
HAL Id: hal-00004010
https://hal.science/hal-00004010

Submitted on 21 Jan 2005

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Maximizing the number of unused bins
Marc Demange, Jérôme Monnot, Vangelis Th. Paschos

To cite this version:
Marc Demange, Jérôme Monnot, Vangelis Th. Paschos. Maximizing the number of unused bins.
Foundations of Computing and Decision Sciences, 2001, 26, pp.169-186. �hal-00004010�

https://hal.science/hal-00004010
https://hal.archives-ouvertes.fr

MAXIMIZING THE NUMBER OF UNUSED

BINS

Marc Demange∗ Jérôme Monnot Vangelis Th. Paschos

LAMSADE, Université Paris-Dauphine
Place du Maréchal De Lattre de Tassigny, 75775 Paris Cedex 16, France

e mails: {demange,monnot,paschos}@lamsade.dauphine.fr

Abstract. We analyze the approximation behavior of some of the best-known
polynomial-time approximation algorithms for bin-packing under an approxima-
tion criterion, called differential ratio, informally the ratio (n − λ(I))/(n − β(I)),
where n is the size of the input list, λ(I) is the size of the solution provided by
an approximation algorithm and β(I) is the size of the optimal one. This measure
has originally been introduced by Ausiello, D’Atri and Protasi and more recently
revisited, in a more systematic way, by the first and the third authors of the present
paper. Under the differential ratio, bin-packing has a natural formulation as the
problem of maximizing the number of unused bins. We first show that two basic
fit bin-packing algorithms, the first-fit and the best-fit, admit differential approxi-
mation ratios 1/2. Next, we show that slightly improved versions of them achieve
ratios 2/3. Refining our analysis we show that the famous first-fit-decreasing and
best-fit decreasing algorithms achieve differential approximation ratio 3/4. Finally,
we show that first-fit-decreasing achieves asymptotic differential approximation ra-
tio 7/9.

1 Introduction

An NP optimization problem Π is defined as a quintuple (I, S, vI , S
t, opt) such

that:

• I is the set of instances of Π and it can be recognized in polynomial time;

∗Also, CERMSEM, Université Paris I, Maison des Sciences Economiques, 106-112 boulevard
de l’Hôpital, 75647 Paris Cedex 13, France

• given I ∈ I (let |I| be the size of I), S(I) denotes the set of feasible solutions
of I; moreover, there exists a polynomial P such that, for every S ∈ S(I)
(let |S| be the size of S), |S| = O(P (|I|)); furthermore, given any I and
any S with |S| = O(P (|I|)), one can decide in polynomial time if S ∈ S(I);

• given I ∈ I and S ∈ S(I), vI(S) denotes the value of S; vI is polynomially
computable and is commonly called objective function;

• given I ∈ I, ∃St ∈ S(I) computable in polynomial time;

• opt ∈ {max, min}.

The most interesting sub-class of NP optimization problems is the class of the
NP-hard ones, known to be unsolvable in polynomial time unless P=NP and
people widely thinks that this fact is very unlikely.

A current and very active research area coping with NP-hardness is polynomial-
time approximation theory. In this domain, the main objective is either finding a
good approximation algorithm for a given NP-hard problem, or establishing proofs
that such algorithms cannot exist unless an unlikely complexity-theory condition
(for example, P=NP) holds. The “goodness” of an approximation algorithm is
commonly measured by its approximation ratio.

Given an instance I of a combinatorial optimization problem Π and an approx-
imation algorithm A supposed to feasibly solve Π, we will denote by ω(I), λA(I)
and β(I) the values of the worst solution, the approximated one (provided by A),
and the optimal one, respectively.

There mainly exist two ways of dealing with polynomial-time approximation.
Traditionally ([5, 7]), the quality of an approximation algorithm for an NP-hard
minimization (resp., maximization) problem Π is expressed by the ratio (called
standard in what follows) ρA(I) = λA(I)/β(I), and the quantity ρA = inf{r : ρA(I) <
r, I instance of Π} (resp., ρA = sup{r : ρA(I) > r, I instance of Π}) constitutes the
standard approximation ratio of A for Π. Recent works ([3, 2]), strongly inspired
by former ones (see, for example, [1]), bring to the fore another approximation
measure, as powerful as the traditional one (concerning the type, the diversity
and the quantity of the produced results), the ratio (called differential in what
follows) δA(I) = (ω(I) − λA(I))/(ω(I) − β(I)). The quantity δA = sup{r : δA(I) >
r, I instance of Π} is now the differential approximation ratio of A for Π.

Starting from approximation ratio, one can rule out a set of instances, for ex-
ample instances for which the optimal solution value is bounded, restraining so
itself/herself to instances with unbounded optimal values. Then, one can try to
evaluate the approximation performance of an algorithm over these instances so
studying what in approximation theory is called asymptotic approximation ratio.
This ratio in standard approximation framework is defined, for minimization prob-
lems, by ρ∞

A = inf{ρ ≥ 1 : ∃κ ∈ Z+, ρA(I) ≤ ρ,∀I : β(I) ≥ κ} ([5]).
On the other hand, as one can easily see, a possible interpretation of the differ-

ential approximation ratio is that it expresses the position of λ(I) into the interval
of the feasible objective function’s values (as we have restricted ourselves to dis-
crete problems, there exists a finite number of such values). Moreover, for most

of the maximization problems, since the value of the worst solution is equal to 0,
the optimal value is an upper bound for the number of the feasible values. Such
observations provide the terms of another parameter following the value of which
one can rule out a set of instances, the number σ(I) of the feasible values of the
solutions of I. Based upon this parameter, we define the asymptotic differential
approximation ratio of a polynomial-time approximation algorithm A as

δ∞A = lim
k→∞

inf
I

σ(I)≥k

{

ω(I) − λA(I)

ω(I) − β(I)

}

.

In other words, δ∞A is the lower limit of the sequence of ratios indexed by the
value of σ(I) (more details and further motivations about this asymptotic ratio
are given in [4]). Let us note that the condition σ(I) ≥ k used in the definition of
the asymptotic approximation ratio for characterizing “the sequence of unbounded
instances” (or “limit instances”) cannot be polynomially verified1. But in practice,
for a given problem, it is possible to directly interpret condition σ(I) ≥ k by means
of ω(I) and β(I). For example, for numerous cases of discrete problems, we are
able to determine, for each instance, a step π defined as the least variation between
two feasible values of the instance (for example, for bin-packing π = 1); then,
σ(I) ≤ ((ω(I) − β(I))/π) + 1 and consequently,

δ∞A = lim
k→∞

inf
I

σ(I)≥k

{

ω(I) − λA(I)

ω(I) − β(I)

}

≥ lim
k→∞

inf
I

ω(I)−β(I)
π ≥k−1

{

ω(I) − λA(I)

ω(I) − β(I)

}

.

Whenever π can be determined, condition (ω(I) − β(I))/π ≥ k − 1 can be more
easily evaluated than σ(I) ≥ k, and in this case, the former is used (this is not
senseless since we try to bound below the ratio).

As it is shown in [3, 2], many problems as, for example, minimum graph-
coloring, minimum vertex-covering, etc., behave in completely different ways re-
garding traditional or differential approximation.

2 About bin-packing

In the bin-packing problem (BP) we are given a finite set L = {x1, . . . , xn} of n
rational numbers and an unbounded number of bins (denoted by b1, b2, . . .in what
follows) of capacity 1; we wish to arrange all these elements in the least possible
bins in such a way that the sum of the numbers in each bin does not violate
its capacity. BP is NP-hard and, consequently, no polynomial-time algorithm can
exactly solve it, unless P=NP. Remark that the worst BP-solution for L consists in

1Of course, the same holds for the condition β(I) ≥ k in standard approximation framework.

taking a bin per item. So, the differential ratio of an approximation BP-algorithm A

equals (n − λA(L))/(n − β(L)). Moreover, remark that the least the bins used by
an algorithm in order to arrange the elements of L, the most the bins unused (if we
consider that, at worst, no more than n bins will ever used). In this sense, solving BP
in the differential framework, is equivalent to solving a maximization problem in
the standard framework, this maximization problem consisting of maximizing the
number of unused bins. Consequently, the use of the differential measure provides
for BP an insight which cannot be derived from the standard one.

It is easy to see that for BP its subproblem where input-lists verify σ(I) ≤ k for
a fixed k ∈ IN is polynomial (O(nk)). So, the following lemma immediately holds.

Lemma 1. For every polynomial time approximation algorithm A and for all ε > 0,
there exists a polynomial time approximation algorithm Aε for which δAε

≥ δ∞A − ε.

Let us note that the above lemma does not hold for every NP optimization problem,
for example, for the bottleneck ones.

The purpose of this paper is to study the differential approximation behavior
of some very popular BP-algorithms. We first analyze two simple and intuitive
ones, the first-fit (FF) and the best-fit (BF). Next, we study one of the most-known
BP-algorithm, the first-fit-decreasing one (FFD) where, as we point out later, is a
refinement of FF.

Crucial notion in our approximation analysis is the one of n-worst instance.
Given an NP-hard problem Π and an approximation algorithm A for Π, the set of
n-worst instances defines a set of instances in which A performs the worst possible
with respect to the differential approximation ratio (in other words, the set of
the n-worst instances consists of the instances in which δA is the smallest over all
instances of size at most n). So, for a pair (Π, A), evaluation of δA in such an instance
of Π immediately provides a lower bound for δA on every Π-instance of a certain
size. For the case of BP, an n-worst instance can be defined as follows.

Definition 1. Consider a size n and an approximation algorithm A for BP. Then,
an n-worst instance for BP with respect to A is a list Lw ∈ argmin|L|≤n{δA(L)}.
An n-worst instance for (BP, A) of minimum size will be called minimal n-worst
instance.

Let us remark that an n-worst instance Lw for BP exists for every n, since the set
{δA(L) : |L| ≤ n} is finite. If n is sufficiently large, then we have δA(L

w) < 1. In
general, the study of the approximation behavior of A in any family of BP-instances
containing n-worst instances (with n arbitrarily large) suffices to provide a lower
bound for δA.

3 First-fit, best-fit and preliminary results

In what follows in sections 3 and 4, given a list L of elements, we denote by x1,
x2 and x3, x1 ≤ x2 ≤ x3, the three smallest elements of L and by xn the larger
element of L. Moreover, through the paper a bin i will be denoted either by bi, or
by the set of its elements; a BP-solution will be alternatively denoted by the union
of its bins.

The spirits of algorithms FF and BF are quite similar; they only differ by the
way of choosing the bin in which they will place the first unplaced element. We
suppose that they start with a set of n initially empty bins. For reasons of economy
we present in parallel the two algorithms; instructions between starry parentheses
refer to BF.

BEGIN /*FF(*BF*)*/

IF L 6= ∅ THEN j ← min{k :
∑

x1∈bk x ≤ 1− x1};
(*b ← argmax{

∑

x∈bk x :
∑

x∈bk x ≤ 1− x1};*)
bj ← bj ∪ {x1};
(*b ← b ∪ {x1};*)
FF(L \ {x1});
(*BF(L \ {x1});*)

FI

OUTPUT the set FFL(*BFL*) of non empty bins;

END. /*FF(*BF*)*/

It is easy to see that both FF and BF work in polynomial time.
Let A be one of FF and BF; the following lemma 2 points out a very simple

property of BP and of A, called Bellman-like principle. Roughly speaking, given a
BP-instance L and an optimal (resp., A-) solution for L, if one removes some of
its bins and if he/she considers the sub-instance L′ consisting of the content of the
remaining bins, then the surviving set of bins remains an optimal (resp., feasible
for A-) solution with respect to L′. More precisely, the following lemma holds.

Lemma 2. Let L be an instance of BP and denote by (b∗j , j = 1, . . . , β(L)) (resp.,
(bj, j = 1, . . . , λA(L)) an optimal (resp., the A-) solution of instance L. Then,

• for every subset J ⊂ {1, . . . , β(L)}, the solution (b∗j , j ∈ J) is optimal for
instance ∪j∈Jb∗j ;

• similarly, for every subset I ⊂ {1, . . . , λA(L)}, A computes, in instance ∪i∈Ibi,
the solution (bi, i ∈ I).

The proof of the results of this paper is substantially based upon the following
lemma 3, exploiting the notion of n-worst instance.

Lemma 3. Let A be one of FF and BF, let n ≥ 0, let L be an n-worst instance
for (BP, A) and let b1, . . . , bλA(L) (bi 6= ∅) be the solution provided by A. If there

exists a set of bins bi, i ∈ I, I ⊂ {1, . . . , λA(L)} such that the list L′ = L \ ∪i∈Ibi

satisfies β(L′) ≤ β(L) − x, with 0 ≤ x ≤ y ≤ z, x 6= z, where y = |I| and
z = | ∪i∈I bi|, then δA(L) ≥ (z − y)/(z − x).

Proof. Let us first point out that the result is valid if L′ = ∅ because, in this case,
the hypotheses of the lemma imply λA(L) = y and β(L) ≥ x. So we can consider
L′ 6= ∅ and the following holds.

λA(L
′) = λA(L) − y (1)

β(L′) ≤ β(L) − x (2)

ω(L′) = ω(L) − z (3)

Where expression (3) holds because the size of instance L′ is n′ = |L| − z ≥ 0,
expression (1) holds thanks to lemma 2 and expression (2) is one of the hypotheses
of the lemma.

Revisit now definition 1 and recall that L is an n-worst instance; this implies in
particular that δA(L) ≤ δA(L

′); moreover suppose D = ω(L) − β(L) − (z − x) > 0.
Then, expressions (1), (2) and (3) lead to

ω(L) − λA(L)

ω(L) − β(L)
≤

ω(L′) − λA(L
′)

ω(L′) − β(L′)
≤

ω(L) − λA(L) − (z − y)

ω(L) − β(L) − (z − x)
;

this, after some easy algebra, implies δA(L) = (ω(L) − λA(L))/(ω(L) − β(L)) ≥
(z − y)/(z − x).

Let us now suppose that D ≤ 0. Then, ω(L) − β(L) ≤ z − x and, since from
expressions (1) and (3), ω(L) − λA(L) = ω(L′) − λA(L

′) + (z − y) ≥ z − y, then
immediately δA(L) = (ω(L) − λA(L))/(ω(L) − β(L)) ≥ (z − y)/(z − x), q.e.d.

For reasons of concision of the proofs of the results, we consider x, y and z
appearing in the above lemma 3 as parameters of the lemma; so, we will speak
about (x, y, z)-application of lemma 3.

Theorem 1. δFF ≥ 1/2; moreover, bound 1/2 is tight.

Proof. We will prove that the approximation ratio of FF, when executed on n-
worst instances, is always at least 1/2. Let L be such an n-worst instance for the
pair (BP, FF).

If λFF(L) = ω(L) = n (i.e., FF uses a bin per element), then λFF(L) = β(L). In
fact, λFF(L) = ω(L) = n implies x1 + x2 > 1 (recall that x1 and x2 are the two
smallest elements of L) because, if not, FF would place x1 and x2 in the same bin.
So, for every pair (x, y) of elements in L, x + y > 1. In this case, in every solution
for L, every element will be arranged in its own bin; so, λFF(L) = β(L) = ω(L) = n.
Moreover, this can never be the case for an n-worst instance for (BP, FF) for a
sufficiently large n (given that, by definition, in such an instance FF realizes its
worst approximation performance), since then P = NP.

Hence, let us consider that there exists at least a bin b ∈ FFL containing
at least two elements and denote by L′ = (∪bi∈FFLbi) \ b. List L′ meets condi-
tions of lemma 3 with (x, y, z) = (0, 1, 2). So, (0,1,2)-application of lemma 3 gets

δFF(L) = (ω(L) − λFF(L))/(ω(L) − β(L)) ≥ 1/2. Since L is an n-worst instance,
the bound 1/2 obtained for L is a lower bound for δFF.

In order to prove the tightness of the approximation ratio obtained, we will prove
a stronger result, namely that the asymptotic approximation ratio of FF is bounded
above by 1/2. For this, let us consider a 4k-element list L containing 2k elements
equal to (1/2)− ε followed by 2k elements equal to (1/2) + ε for some ε ∈ (0, 1/2).
It is easy to see that FF(L) will produce k bins containing all the elements equal to
(1/2) − ε (two such elements per bin), and 2k bins each one containing a element
equal to (1/2) + ε; so, λFF(L) = 3k. On the other hand, in the optimal solution, 2k
bins (each bin containing a pair ((1/2) − ε, (1/2) + ε)) suffice to arrange all the
elements of L. Finally, ω(L) = 4k. Since σ(L) = ω(L) − β(L) + 1 = 2k + 1 and k
can be chosen arbitrarily large, δ∞FF(L) = 1/2. It suffices now to note that, for every
approximation algorithm A, δ∞A ≥ δA, and this concludes the proof of the tightness
of the bound obtained and of the theorem.

Remark 1. Since δ∞FF = δFF, one cannot use FF and lemma 1 in order to devise
a polynomial time approximation algorithm with differential approximation ratio
better than the one of algorithm FF.

With arguments exactly similar to the ones of theorem 1 (and via the same counter-
example), one can prove that algorithm BF also achieves a tight differential approx-
imation ratio 1/2.

Theorem 2. δBF ≥ 1/2; moreover, bound 1/2 is tight.

4 Improving first-fit and best-fit differential ratios

The proof of the tightness for δFF (theorem 1) has confirmed once more the
(very intuitive) fact, largely pointed out by many authors, that the most of the
BP-algorithms (all the fit-based ones in any case) work worse in increasingly or-
dered lists than in unordered or in decreasingly ordered ones. Based upon this
phenomenon, we will try to improve differential approximation ratios of FF and BF.

We will now consider a slightly improved version of FF, called FFI. This latter
algorithm is, in fact, algorithm FF matched, during its last phase, with OPT which
optimally solves the case where the sum of the three smallest elements of the (in-
creasingly ordered) list is at least equal to 1. Both algorithms are recursive. In what
follows, we will call last bin the (non-empty) bin containing the last (greater index)
placed element of a list L. If no elements have been placed yet, then last bin = b1.
We suppose that all but the first recursive calls of FFI do not execute its first line
(i.e., the surviving lists are not reordered; also recall that following the conventions
of the beginning of the section, the three first elements of the input-list – and of

the surviving ones – are the three smallest elements of the list and the last element
the largest one).

BEGIN /*FFI*/

order L in increasing order;

IF L 6= ∅ AND x1 + x2 + x3 ≤ 1 THEN j ← min{k :
∑

x∈bk x ≤ 1− x1};
bj ← bj ∪ {x1};
L ← L \ {x1};
FFI(L);

FI

let B be the set of the non-empty bins;

IF L 6= ∅ THEN b ← last bin;

IF
∑

x∈b x + x1 ≤ 1 THEN b ← b ∪ {x1};
L ← L \ {x1};

FI

IF
∑

x∈b x + x2 ≤ 1 THEN b ← b ∪ {x2};
L ← L \ {x2};

FI

FI

OUTPUT B ∪ {OPT(L) ← {BEGIN /*OPT*/

IF x1 + xn ≥ 1 THEN

put x1 in a new bin;

L ← L \ {x1};
OPT(L);

ELSE

put x1, xn in a new bin;

L ← L \ {x1, xn};
OPT(L);

FI

OUTPUT the set of used bins;

END. /*OPT*/}}
END. /*FFI*/

It is easy to see that both OPT and FFI work in polynomial time.

Theorem 3. δFFI ≥ 2/3 and this bound is tight.

Proof. Let us consider an n-worst instance L for the pair (BP, FFI).
If x1 + x2 + x3 ≤ 1, then execution of algorithm FFI on L will arrange at least

elements x1, x2 and x3 in the same bin b1; consequently, the solution returned by FFI

will contain at least a bin with three elements. In this case, list L′ = L\{x1, x2, x3}
meets the hypotheses of lemma 3. Consequently, a (0,1,3)-application of this lemma
and given that L is n-worst for the pair (BP, FFI), achieves approximation ratio 2/3
for BP.

Let us suppose now that the n-worst instance L on which algorithm FFI is
called needs also execution of algorithm OPT (in the final part of L); this is the case
where x1 + x2 + x3 > 1. In this case, since the sum of the three smallest elements

of L is already greater than 1, no triple of elements of L can be arranged in the
same bin; hence, every BP-solution in L even an optimal one will be constituted
of bins containing at most two elements. We will prove that in this case execution
of OPT computes an optimal BP-solution on L. Let us consider such a solution and
denote it by B∗. We study the following cases, namely x1 + xn > 1 (case 1) and
x1 + xn ≤ 1 (case 2).

Case 1: x1 + xn > 1. Then, since xn ≥ x1, element xn will occupy a bin by itself
in every feasible solution for L; so, solution B∗ and the one computed by OPT(L)

coincide with respect to xn. This concludes case 1.
Case 2: x1 + xn ≤ 1. Let us consider the bin containing x1 in B∗. We then

distinguish the following sub-cases depending on whether x1 occupies a bin by itself
(subcase 2.1), or it shares the same bin with another element (subcase 2.2).

Subcase 2.1: x1 occupies a bin by itself. Then, since x1 + xn ≤ 1, if
one removes xn from the bin of B∗ containing it and if one places xn in the bin
containing x1, then one will produce a feasible solution for L containing no more
bins than B∗. It suffices now to remark that algorithm OPT(L) (for the case where
x1 + xn ≤ 1) arranges x1 and xn; so, the solution computed by OPT(L) coincides
with an optimal solution with respect to {x1, xn}. This concludes subcase 2.1.

Subcase 2.2: x1 shares the same bin with another element. Suppose
that xk is this element, and that xk 6= xn (if not, solution B∗ and the one computed
by OPT(L), coincide with respect to {x1, xn}). Furthermore, remark that xk ≤ xn.
So, one can interchange xk and xn in B∗ producing so a new feasible solution using
the same number of bins as B∗ and coinciding with the one computed by OPT(L)

with respect to {x1, xn}. This concludes subcase 2.2 and case 2.
Consequently, inductive application of cases 1 and 2 in B∗ easily shows that

it coincides perfectly with the BP-solution computed by OPT(L); hence, OPT is
optimal when called in ordered (in increasing order) lists, where the sum of the
three smallest elements is greater than 1.

Finally, it is easy to conclude that FFI achieves differential approximation ratio
bounded below by min{2/3, 1} = 2/3 and this concludes the proof of the approx-
imation bound. Also, let us note that, for sufficiently large n, an n-worst instance
verifies x1 + x2 + x3 ≤ 3.

As previously in theorem 1, in order to prove the tightness of the above bound,
we will prove the stronger claim that the asymptotic approximation ratio of FFI is
bounded above by 2/3. Let us consider a 6k-element list L containing 3k elements
equal to 1/3 followed by 3k elements equal to 2/3. Then FFI(L) will produce k
bins containing all the elements equal to 1/3 (three such elements per bin) and
3k bins, each one containing an element equal to 2/3 (one such element per bin);
so, λFFI(L) = 4k. Obviously, ω(L) = 6k. Finally, optimal solution will use 3k bins
(each bin containing a pair (1/3, 2/3)). Since σ(L) = ω(L) − β(L) + 1 = 3k + 1
and k can be, once more, chosen arbitrarily large, δ∞FFI(L) = 2/3.

Arguments similar to the ones proving theorem 3 lead to the following result.

Theorem 4. Consider algorithm BFI which is FFI with execution of FF substituted
by execution of BF. Then, δBFI ≥ 2/3 and this ratio is tight.

Remark 2. The test L 6= ∅ performed before calling OPT(L) in algorithm FFI is
done in order to fill up last bin the most possible and to avoid configurations as the
following one. Consider a 4-element list L = {ε, (1/2) − 2ε, (1/2) + ε, 1 − ε}; here,
x1 + x2 + x3 ≤ 1 and x2 + x3 + x4 > 1. Then FF(L) will create a bin b1 = {x1 = ε}.
In the new list L = {(1/2)−2ε, (1/2)+ε, 1−ε}, the second condition of the first IF-
clause is not verified, consequently no new execution of FF(L) is performed. If we
proceeded immediately in a call of OPT(L), then a new bin b2 = {x3 = 1− ε} would
be produced and finally a last bin b3 = {x1 = (1/2) − 2ε, x2 = (1/2) + ε} would
conclude application of (the poor version of) FFI. So, B = {b1}, last bin = b1,
OPT(L) = {b2, b3}; one optimal solution for L is {{ε, (1/2)−2ε, (1/2)+ε}, {1−ε}}.
On the other hand, with the test L 6= ∅, the solution computed by FFI will include
two bins, b1 = {ε, (1/2)−2ε, (1/2)+ε}, the first element being included in b1 thanks
to FF(L) and the two last elements thanks to the execution of the test. Finally,
execution of OPT(L = {x1 = 1− ε}) creates a bin b2 = {1 − ε}.

Remark 3. Since δ∞FFI = δFFI and δ∞BFI = δBFI, remark 1 holds also for algorithms FFI
and BFI

5 First-fit and best-fit-decreasing

Algorithms FFD and BFD are further refinements of FF and BF, respectively,
where bins are (arbitrarily) numbered, the input-list is first ordered in decreasing
order and next, one puts an element in the smaller order (first) bin which can receive
it (without overflow). In what follows, we give a specification of both algorithms
in a format analogous to the one used for FF and BF. For reasons of simplicity,
we restrict ourselves to the case of FFD; study of BFD uses analogous arguments.
Moreover, we change our conventions with respect to the previous section and
consider that (since FFD initially orders input-lists in decreasing order) x1 is the
largest element of L and xn the smallest one. Finally, we consider as previously
that all but the first recursive calls of FFD do not execute the first two instructions.

BEGIN /*FFD(*BFD*)*/

order L in decreasing order;

let L = {x1, . . . , xn} be the ordered list obtained;

IF L 6= ∅ THEN j ← min{k :
∑

x∈bk x ≤ 1− x1};
(*b ← argmax{

∑

x∈bk x :
∑

x∈bk x ≤ 1− x1};*)
bj ← bj ∪ {x1};
(*b ← b ∪ {x1};*)
FFD(L \ {x1});
(*BFD(L \ {x1});*)

FI

OUTPUT the list of non-empty bins;

END. /*FFD(*BFD*)*/

Since FFD works on decreasingly ordered lists, we restrict our analysis only in such
lists L = (x1, . . . , xn) (with x1 ≥ . . . ≥ xn). Moreover, note that lemmata 2 and 3
hold also for FFD.

Given n ≥ 6, let us now consider L0 = (x1, . . . , xn0) a minimal n-worst instance
and denote by n0 (n0 ≤ n) its size; as mentioned above, we assume, without loss of
generality, that this list is sorted in decreasing order, (i.e., x1 ≥ . . . ≥ xn0 > 0). We
denote by B = (b1, . . . , bλFFD(L0)) and by B∗ = (b∗1, . . . , b

∗
β(L0)) the solutions provided

by FFD and the optimal one in L0, respectively. For i = 1, . . . , λFFD(L0), bins bi ∈ B
can be seen as subsets of L0; we suppose that sets bi are numbered in such a
way that: ∀i ≤ λFFD(L0), max{xk ∈ L0 \ ∪j<ibj} ∈ bi. An analogous numbering is
adopted also for sets b∗i , 1 ≤ i ≤ β(L0) (following this notation, x1 ∈ b1 and also
x1 ∈ b∗1). Then, L0 satisfies the following.

Lemma 4.

1. δFFD(L0) ≤ 3/4;

2. given an optimal solution B∗ = (b∗i , i = 1, . . . , β(L0)) of L0, there do not
exist two sets of indices I, J verifying (|I| = |J | 6= 0) ∧ (∪i∈Ibi = ∪j∈Jb∗j);

3. every optimal solution of L0 is constituted by bins of at least 2 elements; in
particular, x1 < x1 + xn0 ≤ 1;

4. 6 ≤ n0 ≤ n.

Proof. For item 1, it suffices to consider the following instance of size 6: L =
(3/4, 1/2, 1/4 + ε, 1/4 − ε, 1/8, 1/8), for 0 ≤ ε ≤ 1/16. Then, β(L) = 2 (b∗1 =
{3/4, 1/8, 1/8}; b∗2 = {1/2, 1/4 + ε, 1/4 − ε}) and λFFD(L) = 3 (b1 = {3/4, 1/4 −
ε}; b2 = {1/2, 1/4 + ε, 1/8}; b3 = {1/8}). Consequently, δFFD(L) = 3/4.

For the proof of item 2, let us suppose that such sets of indices exist. Bins b∗i
and bi being non empty, we have x = | ∪j∈J b∗j | ≥ 1; let us then consider L′ =
L0 \ ∪j∈Jb∗j . Of course, L′ is not empty: if it was, δFFD(L0) = 1, which is not
possible (by item 1). But then, by lemma 2, δFFD(L

′) ≤ δFFD(L0) and |L′| < n0, a
contradiction (L0 is a minimum-size n-worst instance).

For item 3, let us suppose that L0 admits an optimal solution B∗ = (b∗i , i =
1, . . . , β(L0)) with a bin b∗l = {x} of cardinality 1. Then, if we denote by b the
bin of the FFD-solution which contains x, one can construct an optimal solution B̃∗

admitting b as a bin: B̃∗ = {b}∪ (∪i6=lb
∗
i \ (b∩ b∗i)) and contradicting item 2. In the

case where x1 + xn0 > 1, x1 needs a bin for itself in every feasible (in particular in
an optimal) solution.

In order to prove item 4, let us consider a 5-worst instance of minimum size
denoted by L′ (denote by n′ the size of L′); of course, the arguments of item 3 also
hold for L′, in particular, β(L′) ≤ 2. Obviously, every instance with optimal value 1

is optimally solved by FFD; hence, without loss of generality, one can suppose that
β(L′) = 2.

If n′ = 5 (L′ = (x1, . . . , x5)), item 3 implies that every optimal solution of L′

consists of a 2-items bin and of a 3-items one. If b∗1 = {x1, xi}, then ∃j, 1 < j ≤ i,
such that xj ∈ b1 but, in this case, the sum of the 3 remaining elements does not
exceed the sum of the elements of b∗2, which implies that λFFD(L

′) = 2 = β(L′).
Similarly, if b∗1 = (x1, xi, xj), 1 < i < j, then either xi ∈ b1, or ∃l, 1 < l < i,
such that xl ∈ b1. In the first case, it is obvious that |b1| ≥ 3 and that the two
other elements have a sum less than 1. In the second case, let k be such that
{1, . . . , 5} = {1, l, i, j, k}; we have then xi + xj + xk ≤ xi + xj + x1 ≤ 1 and,
consequently, λFFD(L

′) = 2 = β(L′). So, n′ < 5.
If we suppose n′ = 4, then item 3 and the fact that β(L′) = 2 imply b∗1 = {x1, xi}

and b∗2 = {xj, xk}; in this case, it follows immediately that ∃l, 1 < l ≤ i, such that
xl ∈ b1 and

∑

t6=1,t 6=l xt ≤ 1, i.e., λFFD(L
′) = 2 = β(L′). Consequently, n′ < 4.

But every instance of size less than or equal to 3 is optimally solved by FFD,
this fact implying, first that n′ = 1 and, second, that every instance of size less
than, or equal to, 5 is optimally solved by FFD. This concludes the proof of item 4
and of the lemma.

We are now ready to prove the main result of this paper, expressed by theorem 5.

Theorem 5. Algorithm FFD achieves differential approximation ratio 3/4 in poly-
nomial time. This ratio is tight.

Proof. Given a size n ≥ 6, let us consider a n-worst instance L0 of minimum
size n0. According to items 1 and 4 of lemma 4, δFFD(L0) ≤ 3/4 and n0 ≥ 6.

Let us now prove δFFD(L0) ≥ 3/4, which implies δFFD(L) ≥ 3/4, ∀L. We distin-
guish different cases according to the structure of the solution B = (b1, . . . , bλFFD(L0)).

Case 1: B contains a bin with at least 4 items. Let us denote by bk such
a bin. By the discussion of the previous section, the instance L′ = L0 \ bk satisfies
β(L′) ≤ β(L0) and λFFD(L

′) = λFFD(L0)−1. Then, a (0, 1, z)-application of lemma 3,
with z ≥ 4 gets δFFD(L0) ≥ (z − 1)/z ≥ 3/4. This concludes the proof of case 1.

Case 2: B is composed by bins containing at most three items. Here,
we distinguish two cases depending on whether x1 + x2 ≤ 1, or x1 + x2 > 1.

Subcase 2.1: x1 + x2 ≤ 1. Then, bin b1 contains x1 and x2. Moreover, since
the list is sorted in decreasing order, xi + xj ≤ 1, ∀i 6= j, which, in particular,
implies |b2| ≥ 2 (recall that n0 ≥ 6).

Sub-subcase 2.1.1: b1 ∪ b2 contains at least five elements. We consider the list
L′ = L0 \ (b1 ∪ b2) and prove that

β(L′) ≤ β(L0) − 1 (4)

Since x1 + x2 ≤ 1 and, moreover, L0 is sorted in decreasing order, we consider the
following three cases: (i) b1 = {x1, x2, x3} (i.e., x1+x2+x3 ≤ 1), (ii) x1+x2+x3 > 1
and x1 + x2 + xn0 ≤ 1 (|b1| = 3) and (iii) x1 + x2 + xn0 > 1 and x3 + x4 + xn0 ≤ 1
(|b1| = 2, |b2| = 3).

Proof of case (i). If b1 = {x1, x2, x3}, FFD creates bins with three consecutive
elements as long as possible and then (recall that n0 ≥ 6), b2 = {x4, x5, x6} and

xn0−6 + . . . + xn0 > 1 (if not, the last bin would contain at least four elements);
consequently, b∗1 contains at most five elements. Let us now consider the following
feasible solution B′ for instance L′: B′ = (b′1, . . . , b

′
β(L0)), where b′i = b∗i \ (b∗i ∩

{x1, . . . , x6}). If b′1 6= ∅, it is possible to allocate the elements of b′1 among the
positions of elements x2, . . . , x6 in B∗. Consequently, β(L′) ≤ β(L0) − 1 and this
concludes the proof of case (i).

Proof of case (ii). In this case, {x1, x2} ⊂ b1, x3 ∈ b2 and x4 ∈ b1 ∪ b2.

Remark 4. Note that FFD is devised in such a way that b1 = {x1} if and only if x1+
xn0 > 1; consequently, item 3 of lemma 4 implies that b1 contains at least 2 elements;
also by the same item, we have b∗1 6= {x1}. Let us suppose b∗1 = {x1, xk1 , . . . , xkv

},
k1 < . . . < kv.

Since x1 + x2 + x3 > 1 ≥ x1 + xk1 + . . . + xkv
, we have x2 + x3 > xk1 + . . . + xkv

.
If k1 = 2 (resp., k1 = 3), then elements of L′ ∩{xk2 , . . . , xkv

} can be transferred
from b∗1 to the position of x3 (resp., x2) in B∗ in order to constitute a feasible
solution of L′ using β(L0) − 1 bins.

If k1 ≥ 4, then let j = max{i ≤ v, x2 ≥ xk1 + . . . + xki
}. If j = v we can,

since k1 > 2, transform B∗ into a feasible solution of L′ using β(L0) − 1 bins by
transferring elements of L′ ∩ {xk1 , . . . xkv

} from b∗1 to the position of x2 in B∗; else,
we have x2 ≥ xk1 + . . . + xkj

, x3 ≥ xkj+2
+ . . . + xkv

(this sum is eventually null)
and, since k1 ≥ 4, x4 ≥ xkj+1

. Once more, it is possible to allocate elements of
L′ ∩ {xk1 , . . . , xkv

} among the positions of x1, . . . , x4 in B∗, and this concludes the
proof of case (ii).

Proof of case (iii). In this case, b1 = {x1, x2} and b2 = {x3, x4, xk}, k ≥ 5.
By item 2 of lemma 4, x2 /∈ b∗1 (if not, b1 = b∗1), i.e., k1 > 2. Consequently,
x1 +x2 +xk1 > 1 ≥ x1 +xk1 + . . .+xkv

, which implies x2 > xk2 + . . .+xkv
(this sum

is eventually null) and moreover elements xk2 , . . . , xkn0
can be transferred from b∗1

to the position of x2 in B∗. Finally, since xk1 ≤ x3, if xk1 ∈ L′, we can put it at
the place of x3 in B∗ in order to constitute a feasible solution of L′ using β(L0)− 1
bins, which concludes the proof of case (iii) and the proof of expression (4).

Consequently, an (1, 2, z)-application of lemma 3 with z ≥ 5 concludes the proof
of sub-subcase 2.1.1.

Sub-subcase 2.1.2: |b1 ∪ b2| contains at most 4 items. In this case, we have
(recall that n0 ≥ 6 and that the list is sorted in decreasing order) b1 = {x1, x2},
b2 = {x3, x4} (in particular, x1 + x2 + xn0 ≥ x3 + x4 + xn0 > 1) and {x5, x6} ⊂ b3.
Let us consider the structure of b∗1 and b∗2. But first we remark the following.

Remark 5. Follow notations for b∗1 adopted in remark 4. Moreover, note that,
obviously, β(L0) ≥ 2 since, in the opposite case, BP would be optimally solved
by FFD in L0. By arguments completely similar to the ones of the proof for item 4
of lemma 4, |b∗2| ≥ 2. If xl0 is the greatest element of b∗2, set xl0 = x and denote
b∗2 = {x, xl1 , . . . , xlw}, l1 < . . . < lw.

Remark that x2 /∈ b∗1 (i.e., x2 ∈ b∗2, l0 = 2) because, in the opposite case, b1 =
b∗1 = {x1, x2}, impossible by item 2 of lemma 4; so, k1 ≥ 3. Let us point out that
v ≥ 2 (resp., w ≥ 2) because, in the opposite case, it would be possible (recall

that k1 ≥ 3, l1 ≥ 3) to construct an optimal solution B̃∗ of L0 with b̃∗1 = b1

by inverting in B∗ elements xk1 and x2 (resp., xl1 and x1); this is prohibited by
item 2 of lemma 4. Consequently, since x1 + x3 + xn0 ≥ x1 + x4 + xn0 > 1 and
x2 + x3 + xn0 ≥ x2 + x4 + xn0 > 1, we get k1 ≥ 5 and l1 ≥ 5; hence, setting
r = min{k1, l1} and s = max{k1, l1},

x5 ≥ xr (5)

x6 ≥ xs (6)

x3 > xk2 + . . . + xkv
(7)

x4 > xl2 + . . . + xlw (8)

where expression (7) holds thanks to the fact that x1 + x3 + xk1 ≥ x3 + x4 +
xn0 > 1 ≥ x1 + xk1 + . . . + xkv

, and expression (8) holds thanks to the fact that
x2 + x4 + xl1 ≥ x3 + x4 + xn > 1 ≥ x2 + xl1 + . . . + xlw .

Let us now consider the list L′ = L0\(b1∪b2∪b3). If L′ 6= ∅, then expressions (5),
(6), (7), (8) and the fact that k2 ≥ 5 and l2 ≥ 5 allow to deduce from B∗ a
feasible solution of L′ using at most β(L0) − 2 bins. In both cases: L′ = ∅ and
L′ 6= ∅, a (2, 3, z)-application of lemma 3 with z ≥ 6 concludes the proof of the
sub-subcase 2.1.2 and of the subcase 2.1.

Subcase 2.2: x1 + x2 > 1. This implies x2 ∈ b2 and x2 ∈ b∗2. We remark that b2

contains at least 2 elements; indeed, if b2 = {x2}, then (recall that n0 ≥ 5 and that
every bin of the FFD-solution contains at most three elements) either b1 = {x1, xn0}
and x2 + xn0−1 > 1, or b1 = {x1, xn0−1, xn0} and x2 + xn0−2 > 1. In both cases, we
have necessarily b∗1 ∪ b∗2 ⊂ b1 ∪ b2, which contradicts item 2 of lemma 4.

Let us remark that x1 + x2 > 1 immediately implies xk1 + . . . + xkv
+ xl1 +

. . . + xlw ≤ 1, consequently, denoting L′ = L0 \ {x1, x2}, β(L′) = β(L) − 1. It
immediately follows that, in the case where |b1| + |b2| ≥ 5, we can conclude by a
(1, 2, z)-application of lemma 3 with z ≥ 5.

The only remaining possibility to investigate is |b1|+|b2| ≤ 4, i.e., |b1| = |b2| = 2
(recall that |b1| ≥ 2, and |b2| ≥ 2). In this case, let us denote b1 = {x1, xa} and
b2 = {x2, xb}; clearly, since n0 ≥ 6 and since the list is sorted in decreasing order, b3

contains at least two items; let us also denote by xw1 and by xw2 the two largest
elements of b3.

Unraveling of FFD implies the following: xw1 and xw2 are the two largest elements
of the list L0 \ {x1, x2, xa, xb}; on the other hand, xa is the greatest element of L0

which can be introduced in the same bin as x1 (in particular, a ≤ k1, i.e., xa ≥ xk1),
and xb is the largest element of L0 \ {xa} which can be introduced in the same bin
as x2, i.e., either a 6= l1 and b ≤ l1 (then, xb ≥ xl1), or a = l1 and b ≤ a + 1.

Item 2 of lemma 4 implies that |b∗1| ≥ 3 because, in the opposite case, one
could invert xa and xk1 in B∗ in order to construct an optimal solution B̃∗ for
which b̃∗1 = b1. Consequently, v ≥ 2 and kv > a, and the fact that FFD has not
introduced xkv

in b1 means that x1 + xa + xkv
> 1; so

xa > xk1 + . . . + xkv−1 . (9)

If a 6= l1, a very similar argument holds for xb implying w ≥ 2 and b < lw. Let
us also remark that if a = l1, we also have w ≥ 2 since, in the opposite case, we

could construct B̃∗ (with b̃∗1 = b1) by inverting, in B∗, items x1 and x2. But then,
b ≤ l1 + 1 ≤ lw and, if b = lw > a, lw = a + 1 = l1 + 1 the fact |b2| = 2 implying
in this case (recall that x2 + xl1 + xlw ≤ 1) that lw = n0 and a = n0 − 1; this
contradicts inclusion of xk1 and xk2 in b∗1. So, always lw > b, therefore

xb > xl1 + . . . + xlw−1 . (10)

Considering L′ = L0\(b1∪b2∪b3), we are ready to prove β(L′) ≤ β(L0)−2. Indeed,
expressions (9) and (10) imply in particular a /∈ {k1, . . . , kv} and b /∈ {l1, . . . , lw}.

If {a, b} ∩ {k1, . . . , kv, l1, . . . , lw} = ∅, then expressions (9), (10) and the facts
that xw1 ≥ max{xkv

, xlw} and xw2 ≥ min{xkv
, xlw} allow to transform solution B∗

into a feasible solution of instance L′ using β(L0) − 2 bins (this argument holds
independently on whether {xw1 , xw2} ∩ (b∗1 ∪ b∗2) or not).

If b = ki, 1 ≤ i ≤ v, v ≥ 2, let us choose i′ ∈ {1, . . . , v}, i′ 6= i. Then,
expressions (9) and (10) imply (once more recall that the list is sorted in decreasing
order) xa >

∑w−1
j=1 xlj +

∑

j= 6=i′,j 6=i xkj
and xw1 ≥ max{xlw , xi′}, xw2 ≥ min{xlw , xi′},

so the transformation of B∗ described above remains always possible.
For the case a = li, with arguments completely analogous to the previous ones,

we also conclude that β(L′) ≤ β(L0) − 2.
A (2, 3, z)-application of lemma 3 with z ≥ 6 concludes the proof of subcase 2.2

(x1 + x2 > 1) and of case 2. So, δFFD(L0) ≥ 3/4. Tightness of this ratio follows
from the discussion at the beginning of the proof and this completes the proof of
theorem 5.

As we have already mentioned, with arguments analogous to the ones of the
proof of theorem 5, the same differential approximation bound is achieved by BFD.
Furthermore, in order to prove tightness of this bound, we consider list L = (1/3+
ε, 1/3+ε, 1/3, 1/3, 1/3−ε, 1/3−ε). Then, β(L) = 2 (b∗1 = b∗2 = {1/3−ε, 1/3, 1/3+ε})
and λBFD(L) = 3 (b1 = {1/3 + ε, 1/3 + ε}; b2 = {1/3, 1/3, 1/3 − ε}; b3 = {1/3 − ε}).
Consequently, δBFD(L) = 3/4 and the following theorem holds.

Theorem 6. δBFD ≥ 3/4 and it is tight.

We conclude the section with a result investigating the asymptotic (differential)
approximation behavior of FFD. We note that despite of the symmetry between FFD

and BFD stated until now, the same result does not hold (at least we have not been
able to produce it) for BFD.

Theorem 7. The asymptotic differential approximation ratio of FFD is bounded
below by 7/9.

Proof. Consider the set Sk = {L : σ(L) ≥ k}, denote by BP(Sk) the sub-problem
of BP when only lists in Sk are taken into account, and consider a minimal n-worst
instance L with respect to (BP(Sk), FFD).

Then, for arbitrarily large values of k, item 3 of lemma 4 applies for BP(Sk);
hence, 2β(L) ≥ ω(L) and since we consider only instances in Sk, the following
expressions hold

β(L)

ω(L) − β(L)
≤ 1 (11)

ω(L) − β(L) ≥ k − 1. (12)

Moreover, ∀L, λFFD(L)/β(L) ≤ (11/9) + (4/β(L)) ([5]). Then,

δFFD(L) =
ω(L) − λ(L)

ω(L) − β(L)
= 1 −

λ(L) − β(L)

ω(L) − β(L)
(11)

≥ 1 −
2

9

β(L)

ω(L) − β(L)
−

4

ω(L) − β(L)

(12)

≥
7

9
−

4

k − 1
.

So finally, δ∞FFD ≥ limk→∞ δFFD(L) ≥ 7/9, q.e.d.
Theorems 5 and 7 establish an important difference on the behavior of FFD

with respect to IFF (and also to FF and BF). In fact, for the latter, δ and δ∞ are
identical (and equal to 2/3). On the contrary, δFFD 6= δ∞FFD. This implies that n-
worst instances for (BP, FFD) are of small size, or, more precisely, ω(Lw) − β(Lw)
is bounded. In this case, lemma 1 allows to devise polynomial time approximation
algorithms for BP guaranteeing differential ratios arbitrarily closed to 7/9. Finally,
let us note that, until now, we have not found counter-example proving that 7/9 is
tight for FFD.

6 Conclusions

Obviously, n-worst instances have played a key-role in the proofs of the results
of this paper. The scope of this notion is not limited to BP and to the differential
approximation ratio. It is clear from definition 1 that worst instances of a given
size can be defined for every triple (Π, A, µ), where µ can be any approximation
measure.

Let us denote standard approximation ratios by ρ and differential approximation
ones by δ. It is well-known that ρFF = ρBF = 7/4, while ρFFD = ρBFD = 3/2 ([8]), in
other words, FF and BF, on the one hand, and FFD and BFD, on the other hand, have
identical standard approximation ratios; the same holds, as we have seen above, for
the differential approximation framework. Moreover, as it is proved in [6], for n ≥ 6,
the sets of minimal n-worst instances for (BP, FFD, ρ) and (BP, FFD, δ) are identical.
The same holds also for BFD. Furthermore, for both approximation measures, the
minimal n-worst instances for BFD are equally minimal n-worst ones for FFD, while
the converse is not true (it suffices to revisit the list L in the proof of item 1 in
lemma 4; applying BFD one gets δBFD(L) = 1).

In any case, we feel that n-worst instance families are very interesting in polyno-
mial time approximation since they allow to produce positive approximation results
by restricting the analysis of an algorithm in the set of worst instances associated
with it. As it is shown in [6], the family of n-worst instances can be embedded
into a larger one, called “family of critical instances”, the importance of which
in evaluating or improving the approximation performance of some algorithms is
crucial. To our knowledge, no previous research has systematically used notions

closed to the one of n-worst instance in order to formally study the approxima-
tion behavior of algorithms and to produce positive approximability results; in this
sense, this notion merits further deepening and research. Moreover, if one succeeds
to formally characterize the minimal n-worst instances, then the scope of both no-
tions can become even larger, since they could be used even to produce several
inapproximability results.

References

[1] G. Ausiello, A. D’Atri, and M. Protasi. Structure preserving reductions among
convex optimization problems. J. Comput. System Sci., 21:136–153, 1980.

[2] M. Demange, P. Grisoni, and V. T. Paschos. Differential approximation algo-
rithms for some combinatorial optimization problems. Theoret. Comput. Sci.,
209:107–122, 1998.

[3] M. Demange and V. T. Paschos. On an approximation measure founded on
the links between optimization and polynomial approximation theory. Theoret.
Comput. Sci., 158:117–141, 1996.

[4] M. Demange and V. T. Paschos. Asymptotic differential approximation ra-
tio: definitions, motivations and application to some combinatorial problems.
RAIRO Oper. Res., 33:481–507, 1999.

[5] M. R. Garey and D. S. Johnson. Computers and intractability. A guide to the
theory of NP-completeness. W. H. Freeman, San Francisco, 1979.

[6] J. Monnot. Families of critical instances and polynomial approximation. PhD
Thesis. LAMSADE, Université Paris-Dauphine, 1998 (in French).

[7] C. H. Papadimitriou and K. Steiglitz. Combinatorial optimization: algorithms
and complexity. Prentice Hall, New Jersey, 1981.

[8] D. Simchi-Levi. New worst-case results for the bin-packing problem. Naval Res.
Logistics, 41:579–585, 1994.

