/2

= χ−1n1−α

∫ n1−α

0

e2(φr+λWr)dWr + op (1)

so

n−3α/2ϕ−2n1−αχ
−1
n1−α

n∑
t=1

y2t−1ut =

(
ϕ−1n1−αση

∫ n1−α

0

e−(φs+λWs)dBs

)2

× χ−1n1−α

∫ n1−α

0

e2(φr+λWr)dWr + op (1) ,

and

σ−2η ϕ−2n1−αχ
−1
n1−αn

−3α/2
n∑
t=1

y2t−1ut ⇒ X2V,

where V is defined as

χ−1n1−α

∫ n1−α

0

e2(φr+λWr)dWr ⇒ V ∼ N (0, 1) .
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B.3 Conclusion

We can then summarize in the following table the results obtained above, considering the three

cases, c < 0, c = 0 and c > 0 respectively, and introducing the notation

Syy =

T∑
t=1

y2t , Syη =

T∑
t=1

yt−1ηt, and Syyu =

T∑
t=1

y2t−1ut.

Let the process (yt) be defined as in (3)-(1) for t ≥ 0, with y0 = 0.

As T →∞ and for x ∈ {yy, yη, yyu},

σ−2η µx φxT Sx ⇒ Ux,

where (µx, φxT , Ux) are defined as follows (we assume (φ, λ) 6= (0, 0)).

φyyT φyηT φyyuT

c < 0 T−(1+α) T−
1+α
2 T−

1+2α
2

c = 0 T−2αe−6λ
2T 1−α

T−1e−2λ
2T 1−α

T−3α/2e−6λ
2T 1−α

c > 0

λ2 < φ T−2αe−2(c+λ
2)T 1−α

T−αe−2cT
1−α

T−3α/2e−2(c+λ
2)T 1−α

λ2 = φ T−(1+α)e−2(c+λ
2)T 1−α

T−
1+α
2 e−2cT

1−α
T−(1+α

2 )e−2(c+λ
2)T 1−α

λ2 > φ T−2αe−6λT
1−α

T−αe−(c+2λ2)T 1−α
T−3α/2e−6λ

2T 1−α

with

µyy µyη µyyu

c < 0 −2c
√
−2c −2c/

√
3

c = 0 8
√

2 λ4 2λ 8λ3

c > 0

λ2 < φ 8(c− 2λ2)2
√

(c+ 2λ2) (c+ λ2) 4c
(
c− 2λ2

)
8(c− 2λ2)2

√
c+ λ2

λ2 = φ 2
√

(c+ 2λ2) (c+ λ2) 2c 2
√
c+ λ2

λ2 > φ 4(2λ2 − c)
√

(c+ 2λ2) (c+ λ2) 2c
√

2 (2λ2 − c) 4
(
2λ2 − c

)√
c+ λ2

and

Uyy Uyη Uyyu

c < 0 1 N (0, 1) N (0, 1)

c ≥ 0 X2Z XY X2V

where X ∼ N (0, 1), Y ∼ N (0, 1), V ∼ N (0, 1), X ⊥ V , and

Z such that E(Z) = 0, V(Z) = 1 and Cov(V,Z) = 0.

Theorem 4 can be directly deduced from the results of this table.

Indeed, in the case c < 0, we can write, after noticing that

T∑
t=1

y2t−1ut is asymptotically uncorrelated
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with

T∑
t=1

yt−1ηt, that

T
1+α
2 (ρ̂− E (ρt)) = λ

T−
1+2α

2

∑
t y

2
t−1ut

T−1−α
∑
t y

2
t−1

+
T−

1+α
2

∑
t yt−1ηt

T−1−α
∑
t y

2
t−1

= λ
µyyT
µyyuT

σ−2η

σ−2η

µyyuT T−
1+2α

2

∑
t y

2
t−1ut

µyyT T
−1−α∑

t y
2
t−1

+
µyyT
µyηT

σ−2η

σ−2η

µyηT T
− 1+α

2

∑
t yt−1ηt

µyyT T
−1−α∑

t y
2
t−1

⇒ N
(
0, 3λ2 − 2c

)
.

Assume now that c ≥ 0. We can write

Tα/2
φyyuT

φyyT
(ρ̂− E (ρt)) ⇒ λ

µyy

µyyu
Uyyu
Uyy

,

where the various ratios are calculated using the previous table and provide the same results for

all cases when c ≥ 0, namely

Tα/2 φyyun /φyyn = Tα and λ−1µyyu/µyy =
1

λ
√
c+ 2λ2

,

hence the result. �

C Proof of Corollary 5

Recall that under the null, the statistic is defined by

τ0,T =

{
T

1+α
2 (ρ̂− EH0

(ρt)) , if φ0 + λ20 < 0;

Tα (ρ̂− EH0
(ρt)) , if φ0 + λ20 ≥ 0.

Let us write

ρ̂− EH0 [ρt] = (ρ̂− EH1 [ρt]) + (EH1 [ρt]− EH0 [ρt]) .

and consider the two elements of the sum in turn.

The null and alternative hypotheses are local to each other:

EH1
[ρt]− EH0

[ρt] =
φ1 − φ0 + 1

2

(
λ21 − λ20

)
Tα

+ o
(
T−α

)
,

hence T
1+α
2 (EH1

[ρt]− EH0
[ρt]) diverges but Tα (EH1

[ρt]− EH0
[ρt]) does not.

Also, under the alternative, T
1+α
2 (ρ̂− EH1

[ρt]) diverges only if φ1 + λ21 ≥ 0 but Tα (ρ̂− EH1
[ρt])

does not diverge.

Finally, if both T
1+α
2 (ρ̂− EH1 [ρt]) and T

1+α
2 (EH1 [ρt]− EH0 [ρt]) diverge, their sum is Op

(
T

1−α
2

)
so they do not cancel each other.

To conclude, τ0,T diverges under H1 only if φ0 + λ20 < 0, irrespective of (φ1, λ1).
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D Proof of proposition 6

Consider the projection

yt+k = exp

{
kφ+ λTα/2

∑k
j=1 ut+j

Tα

}
yt +

k∑
i=1

exp


(k − i)φ+ λTα/2

k∑
j=i+1

ut+j

Tα

 ηt+i.

Let (r, s) ∈
(
0, T 1−α) , with s > 0, then

y[Tα(r+s)]

y[Tαr]
= exp

 [Tαs]φ+ λTα/2
∑[Tα(r+s)]
j=[Tαr]+1 uj

Tα


+

1

y[Tαr]

[Tα(r+s)]∑
i=[Tαr]+1

exp


([Tα (r + s)]− [Tαr]− i)φ+ λTα/2

[Tα(r+s)]∑
j=i+1

uj

Tα

 η[Tαr]+i,

where Proposition 1 implies that

exp

 [Tαs]φ+ λTα/2
∑[Tα(r+s)]
j=[Tαr]+1 uj

Tα

⇒ exp {sφ+ λ (Wr+s −Wr)} ,

and

T−α/2
[Tα(r+s)]∑
i=[Tαr]+1

exp


([Tα (r + s)]− [Tαr]− i)φ+ λTα/2

[Tα(r+s)]∑
j=i+1

uj

Tα

 η[Tαr]+i

⇒ Kφ,λ (r + s)− eφs+λ(Wr+s−Wr)Kφ,λ (r)

=

∫ r+s

r

exp {φ(r + s− u) + λ (Wr+s −Wu)} dBs,

hence Kφ,λ (r + s)− eφs+λ(Wr+s−Wr)Kφ,λ (r) is independent of Kφ,λ (r) and

Kφ,λ (r + s)− eφs+λ(Wr+s−Wr)Kφ,λ (r) ∼ N (0, f2c (s)) .

It follows that we can define a Cauchy variable C such that

y[Tα(r+s)]

y[Tαr]
⇒ eφs+λ(Wr+s−Wr) +

√
f2c (s)

f2c (r)
C, (D.10)

which constitutes the first half of the proposition.

Now let us turn to the proof of the second part of the proposition. If c ≥ 0 then s/r → 0 implies
f2c(s)
f2c(r)

→ 0. Hence the impact of the Cauchy variable in expression (D.10) vanishes. This is not the

case of eφs+λ(Wr+s−Wr) unless s itself tends to zero, which we do not consider.
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Let t = bTαrc , k = bTαsc then, as T →∞,

P

(
yt+k
yt
≥ γ

)
→ P

(
eφs+λ(Wr+s−Wr) ≥ elog γ

)
= P

(
Wr+s −Wr√

s
≥ log γ − φs

λ
√
s

)
,

where Wr+s−Wr√
s

∼ N (0, 1) so

P

(
yt+k
yt
≥ γ

)
→ 1− Φ

(
log γ − φs
λ
√
s

)
= Φ

(
φs− log γ

λ
√
s

)
,

i.e.

P

(
yt+k
yt
≥ γ

)
− Φ

(
φkT−α − log γ

λ
√
kT−α

)
−→
T→∞

0.

E Present Value Model

Consider the standard definition of an ex-post asset return

rt+1 =
Pt+1 +Dt+1

Pt
− 1,

(see e.g. Campbell, Lo and McKinlay, 1996, expression (7.1.1)) and assume rt+1 constant and

equal R. Then

Pt =
Pt+1 +Dt+1

1 +R
,

which is compatible with

∆Pt = (1 + (1− δ)R+ δRt) ∆Pt−1 − ζt,

where Rt is iid and E
[
(1 +Rt)

−1
]

= (1 +R)
−1
.

Indeed, the expression

∆Pt = (1 + (1− δ)R+ δRt) ∆Pt−1 − ζt (E.11)

implies that

Pt+1 +Dt+1 = Pt + (1 + (1− δ)R+ δRt+1) ∆Pt − ζt+1 +Dt + ζt+1

Pt+1 +Dt+1

1 +Rt+1
=
Pt + (1 + (1− δ)R+ δRt+1) ∆Pt

1 +Rt+1
+

Dt

1 +Rt+1

=
Pt + (1 + (1− δ)R) ∆Pt

1 +Rt+1
+ δ

Rt+1

1 +Rt+1
∆Pt +

Dt

1 +Rt+1

Now, if

Pt = Et

[
Pt+1 +Dt+1

1 +Rt+1

]
,
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then taking conditional expectations on either side gives

Et

[
Pt+1 +Dt+1

1 +Rt+1

]
=
Pt + (1 + (1− δ)R) ∆Pt

1 +R

+
Dt

1 +R
+ δEt

[
1 +Rt+1

1 +Rt+1
− 1

1 +Rt+1

]
∆Pt

=
Pt + (1 + (1− δ)R) ∆Pt

1 +R
+

Dt

1 +R
+ δ

(
1− 1

1 +R

)
∆Pt

=
Pt + (1 +R) ∆Pt

1 +R
+

Dt

1 +R

=
Pt +Dt

1 +R
+ Pt − Pt−1.

Now let rt such that Pt−1 =
Pt +Dt

1 + rt
then

Et

[
Pt+1 +Dt+1

1 +Rt+1

]
=
Pt +Dt

1 +R
+ Pt −

Pt +Dt

1 + rt
,

which shows that if rt is constant and equal to R, (E.11) implies that the present value model

holds:

Pt = Et

[
Pt+1 +Dt+1

1 +Rt+1

]
.

F Simulated NERC paths

In order to show the sort of dynamics the model generates, Figure 12 records simulations of the

process over samples of T = 1000 observations using two sets of draws of (ut, ηt). Exuberant

periods become clearly more pronounced and explosive as φ increases or α decreases. For α = 1,

the processes exhibit near-unit roots as in Phillips (1987) and no type of what could be called a

“bubble” seems to appear visually; we disregard this situation in the paper. As α decreases, some

bubbles appear. Some local explosive pattern appears and disappears alternatively. Although, by

visual inspection, some draws seem to exhibit volatility clustering (random draw 1, left column),

this is generically not an observed pattern (see random draw 2).
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Figure 12: Simulated realizations from the model of autoregressive conditional exuberance for

different parameter values.
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