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Abstract

We consider a prototypical representative-agent forward-looking model, and study the

low frequency variability of the data when the agent’s beliefs about the model are updated

through linear learning algorithms. We find that learning in this context can generate

strong persistence. The degree of persistence depends on the weights agents place on

past observations when they update their beliefs, and on the magnitude of the feedback

from expectations to the endogenous variable. Under recursive least squares learning,

long memory arises when the coefficient on expectations is sufficiently large. Under

discounted least squares learning, long memory provides a very good approximation to

the low-frequency variability of the data. Hence long memory arises endogenously, due to

the self-referential nature of the model, without any persistence in the exogenous shocks.

This is distinctly different from the case of rational expectations, where the memory of

the endogenous variable is determined exogenously. Finally, this property of learning is

used to shed light on some well-known empirical puzzles.
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1 Introduction

In many economic models, the behavior of economic agents depends on their expectations

of the current or future states of the economy. For example, in the new Keynesian policy

model, prices are set according to firms’ expectations of future marginal costs, consumption

is determined according to consumers’ expectations of future income, and policy makers’

actions depend on their expectations of the current and future macroeconomic conditions,

see Clarida, Gaĺı and Gertler (1999). In asset pricing models, prices are determined by

expected dividends and future price appreciation, see Campbell and Shiller (1987).

In a rational expectations equilibrium, these models imply that the dynamics of the en-

dogenous variables are determined exogenously and therefore, these models typically fail to

explain the observed persistence in the data. It has long been recognized that bounded ratio-

nality, or learning, may induce richer dynamics and can account for some of the persistence in

the data, see Sargent (1993) and Evans and Honkapohja (2009). In a related paper, Chevil-

lon, Massmann and Mavroeidis (2010) showed that the persistence induced by learning can

be so strong as to invalidate conventional econometric methods of estimation and inference.

The objective of this paper is to point out the connection between learning and long

memory. In particular, we show that in certain economic models, replacing rational expec-

tations with certain types of learning can generate long memory. We focus on a prototypical

representative-agent forward-looking model and least-squares learning algorithms, which are

popular in theoretical and empirical work, see Evans and Honkapohja (2009). This framework

is simple enough to obtain analytical results, but sufficiently rich to nest several interesting

applications. We find that the incidence and extent of the long memory depends both on

how heavily agents discount past observations when updating their beliefs, and on the mag-

nitude of the feedback that expectations have on the process. The latter is governed by

the coefficient on expectations, which in many applications is interpretable as a discount

factor. It is important to stress that this coefficient plays no role for the memory of the

process under rational expectations. These results are established under the assumption that

exogenous shocks have short memory, and hence, it is shown that long memory can arise

completely endogenously through learning. Finally, we consider two applications on excess

return predictability (see Stambaugh, 1999) and the forward premium anomaly (see Engel,
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1996), where we find that learning can provide an endogenous explanation for the observed

long memory of the dividend–price ratio and various forward premia.

The above results provide a new structural interpretation of a phenomenon which has

been found to be important for many economic time series. The other main explanations of

long memory that we are aware of are: (i) aggregation of short memory series — either cross-

sectionally (with beta-distributed weights in Granger, 1980, or with heterogeneity in Abadir

and Talmain, 2002, and Zaffaroni, 2004) or temporally across mixed-frequencies (Chambers,

1998); (ii) occasional breaks that can produce fractional integration (Parke, 1999) or be

mistaken for it (Granger and Ding, 1996, Diebold and Inoue, 2001, or Perron and Qu, 2007);

and (iii) some form of nonlinearity (see, e.g., Davidson and Sibbertsen, 2005, and Miller

and Park, 2010). Ours is the first explanation that traces the source of long memory to the

behavior of agents, and the self-referential nature of economic outcomes.

The paper is organized as follows. Section 2 presents the modelling framework and charac-

terization of learning algorithms. We then present in Section 3 our analytical results. Monte

Carlo simulation evidence confirming our theoretical predictions follows in Section 4. Finally,

in Section 5 we discuss two empirical applications. Proofs are given in the Appendix at the

end. Supplementary material collecting further proofs and simulation results is available

online.

Throughout the paper, f (x) ∼ g (x) as x → a means limx→a f (x) /g (x) = 1; O (·) and

o (·) denote standard orders of magnitude; and f (x) = O (g (x)) means “exact rate”, i.e.,

f (x) = O (g (x)) and g (x) = O (f (x)). Also, we use the notation sd (X) to refer to the

standard deviation
√

Var (X).

2 Framework

Consider the following forward-looking model that links an endogenous variable yt to an

exogenous process xt:

yt = βyet+1 + xt, t = 1, 2, ..., T (1)

where yet+1 denotes the expectation of yt+1 conditional on information up to time t. We

consider a linear representative-agent framework with constant parameters, so as to avoid
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confounding our results with other well-known sources of long-range dependence discussed

below.

Under rational expectations, yet+1 = Et (yt+1) , where Et denotes expectations based on

the true law of motion of yt. It is well-known that when |β| < 1 and limT→∞Et (yT ) < ∞,

the rational expectations equilibrium (REE) satisfies

yt =
∞∑
j=0

βjEt (xt+j) , (2)

provided this sum converges, which depends on the properties of xt. Under adaptive learning

(Evans and Honkapohja, 2001, 2009), agents form expectations based on some perceived

law of motion (PLM) for the process yt, whose parameters are recursively estimated using

information available to them. The simplest PLM is the mean-plus-noise model

yt = α+ εt, (3)

where α is an unknown parameter, and εt is an identically and indepently distributed (i.i.d.)

shock.1 Under this PLM, the conditional expectation of yt+1 given information up to time

t is simply α, and because it is unknown to the agents, their forecast yet+1 is given by a

recursive estimate of α. The classic learning algorithm is recursive least squares (RLS): yet+1 =

1
t

∑t
i=1 yi. This is a member of the class of weighted least squares algorithms that are defined

as the solution to the minimization problem

yet+1 = argmin
a

t−1∑
j=0

wt,j (yt−j − a)2 ,
t−1∑
j=0

wt,j = 1. (4)

RLS corresponds to wt,j = t−1. Another member of this class, which is particularly popular

in applied work, obtains when the weights decline exponentially, i.e., wt,j ∝ (1− ḡ)j for some

constant ḡ ∈ (0, 1) .

An alternative characterization of learning in the literature is based on stochastic recursive

algorithms (see Evans and Honkapohja, 2001, chapter 6). Consider a slight generalization of

the PLM (3) to allow for perceived shifts in the mean:

yt = αt + εt, (5a)

αt = αt−1 + vt, t ≥ 1, (5b)

1This PLM nests the rational expectations equilibrium that arises when Et (xt+j) is constant for all t, j.

Otherwise, it can be interpreted as a restricted perceptions equilibrium (RPE), see Sargent (1993).
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where α0 = α; εt and vt are i.i.d. with mean zero and finite variances, and define the signal-

to-noise ratio τt = Var (vt) /Var (εt) . Under the PLM (5), yet+1 is given by a function of current

and past values of yt that estimates αt. If the errors εt, vt are Gaussian, the optimal estimate

of αt, denoted by at, is given by the Gaussian Kalman Filter (see Durbin and Koopman,

2008):

at = at−1 + gt (yt − at−1) , t ≥ 1, (6a)

gt =
gt−1 + τt

1 + gt−1 + τt
, t ≥ 2, g1 =

σ2
0 + τ1

1 + σ2
0 + τ1

(6b)

with a0 and σ2
0 measuring the mean and variance of agents’ prior beliefs about α. The

parameter σ2
0 can also be interpreted as inversely related to agents’ confidence in their prior

expectation of α, given by a0. gt is the so-called gain sequence. When gt = ḡ for all t, the

algorithm is called constant gain least squares (CGLS). RLS arises as a special case when

τt = 0 for all t and σ2
0 → ∞, so that gt = 1/t. This is a member of a more general class of

decreasing gain least squares (DGLS) algorithms where gt ∼ θt−ν , with θ > 0 and ν ∈ (0, 1] ,

as discussed Evans and Honkapohja (2001, chapter 7). Malmendier and Nagel (2013) recently

considered an application where ν = 1 and θ is interpreted as a “forgetting factor”, in the

terminology of Marcet and Sargent (1989) who consider a related algorithm. This algorithm

belongs to the class of weighted least squares, see Section A in the Appendix for details.

The above learning algorithms can be expressed as linear functions of past values of yt

with possibly time-varying coefficients:

yet+1 =

t−1∑
j=0

κt,jyt−j + ϕt. (7)

where the term ϕt represents the impact of the initial beliefs. Our main motivation for

focusing our attention on linear learning algorithms is to emphasize that long range depen-

dence can arise without the need for nonlinearities – contrast this with Diebold and Inoue

(2001), Davidson and Sibbertsen (2005) and Miller and Park (2010) (see also the surveys by

Granger and Ding, 1996, and Davidson and Teräsvirta, 2002). We use a representative agent

framework to avoid inducing long memory through heterogeneity and aggregation, as in, e.g.,

Granger (1980), Abadir and Talmain (2002), Zaffaroni (2004) and Schennach (2013).

We define the polynomial κt (L) =
∑t−1

j=0 κt,jL
j where L is the lag operator. To quantify

how much agents discount past observations when forming expectations, we use the mean lag
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of κt, which is defined as

m (κt) =
1

κt (1)

t−1∑
j=1

jκt,j . (8)

The magnitude of m (κt) relative to the sample size can be used to measure the ‘length’ of

the learning window. We show below that this drives the memory of the process that is

induced by learning dynamics. The following definition provides our measure of the length

of the learning window.

Definition LW (length of learning window) Suppose there exist scalars mκ > 0 and

δκ ≥ 0 such that m (κt) ∼ mκt
δκ , as t → ∞. Then, δκ is referred to as the length of the

learning window. The learning window is said to be short when δκ = 0 and long otherwise.

In the paper, we make the following assumptions about the general linear learning algo-

rithm (7):

Assumption A.

A.1. κt is nonstochastic;

A.2. {κt,j} is absolutely summable with κt (1) ≤ 1 for all t;

A.3. There exists mκ > 0 and δκ ∈ [0, 1] such that m (κt) ∼ mκt
δκ , as t→∞.

Assumption A.1 could be relaxed to allow {κt,j} to be stochastic, provided that it is

independent of {xt} , in which case our results would be conditional on almost all realizations

of {κt,j} . It precludes cases in which κt,j depends on lags of yt, such as when the PLM is an

autoregressive model, because in those cases the learning algorithm is nonlinear.2

Assumption A.2 is a common feature of most learning algorithms. It implies in particular

that κt,t−1 → 0 as t → ∞. Under assumption A.3 limt→∞
logm(κt)

log t exists. This precludes

cases where there exists a slowly varying function Sκ (i.e., where limt→∞ Sκ (λt) /Sκ (t) = 1

for λ > 0) such that m (κt) ∼ mκt
δκSκ (t) . This is inconsequential to our analysis (although

it will exclude some parameter values in Section 3) but simplifies the exposition since δκ = 0

implies here that m (κt) is bounded.

2Assumption A.1 also avoids the issue of generating fat tails through a random coefficient autoregressive

model as in Benhabib and Dave (2013).
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Learning Algorithm κj,t gain δκ

DGLS θ ≥ 1 θ Γ(t+1−θ)
Γ(t−j+1−θ)

Γ(t−j)
Γ(t+1) min

(
θ
t , 1
)

1

RLS θ = 1 t−11{j<t}
1
t 1

CGLS ḡ ∈ (0, 1) ḡ (1− ḡ)j ḡ 0

CGLS with small gain ḡT = cgT
−λ ḡT (1− ḡT )j ḡT λ

HWLS λ < 1 jλ−2/ζ (2− λ) - max (0, λ)

λ ∈ (1, 2) (λ− 1) jλ−2t1−λ - 1

Table 1: Examples of Weighted Least-Squares Learning algorithms, with corresponding coef-

ficients (κt,j), gains and learning window lengths (δκ). ζ (·) denotes Riemann’s Zeta function

and Γ (·) is the Gamma function. DGLS: Decreasing Gain Least Squares; RLS: Recursive

Least Squares; CGLS: Constant Gain Least Squares; HWLS: Hyperbolically Weighted Least

Squares.

We list the learning algorithms we study later in the paper in Table 1, where we also

specify the length of the learning window for each algorithm. The first two algorithms are

DGLS, and they are analyzed in Section 3.2. Both are long window algorithms as shown in

Section A in the Appendix. The next two algorithms are CGLS, discussed in Section 3.3.

The last set of algorithms are weighted least squares algorithms with hyperbolically decaying

weights, analyzed in Section 3.4.

Next, we need to specify a working definition of long memory or long-range dependence.

There are several measures of dependence that can be used to characterize the memory

of a stochastic process, such as mixing coefficients and autocorrelations (when they exist).

Various alternative definitions of short memory are available (e.g., various mixing conditions,

see White, 2000). These definitions are not equivalent, but they typically imply that short

memory requires that the variance of partial sums, scaled by the sample size, T, should

be bounded.3 If this does not hold, we will say that the process exhibits long memory.4

3Any definition of short memory that implies an invariance principle satisfies the restriction on the variance

of partial sums, e.g., Andrews and Pollard (1994), Rosenblatt (1956), or White (2000).
4This is also the definition adopted by Diebold and Inoue (2001) in their study of the connection between
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Analogously to our previous discussion of the length of the learning window, we can also

define the ‘degree of memory’ of a process zt by the parameter d (when it exists) such that

sd
(
T−1/2ST

)
= O

(
T d
)
, where ST =

T∑
t=1

zt. (9)

Definition LM (long memory) The process zt exhibits long memory if d > 0 in (9).5

The above definition applies generally to any stochastic process that has finite second

moments (which we assume in this paper). For a covariance stationary process, where the

autocorrelation function (ACF) is a common measure of persistence, short memory requires

absolute summability of its autocorrelation function, or a finite spectral density at zero.

Thus, long memory arises when the autocorrelation coefficients are non-summable (typically

if they decay hyperbolically), or the spectrum has a pole at frequency zero. This gives rise

to alternative definitions of d based on the ACF and spectral density that are equivalent

to definition LM for covariance stationary processes, see Section H in the Appendix. When

relevant, we also provide in Section H results for these different characterizations of long

memory.

Finally, we need to make some assumptions about the forcing variable xt. These are given

by Assumption B below.

Assumption B. There exists an i.i.d. process εt with E |εt|r < ∞ for r > 2 and such that

xt =
∑∞

j=0 ϑjεt−j , with
∑∞

j=0 ϑj 6= 0 and
∑∞

j=0 j |ϑj | <∞.

Assumption B characterizes a typical covariance stationary process with short memory

and is found in Perron and Qu (2007, Assumption 1) and Perron and Qu (2010); it is weaker

than Assumptions LP of Phillips (2007) and Magdalinos and Phillips (2009) and constitutes

a version of Stock (1994, Assumptions (2.1)-(2.3)) with independent homoskedastic innova-

tions εt. The assumption ensures xt satisfies a functional central limit theorem (Phillips and

Solo, 1992, theorem 3.4). This assumption includes all covariance stationary processes that

admit a finite-order invertible autoregressive moving average (ARMA) representation, and

structural change and long memory.
5In the context of nonlinear cointegration, Gonzalo and Pitarakis (2006) have introduced the terminology

“summable of order d” for processes that satisfy the definition given in equation (9) above, see also Berenguer-

Rico and Gonzalo (2013).
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therefore have exponentially decaying autocovariances, but it also includes more persistent

short memory processes whose autocovariances decay at slower-than-exponential rates. As-

sumption B rules out processes with 0 <
∣∣∣∑∞j=0 ϑj

∣∣∣ < ∞ and
∣∣∣∑∞j=0 jϑj

∣∣∣ = ∞, for even

though these processes have d = 0 in the definition (9), they are difficult to distinguish from

long-memory processes in finite samples, as their spectral density is not differentiable at the

origin (see Stock, 1994, Sections 2.1 and 2.5).

3 Analytical results

This section provides our main results. We start by showing that long memory cannot arise

endogenously under RE. We then analyze the impact of learning on the memory of the

resulting process. We start with DGLS learning and then consider the case of CGLS learning

in the empirically relevant case where the gain is small. Finally, we look at general learning

algorithms whose coefficients are time-invariant, i.e., κt,j = κj for all t in (7).

3.1 Rational Expectations

The following result shows that long memory cannot arise endogenously under rational ex-

pectations when xt follows a short-memory process described by Assumption B.

Proposition 1 Suppose xt satisfies Assumption B, and yt =
∑∞

j=0 β
jEtxt+j with β ∈

(−1, 1]. Then, sd
(
T−1/2

∑T
t=1 yt

)
= O (1) .

Note, that this result holds even in the case β = 1. Hence the magnitude of the feedback

that expectations have on the process plays no role for the memory of the process under RE.

As we will see below, this is very different from what happens under learning, because under

learning the memory of yt crucially depends on the proximity of β to 1.

3.2 Decreasing gain least squares

When agents learn using DGLS, the learning algorithm has time-varying coefficients and the

resulting process yt is nonstationary. It is well-known that for the class of learning algorithms

we consider, decreasing gain learning in this model converges to the REE, see, e.g., Evans

and Honkapohja (2001, theorem 7.10). Hence yt tends to a weakly dependent process. Yet
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the convergence can be so slow that the autocorrelation of the process yt decreases very

slowly and yt may exhibit long memory. To gain some intuition for this, consider the impulse

response function (IRF) of yt+j with respect to xt under RLS learning. It is shown in Section

C in the Appendix that, if xt is i.i.d. and as t, j/t get large,

∂yt+j
∂xt

∼ βt−βj−(1−β). (10)

Expression (10) shows that the IRF is time-varying, as expected, and it decays hyperbolically

in j. Moreover, the closer β is to unity, the slower the decay of the response for any given

t. Expression (10) also shows the persistence is transitory since
∂yt+j
∂xt

→ 0 as t → ∞. Yet

when β is sufficiently close to unity, convergence is slow enough for the process yt to exhibit

long memory. The above claim is formally established for the DGLS learning algorithm in

the following result.

Theorem 2 Consider the model yt = βyet+1 + xt, with yet+1 = at as given in equation (6)

where gt ∼ θ/t, θ > 0, a0 = Op (1) and xt satisfies Assumption B. Then, as T →∞,

sd
(
T−1/2

∑T
t=1 yt

)
=


O
(
T

1
2
−θ(1−β)

)
, if θ (1− β) < 1

2 ,

O
(√

log T
)
, if θ (1− β) = 1

2 ,

O (1) , if θ (1− β) > 1
2 .

The theorem shows that the process exhibits long memory of degree d ∈
(
0, 1

2

]
when

β > 1− 1
2θ . The degree of memory is max (1/2− θ (1− β) , 0) . For RLS (θ = 1) this specializes

to max
(
β − 1

2 , 0
)
. The theorem explains a result from the learning literature on the properties

of agents’ forecasts under decreasing gain learning: even though yet+1 converges to a constant

when β < 1, asymptotic normality of yet+1 is only established when β < 1 − 1
2θ (Evans and

Honkapohja, 2001, theorem 7.10). The long memory that arises when β ≥ 1 − 1
2θ explains

why the standard central limit theorem does not apply to agents’ estimators. When β = 1,

learning does not converge and persistence is strongest in that case.

3.3 Constant gain least squares

Another leading example of a learning algorithm that features prominently in the empirical

literature is CGLS, or perpetual learning. For fixed gain, CGLS is clearly a short-window
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algorithm, but this is not an appropriate characterization when the gain parameter is small

relative to the sample size. To make this precise, we consider a local-to-zero asymptotic

nesting where the gain parameter goes to zero with the sample size.

The CGLS algorithm on the mean-plus-noise PLM (5) makes yet+1 an exponentially

weighted moving average of past yj , j ≤ t. Specifically, yet+1 = at, where

at =

(
1− ḡ

1− βḡ

)t
a0 +

ḡ

1− βḡ

t∑
i=1

(
1− ḡ

1− βḡ

)t−i
xi. (11)

So, if β is close to unity or ḡ close to zero such that (1− ḡ) / (1− βḡ) ≈ 1, at exhibits near

unit-root behavior (see Bobkoski, 1983, Phillips, 1987). Yet, a small ḡ appearing before the

summation attenuates the stochastic trend in at.

To characterize the dynamics of yt when β is large and ḡ is close to its boundaries, we

follow and extend the local-asymptotic approach of Chevillon et al. (2010). This constitutes a

nesting in which parameters are expressed in relation to the sample size. We let 1−β = cβT
−ν

and ḡ = cgT
−λ for (ν, λ) ∈ [0, 1]2 and cβ, cg strictly positive real scalars.6 Formally, this

framework means that the stochastic process of y is a triangular array {yt,T }t≤T . However,

we shall omit the dependence of β, ḡ and yt on T for notational simplicity.

Section E in the Appendix shows that the mean lag of the learning algorithm satisfies

m (κT ) = O
(
T λ
)
, (12)

so the length of the learning window δκ is equal to λ. Hence, λ > 0, implying ḡ → 0,

corresponds to long-window learning, while λ = 0 corresponds to short window learning.

The following theorem gives the implications for the memory of yt.

Theorem 3 Consider the model yt = βyet+1 +xt, where yet+1 = at given by (11), a0 = Op (1)

and xt satisfies Assumption B. Suppose that β = 1−cβT−ν and ḡ = cgT
−λ, where ν, λ ∈ [0, 1]2

and cβ, cg are positive constants. Then, as T →∞,

sd

(
T−1/2

T∑
t=1

yt

)
= O

(
Tmin(ν,1−λ)

)
. (13)

6Chevillon et al. (2010) studied only the case where ν = λ = 1/2 and xt is i.i.d. They did not consider the

implications for the memory of yt.
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Theorem 3 shows that CGLS learning with a large β generates long memory. More

specifically, the memory of the process yt depends on (i) the proximity of β to unity and (ii)

the length of the learning window. If ν = 0, i.e., β is ‘far’ from unity, the process exhibits

short memory, irrespective of the length of the learning window. For ν > 0, the memory of

the process depends on whether ν ≤ 1−λ or ν > 1−λ, i.e., on how close β is to unity relative

to the length of the learning window. When β is sufficiently close to unity, the memory of the

process is determined entirely by the length of the learning window, λ, and is nonincreasing

in λ. Persistence is, in fact, strongest when the gain is far from zero, λ = 0, i.e., when the

learning window is short. This may appear counterintutive at first, but it is entirely analogous

to what happens in fractionally integrated processes. To gain some intuition, consider the

fractional white noise process (1− L)d yt = εt, where d ∈ (−1/2, 1/2) , d 6= 0, and εt is

white noise. The memory of this process, d, is directly related to the rate of decay of the

impulse response function, i.e., the rate of decay of the coefficients of the moving average

representation, which is d− 1.7 The rate of decay of the autoregressive coefficients is −d− 1,

so it is inversely related to d. Therefore, given a unit root in the autoregressive polynomial,

a more persistent process is associated with a faster decay of the autoregressive coefficients.

In the learning model, this corresponds to a higher discounting of past observations in the

learning algorithm, i.e., a shorter learning window.

CGLS learning with a small gain parameter induces behavior that is in some sense close

to a rational expectations equilibrium, and it is referred to as ‘near-rational expectations’

in the literature, see Milani (2007). The smallest gain arises when λ = 1 in Theorem 3,

which leads to short memory. This is exactly what happens under rational expectations, see

Proposition 1. So, similarly to rational expectations, learning that is akin to near-rational

expectations cannot generate long memory.

Note that CGLS with very small gain is very different from RLS, i.e., the latter is not

the limit of the former as the gain parameter goes to zero. Heuristically, near-rational expec-

tations corresponds to the ‘limiting’ law of motion when RLS learning has converged, and

therefore, it misses all the transitional dynamics of RLS, which matter – this is exactly the

intuition behind Theorem 2.

7See, e.g., Baillie (1996, Table 2).
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3.4 Learning algorithms with hyperbolic weights

We can extend the results of the previous section to cover learning algorithms (7) that satisfy

Assumption A and have constant coefficients κt,j = κj . CGLS is such an algorithm, but

without making the gain parameter local to zero, the weights κj decay exponentially and

the length of the learning window is short. We now consider situations when weights of the

learning algorithm decay hyperbolically in j, so that we can cover long-window algorithms

without treating the gain parameter as local to zero. Such algorithms can be motivated as

hyperbolically discounted least squares. In some sense, they bridge the gap between RLS (no

discounting) and CGLS (exponential discounting). Assumption A.2 implies that κj = o
(
j−1
)
,

and the length of the learning window, δκ, depends on the rate of decay of the weights. If

κj = o
(
j−2
)
, the learning window is short under Assumption A.3, while if κj ∼ cκj

δκ−2, for

some cκ > 0 and 0 < δκ < 1, the learning window is long, with length δκ.8

As in the case of CGLS, we use the local asymptotic framework for β, β = 1 − cβT−ν ,

and suppress the triangular array notation for yt. Unlike CGLS, the weights of the learning

algorithm here do not depend on T . Thus, the ensuing results do not cover those of the

previous subsection.

For simplicity, we assume that there is an infinite history of {yt} and define the initial

beliefs ϕt as ϕt =
∑∞

j=t κjyt−j if δκ ∈ (1/2, 1) and ∆ϕt =
∑∞

j=t κj∆yt−j if δκ ∈ (0, 1/2) .9

The following result gives the memory properties of the process yt according to Definition

LM.

Theorem 4 Consider the model yt = βyet+1 + xt, with yet+1 = κ (L) yt. Suppose xt satisfies

Assumption B and that the learning algorithm κ (·) satisfies Assumption A, with δκ ∈ [0, 1),

δκ 6= 1/2, κ (1) = 1, and β = 1− cβT−ν with ν ∈ [0, 1] and cβ > 0. Then, as T →∞,

sd

(
T−1/2

T∑
t=1

yt

)
= O

(
Tmin(ν,1−δκ)

)
.

8One example of κ (L) that satisfies the above assumptions is the operator Ld = 1− (1− L)d , d ∈ (0, 1) ,

such that κj ∼ cκj−d−1, and δκ = 1− d, see Granger (1986) and Johansen (2008).
9A simplifying assumption often made in the literature is yt = 0 for t ≤ 0, see, e.g., Diebold and Rudebusch

(1991) and Tanaka (1999). Yet, it has been shown that this assumption (which is related to the difference

between Type I and Type II Fractional Brownian motions) is not innocuous for the definition of the spectral

density, so we avoid it: see Marinucci and Robinson (1999), Davidson and Hashimzade (2008, 2009).
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This result is entirely analogous to Theorem 3, where δκ = λ. When β is sufficiently close

to unity, ν > 1−δκ, we can derive expressions for the spectral density of yt at low frequencies

and the rate of decay of its autocorrelation function that accord with the alternative com-

mon definitions of long memory. These definitions rely either on the hyperbolic behavior of

the spectral density in a neighborhood of the origin or on hyperbolic rates of decay of the

autocorrelations. The definitions and corresponding theorem are given in Section H in the

Appendix. They show that the degree of memory reported in Theorem 4 coincides with the

common alternative definitions.

Our results show that the persistence of the process yt is a function of the relative values

of the length of the learning window and the proximity of β to unity. When β is sufficiently

close to unity, the memory of the process is determined entirely by the length of the learning

window, δκ, and is inversely related to the latter. Theorem 4 also shows that if β is well below

unity, the memory of yt is short irrespective of the length of the learning window. So, β → 1

is necessary for long memory in yt under learning algorithms with hyperbolic discounting.

4 Simulations

This section presents simulation evidence in support of the analytical results given above.

We generate samples of {yt} from (1) under the RLS and CGLS learning algorithms listed

in Table 1. The exogenous variable xt is assumed to be i.i.d. normal with mean zero, and

its variance is normalized to 1 without loss of generality. We use a relatively long sample

of size T = 1000 and various values of the parameters β and ḡ. We study the behavior

of the variance of partial sums, the spectral density, and the popular Geweke and Porter-

Hudak (1983) (henceforth GPH) and the Robinson (1995) maximum local Whittle likelihood

estimators of the fractional differencing parameter d.10 We also report the power of tests

of the null hypotheses d = 0 and d = 1. The number of Monte Carlo replications is 10,000.

Additional figures reporting the rate of growth of the variance of partial sums and the densities

of estimators of d are available in a supplementary appendix.

Figure 1 reports the Monte Carlo average log sample periodogram against the log fre-

quency (log ω). This constitutes a standard visual evaluation of the presence of long range

10We use n =
⌊
T 1/2

⌋
Fourier ordinates, where bxc denote the integer part of x.

14



/Users/chevillon/Documents/Z/Dropbox/learning/learning2/notes/Figure1.png  10/10/13 18:47:39

Page: 1 of 1

β=0 
β=0.5 
β=0.9 

β=0.1 
β=0.8 
β=0.99 

-5.0 -4.5 -4.0 -3.5 -3.0 -2.5 -2.0

-1

0

1

2

3
RLS

β=0 
β=0.5 
β=0.9 

β=0.1 
β=0.8 
β=0.99 

-5.0 -4.5 -4.0 -3.5 -3.0 -2.5 -2.0

0.0

2.5

5.0

CGLS, ḡ = 0.01
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Figure 1: Monte Carlo averages over 10, 000 replications of the log periodogram against

the log of the first
√
T Fourier frequencies with T = 1, 000 observations. The model is

yt = βyet+1 +xt, xt
i.i.d.∼ N (0, 1) , and yet+1 is determined by RLS (top left panel) or CGLS (all

other panels) learning.
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Mean of d̂ Pr(Reject d = 0) Pr(Reject d = 1)

β GPH Whittle GPH Whittle GPH Whittle

0.00 0.001 -0.011 0.075 0.069 0.938 0.996

0.10 0.006 -0.007 0.081 0.077 0.924 0.993

0.50 0.055 0.039 0.179 0.182 0.797 0.951

0.80 0.291 0.245 0.656 0.677 0.563 0.755

0.90 0.438 0.378 0.805 0.817 0.467 0.635

0.99 0.573 0.510 0.890 0.899 0.376 0.520

Table 2: The table records estimates and tests on the long memory d for yt = βyet+1+xt, under

RLS learning. The data is generated as xt
i.i.d.∼ N (0, 1), T = 1000 and the number of Monte

Carlo replications is 10000. GPH is the Geweke & Porter-Hudak (1983) estimator and Whittle

is the Robinson (1995) maximum local Whittle likelihood estimator. Pr (Reject d = 0) and

Pr (Reject d = 1) are the empirical rejection frequencies of one-sided 5% level tests of H0 :

d = 0 against H1 : d > 0, and H0 : d = 1 against H1 : d < 1, resp.

dependence if the log periodogram is linearly decreasing in log ω. When the learning algo-

rithm is RLS, the figure indicates that yt exhibits long memory for β > 1/2 and the degree of

long memory increases with β. Table 2 records the means of the estimators, and the empirical

rejection frequency (power) of tests of the hypotheses d = 0 and d = 1 (the latter is based on

a test of d = 0 for ∆yt) against the one-sided alternatives d > 0 and d < 1 respectively. Ev-

idently, E(d̂) increases with β in accordance with Theorem 2, i.e., E(d̂) ≈ max (0, β − 1/2).

Figure 1 and Table 3 report the corresponding statistics for various values of ḡ under CGLS

learning. The behavior of E(d̂) as well as Pr (Reject d = 0) and Pr (Reject d = 1) in terms

of β and ḡ accords with Theorem 3. Specifically, E(d̂) is increasing in β given ḡ, and weakly

increasing in ḡ given β. Since T is fixed, a higher ḡ corresponds to a shorter learning window,

so the memory of the process is decreasing in the length of the learning window, in accordance

with Theorem 3.

Unreported figures (available in the supplementary appendix) show that the log of

sd
(
T−1/2

∑T
t=1 yt

)
increases linearly with log T and that the growth rate of the ratio

sd
(
T−1/2

∑T
t=1 yt

)
/ log T tends quickly to the values the theorems imply for the degree

of memory under both RLS learning and CGLS learning with local parameters. We also

present there the densities of the estimators of d which complement the rejection probabilities
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Mean of d̂ Pr(Reject d = 0) Pr(Reject d = 1)

ḡ β GPH Whittle GPH Whittle GPH Whittle

0.01 0.10 0.018 0.005 0.096 0.095 0.923 0.993

0.50 0.119 0.104 0.319 0.364 0.797 0.951

0.80 0.458 0.410 0.834 0.872 0.569 0.764

0.90 0.657 0.599 0.930 0.948 0.479 0.655

0.99 0.807 0.761 0.970 0.980 0.401 0.560

0.03 0.10 0.032 0.019 0.117 0.122 0.924 0.993

0.50 0.194 0.181 0.525 0.626 0.796 0.947

0.80 0.539 0.498 0.957 0.981 0.553 0.718

0.90 0.770 0.720 0.990 0.996 0.454 0.599

0.99 0.934 0.909 0.999 1.000 0.447 0.622

0.10 0.10 0.031 0.019 0.116 0.120 0.929 0.994

0.50 0.216 0.212 0.598 0.717 0.822 0.956

0.80 0.539 0.532 0.989 0.998 0.501 0.649

0.90 0.765 0.741 1.000 1.000 0.298 0.405

0.99 0.980 0.970 1.000 1.000 0.206 0.281

Table 3: The table records estimates and tests on the long memory d for yt = βyet+1+xt, under

CGLS learning with gain parameter ḡ. The data is generated as xt
i.i.d.∼ N (0, 1), T = 1000 and

the number of Monte Carlo replications is 10000. GPH is the Geweke & Porter-Hudak (1983)

estimator and Whittle is the Robinson (1995) maximum local Whittle likelihood estimator.

Pr (Reject d = 0) and Pr (Reject d = 1) are the empirical rejection frequencies of one-sided

5% level tests of H0 : d = 0 against H1 : d > 0, and H0 : d = 1 against H1 : d < 1, resp.
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recorded in Tables 2 and 3.

5 Application to Present Value Models

We now consider the implications of learning in present value models of stock prices and

exchange rates. Specifically, we focus on the Campbell and Shiller (1987) model for stock

prices, and the models of Engel and West (2005) for exchange rates. Under rational expec-

tations, both models exhibit features that appear counterfactual and have led to the famous

empirical puzzles of excess return predictability and the forward premium anomaly. Some

explanations for these puzzles that have been proposed in the literature rely on the presence

of long memory that is attributed to persistent shocks and is therefore of exogenous origin,

see Baillie and Bollerslev (2000) and Maynard and Phillips (2001). Here, we examine whether

learning can account for the persistence observed in the data even when the exogenous shocks

have short memory.

There are some related papers that report results complementary to ours. Benhabib

and Dave (2013) studied models for asset prices and show that some forms of learning may

generate a power law for the distribution of the log dividend-price ratio. Branch and Evans

(2010), and Chakraborty and Evans (2008) studied the potential of adaptive learning to

explain the empirical puzzles. The former focus on explaining regime-switching in returns

and their volatility, rather than low frequency properties of the dividend-price ratio, and the

latter assume that fundamentals are strongly persistent.

5.1 Stock prices

Let Pt, Dt and rt denote the price, dividend and excess return, respectively, of an index of

stocks. Under the rational expectations asset pricing model of Campbell and Shiller (1988),

the log dividend-price ratio is given by

log
Dt

Pt
= c+ Et

∞∑
j=0

βj (∆ logDt+j+1 − rt+j+1) , (14)

where c, β are log-linearization parameters, see also Campbell, Lo and McKinlay (1996, chap-

ter 7). Equation (14) obtains as the bubble-free solution of the following first-order difference
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Figure 2: Log dividend-price ratio, returns and dividend growth for S&P annual index data.

equation

log
Dt

Pt
= (1− β) c+ βEt

(
log

Dt+1

Pt+1

)
+ Et (∆ logDt+1 − rt+1) . (15)

The above equation can be written in the form (1) with yt = log Dt
Pt

and xt = (1− β) c +

Et (∆ logDt+1 − rt+1) . We have data on yt, but we do not observe the driving process xt, be-

cause it depends on expected returns and dividend growth which are unobserved. Proposition

1 shows that if xt exhibits short memory, then yt should also exhibit short memory.

Figure 2 plots measures of log (Dt/Pt), rt and ∆ logDt using annual data on the Standard

and Poor’s (S&P) stock index over the period 1871-2011 available from Robert Shiller’s

website.11 An apparently puzzling feature of the data is that the log dividend-price ratio

exhibits very strong persistence, while dividend growth and excess returns show hardly any

signs of persistence. This is demonstrated using two of the most recent estimators of the

degree of memory which are both efficient and consistent under weak assumptions (Shimotsu

11http://www.econ.yale.edu/˜shiller/data/chapt26.xls
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Panel A: Stock prices and dividends

Estimator log(Dt/Pt) r ∆ log(Dt)

2ELW 0.85 0.13 0.11

FELW 0.79 0.13 0.05

s.e. 0.15 0.15 0.15

Panel B: Forward premia

Estimator Canada France Germany Italy Japan UK

d̂2ELW 0.52 0.43 0.80 0.75 0.63 0.65

d̂FELW 0.50 0.50 0.80 0.68 0.63 0.50

s.e. 0.14 0.14 0.14 0.15 0.15 0.14

Sample size 151 151 151 138 137 151

Table 4: Estimates of the degree of long memory. 2ELW is the Two-Step Exact Whittle

Likelihood Estimator of Shimotsu and Phillips (2005) and Shimotsu (2010), FELW is the

Nonstationary-Extended local Whittle estimator of Abadir et al. (2007). Standard errors are

the same for both estimators. Panel A corresponds to annual S&P data since 1871. Panel B

corresponds to quarterly Eurodollar interest differentials for each of the indicated currencies

from the mid-1970s.

and Phillips, 2005, Shimotsu 2010, and Abadir, Distaso and Giraitis, 2007), as reported

in Panel A of Table 4. Both estimators show that yt exhibits long memory with memory

parameter 0.79 and 0.85, and significantly different from zero, while ∆ logDt and rt exhibit

short memory.

We cannot use these empirical findings to infer that the low frequency variation in the data

is inconsistent with the canonical asset pricing model for stocks under rational expectations.

Specifically, an extension of an argument in Campbell, Lo and McKinlay (1996, sec. 7.1.4)

can be used to show that realized returns and dividend growth can appear to exhibit short

memory even though expected returns and/or dividend growth may have a degree of long

memory that is sufficient to explain the persistence in the log dividend-price ratio. Thus,

the canonical asset pricing model (14) is consistent with the observed long memory in the

dividend-price ratio under rational expectations if the forcing variable xt exhibits strong
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log (Dt/Pt) Canada France Germany Italy Japan UK

2ELW 0.23 0.11 0.04 0.20 0.15 0.12 0.08

FELW 0.24 0.12 0.04 0.21 0.15 0.12 0.08

Table 5: The table reports the minimum value of the gain parameter such that a t-test of

H0 : d = 0 versus H1 : d > 0 is not rejected for xt = yt − βyet+1 at a 5% asymptotic nominal

level of significance. For details of estimators and data, see Table 4.

persistence but not if xt is a short memory process that satisfies Assumption B.

We now turn to the question of whether it is possible to explain the observed low frequency

variation in log (Dt/Pt) endogenously using learning, that is, when the exogenous process xt

exhibits short memory. In our empirical analysis, we calibrate β to 0.96, based on Campbell,

Lo and McKinlay (1996, chapter 7, p. 261). For any given learning algorithm, characterized

by some parameter ϑ, say, we compute the expectation under learning, denoted yet+1 (ϑ), and

xt (ϑ) = yt − βyet+1 (ϑ) . We then test the null hypothesis that the memory parameter, d, of

xt (ϑ) is zero against a one-sided alternative that it is positive. We use one-sided t-tests based

on the Shimotsu and Phillips (2005) and Abadir et al. (2007) estimators, as in Table 4. If

there is a value of ϑ for which the test does not reject the null hypothesis, we can conclude

that there is a learning algorithm of the type indexed by ϑ that can explain the low frequency

variation in yt.

We consider the two classes of learning algorithms studied earlier: CGLS, with ϑ = ḡ ∈

(0, 1) ; and DGLS, with ϑ = θ ∈ [1, 5] . Theorem 3 implies that, when β is close to one, the

memory of yt is increasing in ḡ, so we report the minimum value of ḡ for which the null

hypothesis is not rejected, i.e., the minimum value of ḡ that is consistent with the memory

of yt under CGLS learning when xt has short memory. The results for log (Dt/Pt) are given

in the first column of Table 5. Both tests yield similar values of ḡ = 0.23 and 0.24.12 Next,

we turn to DGLS algorithms covered in Theorem 2. We find that there is no value of θ for

which the null hypothesis is accepted, so we conclude that DGLS learning dynamics, under

the PLM considered, do not match the low frequency variation in the data.

12Benhabib and Dave (2013) report estimates of the gain parameter of that order of magnitude. They

identify the gain though the implied tail distribution of yt.
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5.2 Exchange rates

The forward premium anomaly constitutes another puzzling empirical feature that is related

to present value models and has been explained via long memory, see Maynard and Phillips

(2001). The puzzle originates from the Uncovered Interest Parity (UIP) equation:

Et [st+1 − st] = ft − st = it − i∗t (16)

where st is the log spot exchange rate, ft is the log one-period forward rate, and it, i
∗
t are

the one-period log returns on domestic and foreign risk-free bonds and the second equality

follows from the covered interest parity. The UIP under the efficient markets hypothesis has

been tested since Fama (1984) as the null H0 : (c, γ) = (0, 1) in the regression

∆st = c+ γ (ft−1 − st−1) + εt. (17)

The anomaly lies in the rejection of H0 with an estimate γ̂ << 1, often negative.

Baillie and Bollerslev (2000) and Maynard and Phillips (2001) suggest econometric ex-

planations of this puzzle that rely on strong persistence of the forward premium. Baillie and

Bollerslev (2000) provide “evidence that this so-called anomaly may be viewed mainly as

a statistical phenomenon that occurs because of the very persistent autocorrelation in the

forward premium.” Their explanation is based on persistent volatility. Maynard and Phillips

(2001) show that if the forward premium it − i∗t is fractionally integrated and ∆st is a short

memory process that satisfies our Assumption B, then OLS estimates of γ in (17) converge

to zero and have considerable probability of being negative in finite samples. They provide

evidence of long memory in forward-premia for several countries relative to the US dollar. We

look at the data on three-month Eurodollar interest differentials for six countries, Canada,

France, Germany, Italy, Japan and the UK, over the period ranging from the mid-1970s to

2012 (starting points vary by country). The data set is the one used by Engel and West

(2005), updated from Thomson Datastream.13 Figure 3 plots the time series, and Panel B of

Table 4 provides estimates of their memory parameters. We see that all series exhibit strong

persistence with estimates of d greater than 0.4, corroborating the results in Maynard and

Phillips (2001).

13Available from http://www.ssc.wisc.edu/˜cengel/Data/Fundamentals/data.htm and Datastream under

mnemonics S20520, S20544, S20544, S98803, S20963, S20508 and for the US: S20514.
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Figure 3: Forward premia with respect to the US dollar for six countries.
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A possible explanation for the strong persistence in the forward premium is the presence

of an exogenous time-varying risk premium, see Engel (1996). Under this explanation, the

UIP equation becomes

Et [st+1 − st] = it − i∗t + ρt, (18)

where ρt is an unobserved process that represents a time-varying risk premium. In order to

match the long memory of the forward premia under rational expectations, the exogenous

risk premium ρt must exhibit long memory, too, since ∆st appears close to i.i.d., see Engel

and West (2005).

We investigate whether learning dynamics can generate enough persistence to match the

low frequency variation in the forward premia, without assuming that it arises exogenously

through the risk premium. We consider the two exchange rate models studied in Engel and

West (2005), a money-income model with an exogenous real exchange rate, and a Taylor

rule model where the foreign country has an explicit exchange rate target. We show that

each of these models implies a forward-looking equation for the forward premium yt = it− i∗t
of the form (1), with a different driving process xt, and a different interpretation of the

coefficient β for each model (derivations are given in Section I of the Appendix). Specifically,

letting zt denote a vector of ‘fundamentals’ that includes money, income, price and inflation

differentials, the real exchange rate, and a nominal exchange rate target, it can be shown

that yt follows (1) with xt = (1− β) (b′Et∆zt+1 − ρt) , where b is a vector of coefficients

that depends on the model. In the money income model, β is a function of the interest

semi-elasticity of money demand, while in the Taylor rule model, β is inversely related to the

degree of the intervention of foreign monetary authorities to target the exchange rate. Using

past empirical studies, Engel and West (2005) calibrate β within the range 0.97−0.98 for the

money income model and 0.975− 0.988 for the Taylor rule model. For the empirical analysis

here we choose the value β = 0.98, which covers both models.

We perform the same analysis as in the previous subsection, to identify any learning algo-

rithms that can explain the persistence in yt when xt is short memory. The results are entirely

analogous to the case of the dividend-price ratio. Specifically, we find no DGLS learning al-

gorithm that can explain the long memory in the forward premia when the fundamentals

have short memory, but we do find CGLS learning algorithms that can. The minimum gain
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parameters needed for each country are reported in columns 2-7 of Table 5. The smallest gain

parameter corresponds to France (0.04), and the largest to Germany (0.21). These gains are

somewhat higher than the values typically used in the applied learning literature, see, e.g.,

Chakraborty and Evans (2008) for this application. All in all, our conclusions are analogous

to the case of the dividend-price ratio.

6 Conclusion

We studied the implications of learning in models where endogenous variables depend on

agents’ expectations. In a prototypical representative-agent forward-looking model with lin-

ear learning algorithms, we found that learning can generate strong persistence. The degree

of persistence induced by learning depends negatively on the weight agents place on past

observations when they update their beliefs, and positively on the magnitude of the feedback

from expectations to the endogenous variable. In the special case of the prototypical long-

window learning algorithm known as recursive least squares, long memory arises when the

coefficient on expectations is greater than a half. In algorithms with shorter window, long

memory provides an approximation to the low-frequency variation of the endogenous vari-

able. Importantly, long memory arises endogenously here, due to the self-referrential nature

of the model, without the need for any persistence in the exogenous shocks. This is distinctly

different from the behavior of the model under rational expectations, where the memory of

the endogenous variable is determined exogenously and the feedback on expectations has no

impact. Moreover, our results are obtained without any of the features that have been previ-

ously shown in the literature to be associated with long memory, such as structural change,

heterogeneity and nonlinearities. Finally, this property of learning can be used to shed light

on some well-known empirical puzzles in present value models.
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Appendix

A WLS interpretation of DGLS

The model of Malmendier and Nagel (2013) assumes a non-increasing gain algorithm with

gain sequence gt = min (1, θ/t) . So, denoting by dθe the ceiling of θ (i.e.,the smallest integer

as least as large as θ),

yet+1 = at = ydθe

t−dθe−1∏
i=0

(1− gt−i) +

t−dθe−1∑
j=0

[
gt−j

j−1∏
i=0

(1− gt−i)

]
yt−j

κt,j =
wt,j∑
j wt,j

=

 θ
t−j
∏t
i=t−j+1

i−θ
i , if j < t− dθe ;

0, j ≥ t− dθe .
.

Since q (q + 1) ... (q + n) = Γ(q+n+1)
Γ(q) if q is not a negative integer, we write

κt,j =

 θ Γ(t+1−θ)
Γ(t−j+1−θ)

Γ(t−j)
Γ(t+1) , if j < t− dθe ;

0, if j ≥ t− dθe .

Hence,

t∑
j=1

jκt,j = θ

t−dθe−1∑
j=1

j
Γ (t+ 1− θ)

Γ (t− j + 1− θ)
Γ (t− j)
Γ (t+ 1)

= θ
Γ (t+ 1− θ)

Γ (t+ 1)

t−1∑
j=dθe+1

(t− j) Γ (j)

Γ (j + 1− θ)
.

Using Stirling’s fomula that for j large (see Baillie, 1996, p. 20):

Γ (j + a)

Γ (j + b)
∼ ja−b,

it follows that

t∑
j=1

jκt,j ∼ θt−θ
t−1∑

j=dθe+1

(t− j) jθ−1

∼ θt1−θ
t−1∑

j=dθe+1

jθ−1 − θt−θ
t−1∑

j=dθe+1

jθ.

Now using Γ (x+ 1) = xΓ (x) ,

t∑
j=1

jκt,j ∼ t1−θ
[
tθ − dθeθ

]
− θ

1 + θ
t−θ
[
t1+θ − dθe1+θ

]
∼ t

1 + θ
.
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So, the length of the learning window δκ in Definition LW is unity.

Now, κt,j =
wt,j∑
i wt,i

and

t∑
j=0

κt,j =
θ

t
+ θ

Γ (t+ 1− θ)
Γ (t+ 1)

t−dθe−1∑
j=1

Γ (t− j)
Γ (t− j + 1− θ)

∼ θt−θ
t−1∑

j=dθe+1

jθ−1 = t−θ
(
tθ − dθeθ

)
→ 1.

Note that κt,j = θΓ(t+1−θ)
Γ(t+1)

Γ(t−j)
Γ(t−j+1−θ) ∼ θt

−θ (t− j)θ−1 for t and t− j large, with j < t−dθe ,

in which case the least-squares weights satisfy:

wt,j =
κt,j∑t
i=0 κt,i

∼ θ

t

(
t− j
t

)θ−1

.

B Proof of Proposition 1

We look for a solution yt =
∑∞

j=0 ψjηt−j that satisfies yt = βEtyt+1 + xt with β ≤ 1. This

implies

∞∑
j=0

(ψj − βψj+1) ηt−j =
∞∑
j=0

ϑjηt−j .

Identifying the coefficients, it follows that ψj − βψj+1 = ϑj for all j ≥ 0, so

ψj = ϑj + βψj+1 =
∞∑
k=j

βk−jϑk.

Hence as j → ∞, ψj → 0 and the rate of decay of the (ψj) coefficients will be slowest when

β = 1. When β < 1,

ψj = O

(
ϑj

∞∑
k=0

βk

)
= O (ϑj) ,

so
∣∣∣∑∞j=0 ψj

∣∣∣ <∞ if
∣∣∣∑∞j=0 ϑj

∣∣∣ <∞. We then use Theorem 3.11 of Phillips and Solo (1992)

who show that yt then satisfies a Central Limit Theorem.

If β = 1, then ψj =
∑∞

k=j ϑk so

∞∑
j=0

ψj =
∞∑
j=0

(j + 1)ϑj

and the result follows from the assumption
∑∞

j=0 j |ϑj | <∞.
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C Derivation of expression (10)

Substituting yet+1 = 1
t

∑t
s=1 ys into (1) yields

yt = β
1

t

t∑
s=1

ys + xt =
t

t− β
xt +

β

t− β

t−1∑
s=1

t−1∏
k=s

k

k − β
xs.

Hence,

∂yt+j
∂xt

=
β

t+ j − β

t+j−1∏
k=t

k

k − β
= β

Γ (t+ j) Γ (t− β)

Γ (t) Γ (t+ j + 1− β)

so using Stirling’s formula, as (t, j/t)→ (∞,∞) ,

∂yt+j
∂xt

∼ βt−β (t+ j)−(1−β) = βt−1 (1 + j/t)−(1−β)

∼ βt−βj−(1−β).

D Proof of Theorem 2

In the proof of the theorem, we make use of the following lemma that derives the rate of

decay of the autocovariance of an Assumption B process xt, and is an extension of a result

mentioned in Hosking (1996) whose proof is in Hosking (1994, p. 5). Hosking’s result is for

a ∈ (1/2, 1) but we show that the result holds also for a > 1, a not an integer.

Lemma 5 If xt =
∑∞

j=0 ϑjεt−j , where ϑj ∼ δj−a, δ > 0, a > 1, a 6∈ N, and εt is white noise

with finite variance σ2
ε then γx (j) ∼ cxj1−2a, where cx > 0 is a constant.

Proof. Assume that a is not an integer. For k ≥ 0, let

Ψk = δ
Γ (k + 1− a)

Γ (k + 1)

which is defined by continuity when k + 1 − a < 0 and |k + 1− a| 6∈ N. Stirling’s formula

implies that as k →∞, Ψk ∼ δk−a. Then (i) there exists C > 0 such that |ϑk| ≤ CΨk for all

k ≥ 0; also (ii) for all ε > 0, there exists K such that for k ≥ K, ϑk ∈ ((1− ε) Ψk, (1 + ε) Ψk) .

Then,

∞∑
k=0

ΨkΨk+j = δ2
∞∑
j=0

Γ (k + 1− a)

Γ (k + 1)

Γ (k + j + 1− a)

Γ (k + j + 1)
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which can be expressed in terms of the hypergeometric function F (1− a, j + 1− a; j + 1; 1),

which is defined for these parameter values, since j+1 > (1− a)+(j + 1− a) . Using Gauss’s

theorem for the value at F (·, ·; ·; 1) expressed in terms of Gamma functions, we obtain as

j →∞,
∞∑
k=0

ΨkΨk+j = δ2 Γ (1− a) Γ (2a− 1) Γ (j + 1− a)

Γ (a) Γ (j + a)

∼ δ2 Γ (1− a) Γ (2a− 1)

Γ (a)
j1−2a = O

(
j1−2a

)
.

where the second line follows using Stirling’s formula. Now γx (j) = σ2
ε

∑∞
k=0 ϑkϑk+j and∣∣∣∣∣j2a−1

(
γx (j)− σ2

ε

∞∑
k=0

ΨkΨk+j

)∣∣∣∣∣
≤ σ2

ε j
2a−1

(
K−1∑
k=0

|ϑkϑk+j |+
K−1∑
k=0

ΨkΨk+j +
∞∑
k=K

|ϑkϑk+j −ΨkΨk+j |

)

≤ σ2
ε j

2a−1K
(
C2 + 1

)
Ψ0Ψj + σ2

ε j
2a−1

(
2ε+ ε2

) ∞∑
k=K

ΨkΨk+j

Hence, since σ2
ε j

2a−1K
(
C2 + 1

)
Ψ0Ψj = O

(
ja−1

)
, there exist M > 0 such that as j →∞∣∣∣∣∣j2a−1

(
γx (j)− σ2

ε

∞∑
k=0

ΨkΨk+j

)∣∣∣∣∣ ≤Mε

so

γx (j) ∼ δ2 Γ (1− a) Γ (2a− 1)

Γ (a)
j1−2a.

Proof of the theorem Consider the partial sum of yt, ST =
∑T

t=1 yt =
∑T

t=1 (βat + xt).

Using expressions (1) and (6a), at = 1−gt
1−βgtat−1 + gt

1−βgtxt or

at =
t∏

j=1

(
1− (1− β) gj

1− βgj

)
a0 +

t∑
i=1

t∏
j=i+1

(
1− (1− β) gj

1− βgj

)
gixi

1− βgi
,

with
∏t
j=t+1

(
1− (1−β)gj

1−βgj

)
≡ 1. When gi → 0, gi

1−βgi = gi + o (gi), so the order of magnitude

of at is the same as that of14

a∗t =

t∏
j=1

(1− (1− β) gj) a0 +

t∑
i=1

t∏
j=i+1

(1− (1− β) gj) gixi. (19)

14In the specific situation where g1 = 1 the impact of a0 on at is zero contrary to that on a∗t . This only

concerns g1 since gi+1 < gi ≤ 1 for all i ≥ 1; it does not affect the magnitude of Var [ST ] as we show later.
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Hence, we can infer the order of magnitude of Var (ST ) from that of Var (S∗T ), where S∗T =∑T
t=1 (βa∗t + xt) . Using (19), S∗T can be written as

S∗T = βhT+1a0 +
T∑
t=1

φT,txt,

where φT,t = 1+βgt
∑T

i=t

∏i
j=t+1 (1− (1− β) gj) and ht =

∑t−1
i=1

∏i
j=1 (1− (1− β) gj) . Note

that φT,t = 1 + β gtkt (hT+1 − ht) , where kt =
∏t
j=1 (1− (1− β) gj) .

For clarity, we first consider the case when xt is serially uncorrelated, and treat the general

case at the end. The variance of S∗T is given by

Var [S∗T ] = β2h2
T+1Var (a0) + σ2

x

T∑
t=1

φ2
T,t, (20)

where σ2
x = Var [xt] . We study each of the two terms on the right hand side of the above

expression.

The asymptotic rates of ht and kt depend on the value of (1− β) θ. Since gi ∼ θi−1,

g2
i = o (gi) . We first assume (1− β) θ 6= 0. Then for i large enough so (1− β) gi < 1,

log (1− (1− β) gi) = − (1− β) gi + o (gi) and log kt = − (1− β) θ log t + o (log t) . Thus,

gt/kt ∼ θt−1/t−(1−β)θ = θt(1−β)θ−1. Turning to ht =
∑t−1

i=1 ki,

ht ∼


t1−(1−β)θ/ [1− (1− β) θ] , if (1− β) θ < 1;

log t, if (1− β) θ = 1;

ζ ((1− β) θ) , if (1− β) θ > 1,

(21)

where ζ (u) is Riemann’s zeta function evaluated at u > 1 (the case β = 0 is included for

completeness, since it plays no role in the asymptotic rates of Var (S∗T )). It follows that as

t→∞, for t ≤ T,

φT,t ∼


1 + βθ

1−(1−β)θ

((
T
t

)1−(1−β)θ − 1
)
, if (1− β) θ < 1;

1 + βθ log T
t , if (1− β) θ = 1;

1 + βθt(1−β)θ−1
(∑T+1

i=t i
−(1−β)θ

)
, if (1− β) θ > 1,

(22)

Consider first (1− β) θ < 1 so

φ2
T,t ∼

[
βθ

1− (1− β) θ

]2(T
t

)2[1−(1−β)θ]

30



The second term in variance of S∗T , see eq. (20), is:

T∑
t=1

φ2
T,t ∼


[

βθ
1−(1−β)θ

]2
ζ (2 [1− (1− β) θ])T 2[1−(1−β)θ], if (1− β) θ < 1

2 ;

4 (1− θ)2 T log T, if (1− β) θ = 1
2 ;[

1−θ
1−(1−β)θ

]2
1

1−2[1−(1−β)θ]T, if 1
2 < (1− β) θ < 1.

Now, if (1− β) θ = 1, then

T∑
t=1

φ2
T,t ∼

[
βθ

1− (1− β) θ

]2 [
T log2 T − 2 log T (T log T − T ) + T

(
log2 T − 2 log T + 2

)]
= 2

[
βθ

1− (1− β) θ

]2

T

Finally, if (1− β) θ > 1, then φT,t ∼ 1 + βθt(1−β)θ−1
(∑T+1

i=t i
−(1−β)θ

)
, where

1 ≤ 1 + βθt(1−β)θ−1

(
T+1∑
i=t

i−(1−β)θ

)
≤ 1− θ

1− (1− β) θ
+

βθ

1− (1− β) θ

(
T + 1

t

)1−(1−β)θ

.

Hence, since

T∑
t=1

[
1− θ

1− (1− β) θ

(
T + 1

t

)1−(1−β)θ
]2

= O (T ) (23)

it follows that
∑T

t=1 φ
2
T,t = O (T ) . Summarizing,

T∑
t=1

φ2
T,t =


O
(
T 2[1−(1−β)θ]

)
, if (1− β) θ < 1

2 ;

O (T log T ) , if (1− β) θ = 1
2 ;

O (T ) , if (1− β) θ > 1
2 .

(24)

Next, we examine the order of magnitude of the first term in eq. (20), h2
T+1Var (a0) . First,

note that:

h2
T+1 =


O
(
T 2[1−(1−β)θ]

)
, if (1− β) θ < 1;

O
(
log2 T

)
, if (1− β) θ = 1;

O (1) , if (1− β) θ > 1.

Combining with the assumption that a0 = Op (1) , the contribution of h2
T+1Var (a0) to

T−1Var [S∗T ] is asymptotically negligible when (1− β) θ ≥ 1/2. When (1− β) θ < 1/2,

T−1h2
T+1Var (a0) = O

(
T 1−2(1−β)θ

)
. The result of the theorem then follows from the rates in

(24).
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When (1− β) θ = 0, which only arises if β = 1, then θ is irrelevant for the magnitude so

we set it to unity. To ensure a proper definition of the learning algorithm we let ye2 = y1−xt,

i.e., κ1,0 = 1 and ϕ1 = −x1 in 7, so for t ≥ 2,

at = y1 +
t∑
i=2

xi
i− 1

and

ST = y1T +
T

T − 1
xT + T

T−1∑
t=2

xt
t− 1

. (25)

Hence expression (22) extends to the case where β = 1, and as T →∞

sd
(
T−1/2ST

)
= O

(
T 1/2

)
.

Now, we turn to the general case where xt is not serially uncorrelated, and denote by

γx (·) its autocovariance function. Then Var (S∗T ) contains the following term, in addition to

the two terms in eq. (20):

2
T−1∑
t=1

φT,t

T−t∑
i=1

φT,t+iγx (i) . (26)

First, we use Lemma 5 to characterize the rate of decay of γx (j) . Assumption B imposes

that
∑∞

j=0 j |ϑj | <∞, so there exists a > 2, a 6∈ N, such that |ϑj | = O (j−a) Hence, γx (j) =

O (j−$) for $ = 2a− 1 > 3, and there exist cx > 0 such that

|γx (j)| ≤ cxj−$.

Now, consider∣∣∣∣∣
T−1∑
t=1

φT,t

T−t∑
i=1

φT,t+iγx (i)

∣∣∣∣∣ ≤ cx
T−1∑
t=1

φT,t

T−t∑
i=1

φT,t+ii
−$.

It suffices to establish that
∑T−t

i=1 φT,t+ii
−$ = O (φT,t) . Observe that

T−t∑
i=1

φT,t+ii
−$ ∼


∑T−t

i=1 i
−$ + βθ

1−(1−β)θ

∑T−t
i=1

((
T
t+i

)1−(1−β)θ
− 1

)
i−$, if (1− β) θ < 1;∑T−t

i=1 i
−$ + βθ

∑T−t
i=1 i

−$ log T
t+i , if (1− β) θ = 1;∑T−t

i=1 i
−$ + βθ

∑T−t
i=1 (t+ i)(1−β)θ−1

(∑T+1
j=t+i j

−(1−β)θ
)
i−$, if (1− β) θ > 1,
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Consider first the case (1− β) θ > 1. Then,

T−t∑
i=1

i−$ + βθ
T−t∑
i=1

(t+ i)(1−β)θ−1

 T+1∑
j=t+i

j−(1−β)θ

 i−$ (27)

∈

T−t∑
i=1

i−$,
T−t∑
i=1

i−$ + βθ
T−t∑
i=1

(t+ i)(1−β)θ−1

 T+1∑
j=t+i

j−(1−β)θ

 i−$


with

∑T+1
j=t+i j

−(1−β)θ ≤
∫ T+1
t+i−1 u

−(1−β)θdu = ((1− β) θ − 1)−1
[
(t+ i− 1)1−(1−β)θ − (T + 1)1−(1−β)θ

]
.

So expression (27) is bounded below by 1−(T−t+1)1−$

$−1 and above by

1− (T − t+ 1)1−$

$ − 1
+

βθ

(1− β) θ − 1

T−t∑
i=1

(t+ i)(1−β)θ−1
(

(t+ i− 1)1−(1−β)θ − (T + 1)1−(1−β)θ
)
i−$

≤ 1− (T − t+ 1)1−$

$ − 1
+

βθ

(1− β) θ − 1

(
T−t∑
i=1

i−$ − (T + 1)1−(1−β)θ
T−t∑
i=1

(t+ i)(1−β)θ−1 i−$

)

≤ 1− (T − t+ 1)1−$

$ − 1
+

βθ

(1− β) θ − 1

[
1

$ − 1

]
−

(
(T − t+ 1)1−$

$ − 1
+

(T + 1)1−(1−β)θ (T − t)(1−β)θ−$

(1− β) θ −$
− (T + 1)1−(1−β)θ

(1− β) θ −$

)

Now, since $ > 1 and (1− β) θ > 1,

(T − t+ 1)1−$

$ − 1
= O (1) ,

(T + 1)1−(1−β)θ

(1− β) θ −$
= O (1) ,

and also∣∣∣∣∣(T + 1)1−(1−β)θ (T − t)(1−β)θ−$

(1− β) θ −$

∣∣∣∣∣ ≤ (T − t)1−$

|(1− β) θ −$|
= O (1) .

Hence,

T−t∑
i=1

φT,t+ii
−$ = O (1) . (28)

If (1− β) θ = 1, then

T−t∑
i=1

φT,t+ii
−$ ∼

T−t∑
i=1

i−$ + βθ
T−t∑
i=1

i−$ log
T

t+ i

=

T−t∑
i=1

i−$ + βθ

T−(t+1)∑
i=0

(T − i)−$ log
T

T + t− i
,

33



where, as T become large,

(T − i)−$ log
T

T + t− i
∼ − (T − i)−$ t− i

T
.

So,

−
T−(t+1)∑
i=0

(T − i)−$ t− i
T

=

T∑
i=t+1

i−$
T − t− i

T

≤ T − t
t

∣∣∣∣T 1−$ − t1−$

1−$

∣∣∣∣+ T−1

∣∣∣∣T 2−$ − t2−$

2−$

∣∣∣∣
= O

(
T 2−$) = O (1) ,

since $ > 2. Thus, (28) holds.

When (1− β) θ < 1 (including the case β = 1), it suffices to show that

T−t∑
i=1

φT,t+iγx (i) = O

((
T

t

)1−(1−β)θ
)
,

i.e.,

T−t∑
i=1

φT,t+ii
−$ = O

(
t(1−β)θ−1

)
. (29)

Substituting for φT,t+i from (22), and ignoring the constants, we have

T−t∑
i=1

((
T

t+ i

)1−(1−β)θ

− 1

)
i−$

= T 1−(1−β)θ
T−t∑
i=1

(t+ i)(1−β)θ−1 i−$ −
T−t∑
i=1

i−$.

The last term is bounded since $ > 3, so we focus on the first term. Using the hypergeometric

function F, we have

T−t∑
i=1

(t+ i)(1−β)θ−1 i−$ ≤
∫ T−t+1

1
(t+ i)(1−β)θ−1 i−$di

=
t(1−β)θ−1

1−$
[
u1−$F (1−$, 1− (1− β) θ; 2−$;−u/t)

]u=T−t+1

u=1

∼ t(1−β)θ−1

$ − 1
− t(1−β)θ−1

$ − 1
(T − t+ 1)1−$ F

(
1−$, 1− (1− β) θ; 2−$;−T − t+ 1

t

)
≤ t(1−β)θ−1

$ − 1
,
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where the last two steps follow from the fact that t ≤ T and $ > 1 (in fact, $ > 3 here),

and F (1−$, 1− (1− β) θ; 2−$; z) → 1 as z → 0 and remains bounded when z → −∞.

This establishes (29), and the result in the theorem follows.

E Proof of expression (12)

Under CGLS learning the algorithm is

κt (L) = ḡ

t−1∑
j=0

(1− ḡ)j Lj ,

and ϕt = a0 (1− ḡ)t. Hence

m (κt) = ḡ

t−1∑
j=1

j (1− ḡ)j = −ḡ (1− ḡ)
∂

∂ḡ

t−1∑
j=0

(1− ḡ)j

= (1− ḡ)
1− (1− ḡ)t−1 [1 + (t− 1) ḡ]

ḡ
.

Now considerm (κT ) , and assume that ḡ = cgT
−λ. Then (1− ḡ)T−1 = exp

{
(T − 1) log

(
1− cgT−λ

)}
and as T →∞

(1− ḡ)T−1 ∼ exp

{
−cg

T − 1

T λ

}
→

 0, if λ < 1;

e−cg , if λ = 1.

Turning to the mean lag, for λ < 1 (1− ḡ)t−1 [1 + (t− 1) ḡ] → 0 so m (κT ) ∼ Tλ

cg
. When

λ = 1, m (κT ) ∼ 1−e−cg [1+cg ]
cg

T, which proves (12).

F Proof of Theorem 3

Under the stated assumptions, the estimator at is generated by

at =
ḡ

1− βḡ

t∑
i=1

(
1− (1− β) ḡ

1− βḡ

)t−i
xi.

When β is local to unity and ḡ local to zero, 1− (1−β)ḡ
1−βḡ ∼ 1− (1− β) ḡ, so we define

a∗t = ḡ
t∑
i=1

(1− (1− β) ḡ)t−i xi,

which is simpler to analyze using existing results.
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Define ξt = ḡ−1a∗t such that

ξt =
t∑
i=1

(1− (1− β) ḡ)t−i xi,

with (β, ḡ) =
(
1− cβT−ν , cgT−λ

)
for (ν, λ) ∈ [0, 1]2. Several cases arise depending on the

values of λ, ν. These correspond to at exhibiting an exact unit root for ḡ = 0 or β = 1, a

near-unit root for λ+ν = 1 (see Chan and Wei, 1987, and Phillips 1987), a moderate-unit

root for λ+ν ∈ (0, 1) (see Giraitis and Phillips, 2006, Phillips and Magdalinos, 2007 and

Phillips, Magdalinos and Giraitis, 2010) and a very-near-unit root for λ+ν > 1 (see Andrews

and Guggenberger, 2007). Under xt satisfying Assumption B, their results imply:

ξT =


Op (1) , λ = ν = 0;

Op
(
T (λ+ν)/2

)
, λ+ ν ∈ (0, 1) ;

Op
(
T 1/2

)
, λ+ ν ≥ 1.

Also (1−β)ḡ
1−βḡ = O ((1− β) ḡ) implies that S∗T =

∑T
t=1 βa

∗
t + xt = Op

(∑T
t=1 βat + xt

)
. To

derive the magnitude of S∗T = βḡ
∑T

t=1 ξt−1 +
∑T

t=1 xt we notice that:

T∑
t=1

ξt =
T∑
t=1

t∑
i=1

(1− (1− β) ḡ)t−i xi =
T∑
t=1

1− (1− (1− β) ḡ)T−t+1

1− (1− (1− β) ḡ)
xt,

i.e.,

T∑
t=1

ξt =
1

(1− β) ḡ

[
T∑
t=1

xt − (1− (1− β) ḡ) ξT

]
.

Hence

ḡ

T∑
t=1

ξt =
1

(1− β)

(
T∑
t=1

xt − ξT

)
+ ḡξT . (30)

We start with the case ν + λ < 1, where ξT = o
(∑T

t=1 xt

)
. Expression (30) implies that

ḡ
∑T

t=1 ξt = Op
(
T 1/2+ν

)
and hence

sd
(
T−1/2S∗T

)
= O (T ν) .

If ν + λ = 1, then Phillips (1987) – see also Stock (1994, example 4, p. 2754) – shows that

T−1/2

(
T∑
t=1

xt − ξT

)
= T−1/2

T∑
i=1

(
1− (1− (1− β) ḡ)T−i

)
xi

⇒
∫ 1

0

(
1− e−cβcg(1−r)

)
dW (r) = Op (1) ,
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where T−1/2
∑drT e

t=1 xt ⇒ W (r) , where W (·) is a Brownian motion and ⇒ denotes weak

convergence of the associated probability measure. It follows that
∑T

t=1 xt − ξT = O
(
T 1/2

)
and expression (30) implies that ḡ

∑T
t=1 ξt = Op

(
T 1/2+ν

)
. Hence

sd
(
T−1/2S∗T

)
= O (T ν) = O

(
T 1−λ

)
.

Now, if ν + λ > 1,

T∑
t=1

xt − ξT =
T−1∑
i=0

[
1− (1− (1− β) ḡ)i

]
xT−i

= ((1− β) ḡ)

T−1∑
i=0

[
i+O

(
i2 ((1− β) ḡ)

)]
xT−i.

It is well known that
∑T−1

i=0 ixT−i = Op
(
T 3/2

)
and

∑T−1
i=0 i2xT−i = Op

(
T 5/2

)
(see, e.g.,Hamilton

1994, chap. 17). Hence (1− β) ḡ
∑T−1

i=0 i2xT−i = o
(∑T−1

i=0 ixT−i

)
, and, in expression (30):

1

(1− β)

(
T∑
t=1

xt − ξT

)
+ ḡξT = Op

(
T 3/2−λ

)
+Op

(
T 1/2−λ

)
.

When λ < 1, 3/2 − λ > 1/2 so
∑T

t=1 xt = op

(
ḡ
∑T

t=1 ξt−1

)
, and the order of magnitude of

S∗T follows from that of ḡ
∑T

t=1 ξt−1 :

sd
(
T−1/2S∗T

)
= O

(
T 1−λ

)
.

If λ = 1,
∑T

t=1 xt = Op

(
ḡ
∑T

t=1 ξt−1

)
and the previous expression also applies.

G Proof of Theorem 4

We introduce the following two lemmas which we use in the proof. These are proven in a

supplementary appendix.

Lemma 6 Let κ (L) =
∑∞

j=0 κjL
j with κj ∼ cκj

δκ−2 as j →∞, for cκ > 0 and δκ ∈ (0, 1) .

Assume κ (1) = 1. Then, there exist c∗κ 6= 0 and c∗∗κ > 0 such that

Re
(
κ
(
eiω
)
− 1
)

=
ω→0+

−c∗κω1−δκ + o
(
ω1−δκ

)
,∣∣κ (eiω)− 1

∣∣2 =
ω→0+

c∗∗κ ω
2(1−δκ) + o

(
ω2(1−δκ)

)
.
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Proof. see the supplementary appendix.

Lemma 7 Consider the model yt = βyet+1 + xt, with yet+1 = κ (L) yt. Suppose xt satisfies

Assumption B, and that the constant learning algorithm κ (·) satisfies Assumption A with

δκ ∈ (0, 1) . We assume that β is fixed and β < κ (1). Then the spectral density of yt is finite

at the origin fy (0) < ∞ and admits an upward vertical asymptote: there exists cf > 0 such

that

f
′
y (0) ∼

ω→0
−cfω−δκ . (31)

Proof. See the supplementary appendix.

In the proof of Theorem 4, we omit for notational ease the dependence of β, the spectral

densities and autocovariances on T (this is particularly important when referring to Lemma

7).

Substitute (7) into (1) to get

yt = β
t−1∑
j=0

κjyt−j + βϕt + xt,

and define κ∗ (L) = 1− κ (L) =
∑∞

j=0 κ
∗
jL

j so

(1− β) yt + β
t−1∑
j=0

κ∗jyt−j = xt + βϕt.

Summing yields

T∑
t=1

(1− β)− β
t−1∑
j=0

κ∗j

 yT−t+1 =
T∑
t=1

(xt + βϕt) . (32)

The left-hand side of the previous equation shows that the magnitude of
∑T

t=1 yt depends on

the limit of (1− β) /
∑T−1

j=0 κ
∗
j . Since κ∗ (1) = 0, if there exists λ < 1 such that κj ∼ cκj

λ−2

then κ∗j ∼ −cκjλ−2 and
∑T−1

j=0 κ
∗
j ∼ cκ

1−λT
λ−1. Under Assumption A, the previous expressions

hold letting λ = δκ when δκ ∈ (0, 1); when δκ = 0, there exists λ < 0 such that κj = O
(
jλ−2

)
and κ∗j = O

(
jλ−2

)
since Assumption A.3 rules out κj ∼ cκj−2.

Let β = 1 − cβT−ν . Defining y−t = yt1{t≤0}, we made the following assumptions about

ϕt :  ϕt = κ (L) y−t , if δκ ∈
(

1
2 , 1
)

;

∆ϕt = (1− L)κ (L) y−t , if δκ ∈
(
0, 1

2

)
.

(33)
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so (1− βκ (L)) yt = xt if δκ ∈ (1/2, 1) or (1− βκ (L)) ∆yt = ∆xt if δκ ∈ (0, 1/2) . Hence

(1− βκ (1))E (yt) = E (xt) or (1− βκ (1))E (∆yt) = E (∆xt) so the random variables yt, xt

can be expressed in deviation from their expectations. In other words, we may assume

without loss of generality and for ease of exposition that E (xt) = 0 since this does not affect

the variances and spectral densities.

Consider the case ν > 1 − δκ so (1− β) /
∑T−1

j=0 κ
∗
j → 0. This rules out δκ = 0. First

assume that δκ ∈
(

1
2 , 1
)
. Define zt = [κ∗ (L)]−1 xt with spectral density

fz (ω) =
fx (ω)

|1− κ (e−iω)|2
.

Using lemma 6, with c∗∗κ > 0, as ω → 0

fz (ω) ∼ fx (0)

c∗∗κ
ω−2(1−δκ). (34)

Beran (1994, theorem 2.2 p. 45) shows that (34) implies that

Var

(
T∑
t=1

zt

)
= O

(
T 1+2(1−δκ)

)
.

The proof is in the appendix of Beran (1989) and relies on showing that fz (ω) can be written

as
∣∣1− e−iω∣∣−2(1−δκ)

S (1/ω) where S is slowly varying at infinity.

Under assumption (33), noting that κ (L) y−t = (κ (L)− 1) y−t , expression (32) rewrites

T∑
t=1

(1− β)− β
t−1∑
j=0

κ∗j

 yT−t+1 − β
∞∑
t=0

t+T∑
j=t+1

κjy−t =
T∑
t=1

xt.

Since (1− β) = o
(∑T−1

j=0 κ
∗
j

)
, it follows that, denoting y+

t = yt − y−t ,

T∑
t=1

(1− β)− β
t−1∑
j=0

κ∗j

 yT−t+1 − β
∞∑
t=0

t+T∑
j=t+1

κjy−t

= −β

 T∑
t=1

 t−1∑
j=0

κ∗j

 yT−t+1 +

∞∑
t=0

t+T∑
j=t+1

κjy−t

+ op

 T∑
t=1

t−1∑
j=0

κ∗jyT−t+1


=

T∑
t=1

(1− κ (L)) yt + op

(
T∑
t=1

(1− κ (L)) y+
t

)
.
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Hence, using
∑T

t=1 xt =
∑T

t=1 (1− κ (L)) zt,

T∑
t=1

(1− κ (L)) yt + op

(
T∑
t=1

(1− κ (L)) y+
t

)
=

T∑
t=1

xt

T∑
t=1

(1− κ (L)) (yt − zt) + op

(
T∑
t=1

(1− κ (L)) y+
t

)
= 0

T∑
t=1

(yt − zt) + op

(
T∑
t=1

yt

)
= 0

i.e. √√√√Var

(
T−1/2

T∑
t=1

yt

)
= O

(
T 1−δκ

)
. (35)

Now, if δκ ∈ (0, 1/2) , defining ∆zt = [κ∗ (L)]−1 ∆xt, and following the previous steps

starting from (1− βκ (L)) ∆yt = ∆xt leads to

T∑
t=1

∆ (yt − zt) + op

(
T∑
t=1

∆yt

)
= 0.

The result by Beran (1989) regarding the magnitude of Var
(∑T

t=1 ∆zt

)
cannot be used here

for (1− δκ) ∈
(

1
2 , 1
)
. Yet, the spectral density of ∆zt satisfies

f∆z (ω) ∼ fx (0)

c∗∗κ
ω2δκ ,

which implies (see Lieberman and Phillips, 2008) that there exists cγ 6= 0 such that γ∆z (k) ∼

cγk
−2δκ−1. Also f∆z (0) = 0 so γ∆z (0) + 2

∑∞
k=1 γ∆z (k) = 0. The long run variance of ∆zt is

hence such that

Var

(
T−1

T∑
t=1

∆zt

)
= γ∆z (0) + 2T−1

T−1∑
k=1

(T − k) γ∆z (k)

=

(
γ∆z (0) + 2

T−1∑
k=1

γ∆z (k)

)
− 2T−1

T−1∑
k=1

kγ∆z (k)

= −
∞∑
k=T

γ∆z (k)− 2T−1
T−1∑
k=1

kγ∆z (k)

= O
(
T−2δκ

)
. (36)
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We now consider the case ν ≤ 1− δκ, starting with assuming δκ 6= 0 so ν < 1. Brillinger

(1975, theorem 5.2.1) shows that if the covariances of yt are summable,

Var
(
T−1

∑T
t=1 yt

)
fy (0)

= (2πT )−1
∫ π

−π

sin2 (Tω/2)

sin2 (ω/2)

fy (ω)

fy (0)
dω, (37)

where fy (ω) is the spectral density of yt. The function
[

sin(Tω/2)
sin(ω/2)

]2
achieves its maximum

over [−π, π] at zero where its value is T 2. As T → ∞ it remains bounded for all ω 6= 0.

It is therefore decreasing in ω in a neighborhood of 0+. For any given T, Lemma 7 – for

β fixed – shows that fy (ω) is also decreasing in such a neighborhood and
fy(ω)
fy(0) is bounded.

Both functions in the integrand of (37) being positive, their product is also decreasing in ω

in a neighborhood of 0+; it is in addition continuous, even and differentiable at all ω 6= 0.

As T → ∞, the integrand of (37) presents a pole at the origin and its behavior in the

neighborhood of zero governs the magnitude of the integral. Since the integrand achieves its

local maximum at zero, we can restrict our analysis to a neighborhood thereof, [0, θT ] with

θT = o
(
T−1

)
since sin2(TθT /2)

sin2(θT /2)

fy(ω)
fy(0) remains bounded as T → ∞ for any sequence θT such

that TθT 6→ 0.

Let ε > 0 and β = 1− cβT−ν , we develop the integrand of (37) about the origin, provided

T νθ1−δκ
T =

(
T ν/(1−δκ)θT

)1−δκ
= o (1), i.e., if ν ≤ 1 − δκ. This yields for the integral over

[0, θT ]:

(2πT )−1
∫ θT

0

(
T 2

(
1− 1

3

(
T 2 − 1

)
ω2 + o

(
T 2ω2

)))(
1− cV T νω1−δκ + o

(
T νω1−δκ

))
dω

=
T

2π

[
θT −

1

9

(
T 2 − 1

)
θ3
T −

c

2− δκ
T νθ2−δκ

T +
cV

3 (4− δκ)

(
T 2 − 1

)
T νθ4−δκ

T

]
=

T

2π

[
T−(1+ε) − T 2 − 1

9
T−3(1+ε) − cV

2− δκ
T ν−(2−δκ)(1+ε) +

cV
(
T 2 − 1

)
3 (4− δκ)

T νT−(4−δκ)(1+ε)

]

∼ 1

2π

[
T−ε − 1

9
T−3ε − cV

2− δκ
T ν−(1−δκ)−(2−δκ)ε +

cV
3 (4− δκ)

T ν−(1−δκ)−(4−δκ)ε

]
, (38)

where cV is implicitly defined from Lemma 7. Expression (38) shows that if ν ≤ 1 − δκ the

integral over [0, θT ] – and hence that over [−π, π] – remains bounded in the neighborhood

of the origin and hence
Var(T−1

∑T
t=1 yt)

fy(0) = O (1) , with fy (0) = (1− β)−2 fx (0) = O
(
T 2ν

)
.

Hence Var
(
T−1

∑T
t=1 yt

)
= O

(
T 2ν

)
and

Var

(
T−1

T∑
t=1

yt

)
= O

(
T 2ν

)
. (39)
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Finally, when (δκ, ν) = (0, 1) , Assumption A.3 implies that 0 < κ′ (1) =
∑∞

j=1 jκj < ∞.

By Lemma 2.1 of Phillips and Solo (1992), there exists a polynomial κ̃ such that

κ (L) = 1− (1− L) κ̃ (L) ,

with κ̃ (1) < ∞. κ̃ (L) = (1− L)−1 (1− κ (L)) so the roots of κ̃ coincide with the values z

such that κ (z) = 1, except at z = 1 for which κ̃ (1) = κ′ (1) > 0 (by L’Hospital’s rule and

assumption A.3). κ (z) = 1 and cκ > 0 together imply that the roots of κ̃ (L) lie outside the

unit circle (κ (z) < κ (1) = 1 for |z| ≤ 1, z 6= 1) and the process x̃t defined by κ̃ (L) x̃t = xt

is I(0) with differentiable spectral density at the origin by Assumption B (Stock, 1994, p.

2746). Hence yt satisfies the near-unit root definition of Phillips (1987):

(1− βL) yt = x̃t,

and the result follows from Stock (1994, example 4 p. 2754) since x̃t satisfies his conditions

(2.1)-(2.3).

H Alternative definitions of memory parameter for the algo-

rithm with hyperbolic weights

The following definitions of the memory parameter d, are equivalent to (9) for covariance

stationary processes, see Beran (1994) or Baillie (1996):

ρz (k) ∼ cρk2d−1, as k →∞

fz (ω) ∼ cf |ω|−2d , as ω → 0,
(40)

for some positive constants cρ, cf , where ρz (k) = Corr [zt, zt+k] is the autocorrelation function

(ACF) of a covariance stationary stochastic process zt and fz (ω) is its spectral density. For

d > 0, the autocorrelation function at long lags and the spectrum at low frequencies have the

familiar hyperbolic shape that has traditionally been used to define long memory.

Fractional integration, denoted I(d), is a well-known example of a class of processes that

exhibit long memory. When d < 1, the process is mean reverting (in the sense of Campbell

and Mankiw, 1987, that the impulse response function to fundamental innovations converges

to zero, see Cheung and Lai, 1993). Moreover, I(d) processes admit a covariance stationary
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representation when d ∈ (−1/2, 1/2), and are non-stationary if d ≥ 1/2. Long memory arises

when the degree of fractional integration is positive, d > 0. In the case of nonstationary

processes, the ACF definition of d in (40) does not apply,15 so we use the ACF/spectrum of

∆z, as in Heyde and Yang (1997):

ρ∆z (k) ∼ cρk2(d−1)−1, 1/2 < d < 1 as k →∞;

f∆z (ω) ∼ cf |ω|−2(d−1) , 1/2 < d < 1 as ω → 0.
(41)

We prove the following theorem in the supplementary appendix.

Theorem 8 Under the assumptions of Theorem 4 where the spectral density of xt has bounded

second order derivative, if ν > 1− δκ, then:

1. the spectral density fy of yt evaluated at Fourier frequencies ωj = 2πj/T with j = 1, ...n,

and n = o (T ) , satisfies as T →∞,

fy (ωj) ∼ fx (0)ω
−2(1−δκ)
j

2. the autocorrelation functions ρy of yt, or ρ∆y of ∆yt, evaluated at k = o (T ) , satisfy as

T, k →∞,

ρy (k) = O
(
k1−2δκ

)
if 1

2 < δκ < 1

ρ∆y (k) = O
(
k−2δκ−1

)
if 0 < δκ <

1
2 .

The theorem shows that the degree of memory measured in Theorem 4 through Definition

LM coincides with common alternative definitions.

I Derivation of models for the forward premium

We derive expression (1) for yt = it − i∗t from the money-income and Taylor rule models

of Engel and West (2005). We show below that both of these models imply a relationship

between the log spot exchange rate st and yt of the form

st = αyt + b′zt, (42)

15The property fz (ω) ∼ cf |ω|−2d can be applied also to nonstationary cases with 1/2 < d < 1 if fz (ω) is

defined in the sense of Solo (1992) as the limit of the expectation of the sample periodogram.
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where zt consists of price, money, income, inflation, output gap money demand shock and

policy shock differentials, and the real exchange rate, and b is a vector of parameters that is

derived below for each model. Substituting in the UIP equation (18) and re-arranging yields

st + yt = Etst+1 − ρt

(1 + α) yt + b′zt = αEtyt+1 + b′Etzt+1 − ρt

yt =
α

1 + α
Etyt+1 +

1

1 + α

[
b′Et∆zt+1 − ρt

]
.

This is in the form (1) with β = α
1+α and xt = (1− β) [b′Et∆zt+1 − ρt] .

Now, we derive (42) for each of the two models in Engel and West (2005).

Money-income model The money market relationship for the home country (Engel and

West, 2005, Equation (4) on p. 492) is given by

mt = pt + γyt − αit + vmt, (43)

where mt is the log of the home money supply, pt is the log of the home price level, it is the

level of the home interest rate, yt is the log of output, and vmt is a shock to money demand.

A similar relationship holds for the foreign country with variables m∗t , p
∗
t , y
∗
t , i
∗
t and v∗mt, and

identical coefficients α and γ. The nominal exchange rate is given by

st = pt − p∗t + qt (44)

where qt is the (exogenous) real exchange rate (Engel and West, 2005, Equation (5) on p.

493). Subtracting the foreign from the home money market relationship yields

pt − p∗t = mt −m∗t + γ (y∗t − yt) + v∗mt − vmt + α (it − i∗t ) .

Substituting this into (44) yields (42) with yt = it − i∗t and

b′zt = mt −m∗t + γ (y∗t − yt) + v∗mt − vmt + qt.

Taylor rule model Suppose the home country follows the Taylor rule (Engel and West,

2005, Equation (9) on p. 494)

it = β1y
g
t + β2πt + vt, (45)
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where πt = pt− pt−1 and ygt is the “output gap”. The foreign country follows the Taylor rule

(Engel and West, 2005, Equation (10) on p. 494)

i∗t = −β0 (st − s̄∗t ) + β1y
∗g
t + β2π

∗
t + v∗t , (46)

where β0 ∈ (0, 1) and s̄∗t is the target for the exchange rate. Assume further that s̄∗t = pt−p∗t
(the Purchasing Power Parity level of the exchange rate), see Engel and West (2005, Equation

(11) on p. 495). Subtracting (46) from (45) yields

it − i∗t = β0st − β0 (pt − p∗t ) + β1

(
ygt − y

∗g
t

)
+ β2 (πt − π∗t ) + (vt − v∗t ) .

Re-arranging the above equation yields (42) with yt = it − i∗t , α = 1/β0, and

b′zt = (pt − p∗t )−
β1

β0

(
ygt − y

∗g
t

)
− β2

β0
(πt − π∗t )−

1

β0
(vt − v∗t ) .
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